Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/Flipper-Zero/STM32CubeWB.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_f32.c')
-rw-r--r--Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_f32.c497
1 files changed, 428 insertions, 69 deletions
diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_f32.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_f32.c
index bb8341e4e..8e2af3172 100644
--- a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_f32.c
+++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_f32.c
@@ -3,13 +3,13 @@
* Title: arm_mat_cmplx_mult_f32.c
* Description: Floating-point matrix multiplication
*
- * $Date: 27. January 2017
- * $Revision: V.1.5.1
+ * $Date: 18. March 2019
+ * $Revision: V1.6.0
*
* Target Processor: Cortex-M cores
* -------------------------------------------------------------------- */
/*
- * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
@@ -29,36 +29,38 @@
#include "arm_math.h"
/**
- * @ingroup groupMatrix
+ @ingroup groupMatrix
*/
/**
- * @defgroup CmplxMatrixMult Complex Matrix Multiplication
- *
- * Complex Matrix multiplication is only defined if the number of columns of the
- * first matrix equals the number of rows of the second matrix.
- * Multiplying an <code>M x N</code> matrix with an <code>N x P</code> matrix results
- * in an <code>M x P</code> matrix.
- * When matrix size checking is enabled, the functions check: (1) that the inner dimensions of
- * <code>pSrcA</code> and <code>pSrcB</code> are equal; and (2) that the size of the output
- * matrix equals the outer dimensions of <code>pSrcA</code> and <code>pSrcB</code>.
+ @defgroup CmplxMatrixMult Complex Matrix Multiplication
+
+ Complex Matrix multiplication is only defined if the number of columns of the
+ first matrix equals the number of rows of the second matrix.
+ Multiplying an <code>M x N</code> matrix with an <code>N x P</code> matrix results
+ in an <code>M x P</code> matrix.
+ @par
+ When matrix size checking is enabled, the functions check:
+ - that the inner dimensions of <code>pSrcA</code> and <code>pSrcB</code> are equal;
+ - that the size of the output matrix equals the outer dimensions of <code>pSrcA</code> and <code>pSrcB</code>.
*/
/**
- * @addtogroup CmplxMatrixMult
- * @{
+ @addtogroup CmplxMatrixMult
+ @{
*/
/**
- * @brief Floating-point Complex matrix multiplication.
- * @param[in] *pSrcA points to the first input complex matrix structure
- * @param[in] *pSrcB points to the second input complex matrix structure
- * @param[out] *pDst points to output complex matrix structure
- * @return The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ @brief Floating-point Complex matrix multiplication.
+ @param[in] pSrcA points to first input complex matrix structure
+ @param[in] pSrcB points to second input complex matrix structure
+ @param[out] pDst points to output complex matrix structure
+ @return execution status
+ - \ref ARM_MATH_SUCCESS : Operation successful
+ - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
*/
-
+#if defined(ARM_MATH_NEON)
arm_status arm_mat_cmplx_mult_f32(
const arm_matrix_instance_f32 * pSrcA,
const arm_matrix_instance_f32 * pSrcB,
@@ -74,14 +76,20 @@ arm_status arm_mat_cmplx_mult_f32(
uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */
float32_t sumReal1, sumImag1; /* accumulator */
float32_t a0, b0, c0, d0;
- float32_t a1, b1, c1, d1;
+ float32_t a1, a1B,b1, b1B, c1, d1;
float32_t sumReal2, sumImag2; /* accumulator */
- /* Run the below code for Cortex-M4 and Cortex-M3 */
+ float32x4x2_t a0V, a1V;
+ float32x4_t accR0,accI0, accR1,accI1,tempR, tempI;
+ float32x2_t accum = vdup_n_f32(0);
+ float32_t *pIn1B = pSrcA->pData;
- uint16_t col, i = 0U, j, row = numRowsA, colCnt; /* loop counters */
+ uint16_t col, i = 0U, j, rowCnt, row = numRowsA, colCnt; /* loop counters */
arm_status status; /* status of matrix multiplication */
+ float32_t sumReal1B, sumImag1B;
+ float32_t sumReal2B, sumImag2B;
+ float32_t *pxB;
#ifdef ARM_MATH_MATRIX_CHECK
@@ -99,11 +107,15 @@ arm_status arm_mat_cmplx_mult_f32(
{
/* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
- /* row loop */
- do
+
+ rowCnt = row >> 1;
+
+ /* Row loop */
+ while (rowCnt > 0U)
{
/* Output pointer is set to starting address of the row being processed */
px = pOut + 2 * i;
+ pxB = px + 2 * numColsB;
/* For every row wise process, the column loop counter is to be initiated */
col = numColsB;
@@ -114,107 +126,231 @@ arm_status arm_mat_cmplx_mult_f32(
j = 0U;
- /* column loop */
- do
+ /* Column loop */
+ while (col > 0U)
{
/* Set the variable sum, that acts as accumulator, to zero */
sumReal1 = 0.0f;
sumImag1 = 0.0f;
+ sumReal1B = 0.0f;
+ sumImag1B = 0.0f;
sumReal2 = 0.0f;
sumImag2 = 0.0f;
+ sumReal2B = 0.0f;
+ sumImag2B = 0.0f;
/* Initiate the pointer pIn1 to point to the starting address of the column being processed */
pIn1 = pInA;
+ pIn1B = pIn1 + 2*numColsA;
- /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ accR0 = vdupq_n_f32(0.0);
+ accI0 = vdupq_n_f32(0.0);
+ accR1 = vdupq_n_f32(0.0);
+ accI1 = vdupq_n_f32(0.0);
+
+ /* Compute 4 MACs simultaneously. */
colCnt = numColsA >> 2;
- /* matrix multiplication */
+ /* Matrix multiplication */
while (colCnt > 0U)
{
-
/* Reading real part of complex matrix A */
- a0 = *pIn1;
+ a0V = vld2q_f32(pIn1); // load & separate real/imag pSrcA (de-interleave 2)
+ a1V = vld2q_f32(pIn1B); // load & separate real/imag pSrcA (de-interleave 2)
- /* Reading real part of complex matrix B */
- c0 = *pIn2;
+ pIn1 += 8;
+ pIn1B += 8;
- /* Reading imaginary part of complex matrix A */
- b0 = *(pIn1 + 1U);
+ tempR[0] = *pIn2;
+ tempI[0] = *(pIn2 + 1U);
+ pIn2 += 2 * numColsB;
- /* Reading imaginary part of complex matrix B */
- d0 = *(pIn2 + 1U);
+ tempR[1] = *pIn2;
+ tempI[1] = *(pIn2 + 1U);
+ pIn2 += 2 * numColsB;
- sumReal1 += a0 * c0;
- sumImag1 += b0 * c0;
+ tempR[2] = *pIn2;
+ tempI[2] = *(pIn2 + 1U);
+ pIn2 += 2 * numColsB;
- pIn1 += 2U;
+ tempR[3] = *pIn2;
+ tempI[3] = *(pIn2 + 1U);
pIn2 += 2 * numColsB;
- sumReal2 -= b0 * d0;
- sumImag2 += a0 * d0;
+ accR0 = vmlaq_f32(accR0,a0V.val[0],tempR);
+ accR0 = vmlsq_f32(accR0,a0V.val[1],tempI);
+
+ accI0 = vmlaq_f32(accI0,a0V.val[1],tempR);
+ accI0 = vmlaq_f32(accI0,a0V.val[0],tempI);
+
+ accR1 = vmlaq_f32(accR1,a1V.val[0],tempR);
+ accR1 = vmlsq_f32(accR1,a1V.val[1],tempI);
+
+ accI1 = vmlaq_f32(accI1,a1V.val[1],tempR);
+ accI1 = vmlaq_f32(accI1,a1V.val[0],tempI);
+
+ /* Decrement the loop count */
+ colCnt--;
+ }
+
+ accum = vpadd_f32(vget_low_f32(accR0), vget_high_f32(accR0));
+ sumReal1 += accum[0] + accum[1];
+
+ accum = vpadd_f32(vget_low_f32(accI0), vget_high_f32(accI0));
+ sumImag1 += accum[0] + accum[1];
- /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
+ accum = vpadd_f32(vget_low_f32(accR1), vget_high_f32(accR1));
+ sumReal1B += accum[0] + accum[1];
+ accum = vpadd_f32(vget_low_f32(accI1), vget_high_f32(accI1));
+ sumImag1B += accum[0] + accum[1];
+
+ /* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ colCnt = numColsA & 3;
+
+ while (colCnt > 0U)
+ {
+ /* c(m,n) = a(1,1)*b(1,1) + a(1,2)*b(2,1) + ... + a(m,p)*b(p,n) */
a1 = *pIn1;
+ a1B = *pIn1B;
+
c1 = *pIn2;
b1 = *(pIn1 + 1U);
+ b1B = *(pIn1B + 1U);
+
d1 = *(pIn2 + 1U);
sumReal1 += a1 * c1;
sumImag1 += b1 * c1;
+ sumReal1B += a1B * c1;
+ sumImag1B += b1B * c1;
+
pIn1 += 2U;
+ pIn1B += 2U;
pIn2 += 2 * numColsB;
sumReal2 -= b1 * d1;
sumImag2 += a1 * d1;
- a0 = *pIn1;
- c0 = *pIn2;
+ sumReal2B -= b1B * d1;
+ sumImag2B += a1B * d1;
- b0 = *(pIn1 + 1U);
- d0 = *(pIn2 + 1U);
+ /* Decrement the loop counter */
+ colCnt--;
+ }
- sumReal1 += a0 * c0;
- sumImag1 += b0 * c0;
+ sumReal1 += sumReal2;
+ sumImag1 += sumImag2;
- pIn1 += 2U;
- pIn2 += 2 * numColsB;
+ sumReal1B += sumReal2B;
+ sumImag1B += sumImag2B;
- sumReal2 -= b0 * d0;
- sumImag2 += a0 * d0;
+ /* Store the result in the destination buffer */
+ *px++ = sumReal1;
+ *px++ = sumImag1;
+ *pxB++ = sumReal1B;
+ *pxB++ = sumImag1B;
- /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
+ /* Update the pointer pIn2 to point to the starting address of the next column */
+ j++;
+ pIn2 = pSrcB->pData + 2U * j;
- a1 = *pIn1;
- c1 = *pIn2;
+ /* Decrement the column loop counter */
+ col--;
+ }
- b1 = *(pIn1 + 1U);
- d1 = *(pIn2 + 1U);
+ /* Update the pointer pInA to point to the starting address of the next 2 row */
+ i = i + 2*numColsB;
+ pInA = pInA + 4 * numColsA;
- sumReal1 += a1 * c1;
- sumImag1 += b1 * c1;
+ /* Decrement the row loop counter */
+ rowCnt--;
+ }
- pIn1 += 2U;
+ rowCnt = row & 1;
+ while (rowCnt > 0U)
+ {
+ /* Output pointer is set to starting address of the row being processed */
+ px = pOut + 2 * i;
+
+ /* For every row wise process, the column loop counter is to be initiated */
+ col = numColsB;
+
+ /* For every row wise process, the pIn2 pointer is set
+ ** to the starting address of the pSrcB data */
+ pIn2 = pSrcB->pData;
+
+ j = 0U;
+
+ /* Column loop */
+ while (col > 0U)
+ {
+ /* Set the variable sum, that acts as accumulator, to zero */
+ sumReal1 = 0.0f;
+ sumImag1 = 0.0f;
+
+ sumReal2 = 0.0f;
+ sumImag2 = 0.0f;
+
+ /* Initiate the pointer pIn1 to point to the starting address of the column being processed */
+ pIn1 = pInA;
+
+ accR0 = vdupq_n_f32(0.0);
+ accI0 = vdupq_n_f32(0.0);
+
+ /* Compute 4 MACs simultaneously. */
+ colCnt = numColsA >> 2;
+
+ /* Matrix multiplication */
+ while (colCnt > 0U)
+ {
+ /* Reading real part of complex matrix A */
+ a0V = vld2q_f32(pIn1); // load & separate real/imag pSrcA (de-interleave 2)
+ pIn1 += 8;
+
+ tempR[0] = *pIn2;
+ tempI[0] = *(pIn2 + 1U);
pIn2 += 2 * numColsB;
- sumReal2 -= b1 * d1;
- sumImag2 += a1 * d1;
+ tempR[1] = *pIn2;
+ tempI[1] = *(pIn2 + 1U);
+ pIn2 += 2 * numColsB;
+
+ tempR[2] = *pIn2;
+ tempI[2] = *(pIn2 + 1U);
+ pIn2 += 2 * numColsB;
+
+ tempR[3] = *pIn2;
+ tempI[3] = *(pIn2 + 1U);
+ pIn2 += 2 * numColsB;
+
+ accR0 = vmlaq_f32(accR0,a0V.val[0],tempR);
+ accR0 = vmlsq_f32(accR0,a0V.val[1],tempI);
+
+ accI0 = vmlaq_f32(accI0,a0V.val[1],tempR);
+ accI0 = vmlaq_f32(accI0,a0V.val[0],tempI);
/* Decrement the loop count */
colCnt--;
}
+ accum = vpadd_f32(vget_low_f32(accR0), vget_high_f32(accR0));
+ sumReal1 += accum[0] + accum[1];
+
+ accum = vpadd_f32(vget_low_f32(accI0), vget_high_f32(accI0));
+ sumImag1 += accum[0] + accum[1];
+
/* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
- colCnt = numColsA % 0x4U;
+ colCnt = numColsA & 3;
while (colCnt > 0U)
{
- /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
+ /* c(m,n) = a(1,1)*b(1,1) + a(1,2)*b(2,1) + ... + a(m,p)*b(p,n) */
a1 = *pIn1;
c1 = *pIn2;
@@ -248,13 +384,234 @@ arm_status arm_mat_cmplx_mult_f32(
/* Decrement the column loop counter */
col--;
- } while (col > 0U);
+ }
/* Update the pointer pInA to point to the starting address of the next row */
i = i + numColsB;
pInA = pInA + 2 * numColsA;
/* Decrement the row loop counter */
+ rowCnt--;
+
+ }
+
+ /* Set status as ARM_MATH_SUCCESS */
+ status = ARM_MATH_SUCCESS;
+ }
+
+ /* Return to application */
+ return (status);
+}
+#else
+arm_status arm_mat_cmplx_mult_f32(
+ const arm_matrix_instance_f32 * pSrcA,
+ const arm_matrix_instance_f32 * pSrcB,
+ arm_matrix_instance_f32 * pDst)
+{
+ float32_t *pIn1 = pSrcA->pData; /* Input data matrix pointer A */
+ float32_t *pIn2 = pSrcB->pData; /* Input data matrix pointer B */
+ float32_t *pInA = pSrcA->pData; /* Input data matrix pointer A */
+ float32_t *pOut = pDst->pData; /* Output data matrix pointer */
+ float32_t *px; /* Temporary output data matrix pointer */
+ uint16_t numRowsA = pSrcA->numRows; /* Number of rows of input matrix A */
+ uint16_t numColsB = pSrcB->numCols; /* Number of columns of input matrix B */
+ uint16_t numColsA = pSrcA->numCols; /* Number of columns of input matrix A */
+ float32_t sumReal, sumImag; /* Accumulator */
+ float32_t a1, b1, c1, d1;
+ uint32_t col, i = 0U, j, row = numRowsA, colCnt; /* loop counters */
+ arm_status status; /* status of matrix multiplication */
+
+#if defined (ARM_MATH_LOOPUNROLL)
+ float32_t a0, b0, c0, d0;
+#endif
+
+#ifdef ARM_MATH_MATRIX_CHECK
+
+ /* Check for matrix mismatch condition */
+ if ((pSrcA->numCols != pSrcB->numRows) ||
+ (pSrcA->numRows != pDst->numRows) ||
+ (pSrcB->numCols != pDst->numCols) )
+ {
+ /* Set status as ARM_MATH_SIZE_MISMATCH */
+ status = ARM_MATH_SIZE_MISMATCH;
+ }
+ else
+
+#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
+
+ {
+ /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
+ /* row loop */
+ do
+ {
+ /* Output pointer is set to starting address of the row being processed */
+ px = pOut + 2 * i;
+
+ /* For every row wise process, the column loop counter is to be initiated */
+ col = numColsB;
+
+ /* For every row wise process, the pIn2 pointer is set
+ ** to the starting address of the pSrcB data */
+ pIn2 = pSrcB->pData;
+
+ j = 0U;
+
+ /* column loop */
+ do
+ {
+ /* Set the variable sum, that acts as accumulator, to zero */
+ sumReal = 0.0f;
+ sumImag = 0.0f;
+
+ /* Initiate pointer pIn1 to point to starting address of column being processed */
+ pIn1 = pInA;
+
+#if defined (ARM_MATH_LOOPUNROLL)
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ colCnt = numColsA >> 2U;
+
+ /* matrix multiplication */
+ while (colCnt > 0U)
+ {
+
+ /* Reading real part of complex matrix A */
+ a0 = *pIn1;
+
+ /* Reading real part of complex matrix B */
+ c0 = *pIn2;
+
+ /* Reading imaginary part of complex matrix A */
+ b0 = *(pIn1 + 1U);
+
+ /* Reading imaginary part of complex matrix B */
+ d0 = *(pIn2 + 1U);
+
+ /* Multiply and Accumlates */
+ sumReal += a0 * c0;
+ sumImag += b0 * c0;
+
+ /* update pointers */
+ pIn1 += 2U;
+ pIn2 += 2 * numColsB;
+
+ /* Multiply and Accumlates */
+ sumReal -= b0 * d0;
+ sumImag += a0 * d0;
+
+ /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
+
+ /* read real and imag values from pSrcA and pSrcB buffer */
+ a1 = *(pIn1 );
+ c1 = *(pIn2 );
+ b1 = *(pIn1 + 1U);
+ d1 = *(pIn2 + 1U);
+
+ /* Multiply and Accumlates */
+ sumReal += a1 * c1;
+ sumImag += b1 * c1;
+
+ /* update pointers */
+ pIn1 += 2U;
+ pIn2 += 2 * numColsB;
+
+ /* Multiply and Accumlates */
+ sumReal -= b1 * d1;
+ sumImag += a1 * d1;
+
+ a0 = *(pIn1 );
+ c0 = *(pIn2 );
+ b0 = *(pIn1 + 1U);
+ d0 = *(pIn2 + 1U);
+
+ /* Multiply and Accumlates */
+ sumReal += a0 * c0;
+ sumImag += b0 * c0;
+
+ /* update pointers */
+ pIn1 += 2U;
+ pIn2 += 2 * numColsB;
+
+ /* Multiply and Accumlates */
+ sumReal -= b0 * d0;
+ sumImag += a0 * d0;
+
+ /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
+
+ a1 = *(pIn1 );
+ c1 = *(pIn2 );
+ b1 = *(pIn1 + 1U);
+ d1 = *(pIn2 + 1U);
+
+ /* Multiply and Accumlates */
+ sumReal += a1 * c1;
+ sumImag += b1 * c1;
+
+ /* update pointers */
+ pIn1 += 2U;
+ pIn2 += 2 * numColsB;
+
+ /* Multiply and Accumlates */
+ sumReal -= b1 * d1;
+ sumImag += a1 * d1;
+
+ /* Decrement loop count */
+ colCnt--;
+ }
+
+ /* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ colCnt = numColsA % 0x4U;
+
+#else
+
+ /* Initialize blkCnt with number of samples */
+ colCnt = numColsA;
+
+#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
+
+ while (colCnt > 0U)
+ {
+ /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
+ a1 = *(pIn1 );
+ c1 = *(pIn2 );
+ b1 = *(pIn1 + 1U);
+ d1 = *(pIn2 + 1U);
+
+ /* Multiply and Accumlates */
+ sumReal += a1 * c1;
+ sumImag += b1 * c1;
+
+ /* update pointers */
+ pIn1 += 2U;
+ pIn2 += 2 * numColsB;
+
+ /* Multiply and Accumlates */
+ sumReal -= b1 * d1;
+ sumImag += a1 * d1;
+
+ /* Decrement loop counter */
+ colCnt--;
+ }
+
+ /* Store result in destination buffer */
+ *px++ = sumReal;
+ *px++ = sumImag;
+
+ /* Update pointer pIn2 to point to starting address of next column */
+ j++;
+ pIn2 = pSrcB->pData + 2U * j;
+
+ /* Decrement column loop counter */
+ col--;
+
+ } while (col > 0U);
+
+ /* Update pointer pInA to point to starting address of next row */
+ i = i + numColsB;
+ pInA = pInA + 2 * numColsA;
+
+ /* Decrement row loop counter */
row--;
} while (row > 0U);
@@ -267,6 +624,8 @@ arm_status arm_mat_cmplx_mult_f32(
return (status);
}
+#endif /* #if defined(ARM_MATH_NEON) */
+
/**
- * @} end of MatrixMult group
+ @} end of MatrixMult group
*/