Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/Flipper-Zero/STM32CubeWB.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_inverse_f64.c')
-rw-r--r--Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_inverse_f64.c268
1 files changed, 125 insertions, 143 deletions
diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_inverse_f64.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_inverse_f64.c
index 54e598207..4607e075a 100644
--- a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_inverse_f64.c
+++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_inverse_f64.c
@@ -3,13 +3,13 @@
* Title: arm_mat_inverse_f64.c
* Description: Floating-point matrix inverse
*
- * $Date: 27. January 2017
- * $Revision: V.1.5.1
+ * $Date: 18. March 2019
+ * $Revision: V1.6.0
*
* Target Processor: Cortex-M cores
* -------------------------------------------------------------------- */
/*
- * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
@@ -29,50 +29,28 @@
#include "arm_math.h"
/**
- * @ingroup groupMatrix
+ @ingroup groupMatrix
*/
-/**
- * @defgroup MatrixInv Matrix Inverse
- *
- * Computes the inverse of a matrix.
- *
- * The inverse is defined only if the input matrix is square and non-singular (the determinant
- * is non-zero). The function checks that the input and output matrices are square and of the
- * same size.
- *
- * Matrix inversion is numerically sensitive and the CMSIS DSP library only supports matrix
- * inversion of floating-point matrices.
- *
- * \par Algorithm
- * The Gauss-Jordan method is used to find the inverse.
- * The algorithm performs a sequence of elementary row-operations until it
- * reduces the input matrix to an identity matrix. Applying the same sequence
- * of elementary row-operations to an identity matrix yields the inverse matrix.
- * If the input matrix is singular, then the algorithm terminates and returns error status
- * <code>ARM_MATH_SINGULAR</code>.
- * \image html MatrixInverse.gif "Matrix Inverse of a 3 x 3 matrix using Gauss-Jordan Method"
- */
/**
- * @addtogroup MatrixInv
- * @{
+ @addtogroup MatrixInv
+ @{
*/
/**
- * @brief Floating-point matrix inverse.
- * @param[in] *pSrc points to input matrix structure
- * @param[out] *pDst points to output matrix structure
- * @return The function returns
- * <code>ARM_MATH_SIZE_MISMATCH</code> if the input matrix is not square or if the size
- * of the output matrix does not match the size of the input matrix.
- * If the input matrix is found to be singular (non-invertible), then the function returns
- * <code>ARM_MATH_SINGULAR</code>. Otherwise, the function returns <code>ARM_MATH_SUCCESS</code>.
+ @brief Floating-point (64 bit) matrix inverse.
+ @param[in] pSrc points to input matrix structure
+ @param[out] pDst points to output matrix structure
+ @return execution status
+ - \ref ARM_MATH_SUCCESS : Operation successful
+ - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
+ - \ref ARM_MATH_SINGULAR : Input matrix is found to be singular (non-invertible)
*/
arm_status arm_mat_inverse_f64(
const arm_matrix_instance_f64 * pSrc,
- arm_matrix_instance_f64 * pDst)
+ arm_matrix_instance_f64 * pDst)
{
float64_t *pIn = pSrc->pData; /* input data matrix pointer */
float64_t *pOut = pDst->pData; /* output data matrix pointer */
@@ -85,62 +63,61 @@ arm_status arm_mat_inverse_f64(
#if defined (ARM_MATH_DSP)
float64_t maxC; /* maximum value in the column */
- /* Run the below code for Cortex-M4 and Cortex-M3 */
-
- float64_t Xchg, in = 0.0f, in1; /* Temporary input values */
+ float64_t Xchg, in = 0.0, in1; /* Temporary input values */
uint32_t i, rowCnt, flag = 0U, j, loopCnt, k, l; /* loop counters */
arm_status status; /* status of matrix inverse */
#ifdef ARM_MATH_MATRIX_CHECK
-
/* Check for matrix mismatch condition */
- if ((pSrc->numRows != pSrc->numCols) || (pDst->numRows != pDst->numCols)
- || (pSrc->numRows != pDst->numRows))
+ if ((pSrc->numRows != pSrc->numCols) ||
+ (pDst->numRows != pDst->numCols) ||
+ (pSrc->numRows != pDst->numRows) )
{
/* Set status as ARM_MATH_SIZE_MISMATCH */
status = ARM_MATH_SIZE_MISMATCH;
}
else
-#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
+
+#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
{
/*--------------------------------------------------------------------------------------------------------------
- * Matrix Inverse can be solved using elementary row operations.
- *
- * Gauss-Jordan Method:
- *
- * 1. First combine the identity matrix and the input matrix separated by a bar to form an
- * augmented matrix as follows:
- * _ _ _ _
- * | a11 a12 | 1 0 | | X11 X12 |
- * | | | = | |
- * |_ a21 a22 | 0 1 _| |_ X21 X21 _|
- *
- * 2. In our implementation, pDst Matrix is used as identity matrix.
- *
- * 3. Begin with the first row. Let i = 1.
- *
- * 4. Check to see if the pivot for column i is the greatest of the column.
- * The pivot is the element of the main diagonal that is on the current row.
- * For instance, if working with row i, then the pivot element is aii.
- * If the pivot is not the most significant of the columns, exchange that row with a row
- * below it that does contain the most significant value in column i. If the most
- * significant value of the column is zero, then an inverse to that matrix does not exist.
- * The most significant value of the column is the absolute maximum.
- *
- * 5. Divide every element of row i by the pivot.
- *
- * 6. For every row below and row i, replace that row with the sum of that row and
- * a multiple of row i so that each new element in column i below row i is zero.
- *
- * 7. Move to the next row and column and repeat steps 2 through 5 until you have zeros
- * for every element below and above the main diagonal.
- *
- * 8. Now an identical matrix is formed to the left of the bar(input matrix, pSrc).
- * Therefore, the matrix to the right of the bar is our solution(pDst matrix, pDst).
- *----------------------------------------------------------------------------------------------------------------*/
+ * Matrix Inverse can be solved using elementary row operations.
+ *
+ * Gauss-Jordan Method:
+ *
+ * 1. First combine the identity matrix and the input matrix separated by a bar to form an
+ * augmented matrix as follows:
+ * _ _ _ _
+ * | a11 a12 | 1 0 | | X11 X12 |
+ * | | | = | |
+ * |_ a21 a22 | 0 1 _| |_ X21 X21 _|
+ *
+ * 2. In our implementation, pDst Matrix is used as identity matrix.
+ *
+ * 3. Begin with the first row. Let i = 1.
+ *
+ * 4. Check to see if the pivot for column i is the greatest of the column.
+ * The pivot is the element of the main diagonal that is on the current row.
+ * For instance, if working with row i, then the pivot element is aii.
+ * If the pivot is not the most significant of the columns, exchange that row with a row
+ * below it that does contain the most significant value in column i. If the most
+ * significant value of the column is zero, then an inverse to that matrix does not exist.
+ * The most significant value of the column is the absolute maximum.
+ *
+ * 5. Divide every element of row i by the pivot.
+ *
+ * 6. For every row below and row i, replace that row with the sum of that row and
+ * a multiple of row i so that each new element in column i below row i is zero.
+ *
+ * 7. Move to the next row and column and repeat steps 2 through 5 until you have zeros
+ * for every element below and above the main diagonal.
+ *
+ * 8. Now an identical matrix is formed to the left of the bar(input matrix, pSrc).
+ * Therefore, the matrix to the right of the bar is our solution(pDst matrix, pDst).
+ *----------------------------------------------------------------------------------------------------------------*/
/* Working pointer for destination matrix */
pOutT1 = pOut;
@@ -155,22 +132,22 @@ arm_status arm_mat_inverse_f64(
j = numRows - rowCnt;
while (j > 0U)
{
- *pOutT1++ = 0.0f;
+ *pOutT1++ = 0.0;
j--;
}
/* Writing all ones in the diagonal of the destination matrix */
- *pOutT1++ = 1.0f;
+ *pOutT1++ = 1.0;
/* Writing all zeroes in upper triangle of the destination matrix */
j = rowCnt - 1U;
while (j > 0U)
{
- *pOutT1++ = 0.0f;
+ *pOutT1++ = 0.0;
j--;
}
- /* Decrement the loop counter */
+ /* Decrement loop counter */
rowCnt--;
}
@@ -208,7 +185,7 @@ arm_status arm_mat_inverse_f64(
}
/* Update the status if the matrix is singular */
- if (maxC == 0.0f)
+ if (maxC == 0.0)
{
return ARM_MATH_SINGULAR;
}
@@ -220,7 +197,7 @@ arm_status arm_mat_inverse_f64(
k = 1U;
/* Check if the pivot element is the most significant of the column */
- if ( (in > 0.0f ? in : -in) != maxC)
+ if ( (in > 0.0 ? in : -in) != maxC)
{
/* Loop over the number rows present below */
i = numRows - (l + 1U);
@@ -233,7 +210,7 @@ arm_status arm_mat_inverse_f64(
/* Look for the most significant element to
* replace in the rows below */
- if ((*pInT2 > 0.0f ? *pInT2: -*pInT2) == maxC)
+ if ((*pInT2 > 0.0 ? *pInT2: -*pInT2) == maxC)
{
/* Loop over number of columns
* to the right of the pilot element */
@@ -260,7 +237,7 @@ arm_status arm_mat_inverse_f64(
*pOutT2++ = *pOutT1;
*pOutT1++ = Xchg;
- /* Decrement the loop counter */
+ /* Decrement loop counter */
j--;
}
@@ -274,13 +251,13 @@ arm_status arm_mat_inverse_f64(
/* Update the destination pointer modifier */
k++;
- /* Decrement the loop counter */
+ /* Decrement loop counter */
i--;
}
}
/* Update the status if the matrix is singular */
- if ((flag != 1U) && (in == 0.0f))
+ if ((flag != 1U) && (in == 0.0))
{
return ARM_MATH_SINGULAR;
}
@@ -385,19 +362,19 @@ arm_status arm_mat_inverse_f64(
in1 = *pInT2;
*pInT2++ = in1 - (in * *pPRT_pDst++);
- /* Decrement the loop counter */
+ /* Decrement loop counter */
j--;
}
}
- /* Increment the temporary input pointer */
+ /* Increment temporary input pointer */
pInT1 = pInT1 + l;
- /* Decrement the loop counter */
+ /* Decrement loop counter */
k--;
- /* Increment the pivot index */
+ /* Increment pivot index */
i++;
}
@@ -414,59 +391,60 @@ arm_status arm_mat_inverse_f64(
#else
- /* Run the below code for Cortex-M0 */
-
- float64_t Xchg, in = 0.0f; /* Temporary input values */
+ float64_t Xchg, in = 0.0; /* Temporary input values */
uint32_t i, rowCnt, flag = 0U, j, loopCnt, k, l; /* loop counters */
arm_status status; /* status of matrix inverse */
#ifdef ARM_MATH_MATRIX_CHECK
/* Check for matrix mismatch condition */
- if ((pSrc->numRows != pSrc->numCols) || (pDst->numRows != pDst->numCols)
- || (pSrc->numRows != pDst->numRows))
+ if ((pSrc->numRows != pSrc->numCols) ||
+ (pDst->numRows != pDst->numCols) ||
+ (pSrc->numRows != pDst->numRows) )
{
/* Set status as ARM_MATH_SIZE_MISMATCH */
status = ARM_MATH_SIZE_MISMATCH;
}
else
-#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
+
+#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
+
{
/*--------------------------------------------------------------------------------------------------------------
- * Matrix Inverse can be solved using elementary row operations.
- *
- * Gauss-Jordan Method:
- *
- * 1. First combine the identity matrix and the input matrix separated by a bar to form an
- * augmented matrix as follows:
- * _ _ _ _ _ _ _ _
- * | | a11 a12 | | | 1 0 | | | X11 X12 |
- * | | | | | | | = | |
- * |_ |_ a21 a22 _| | |_0 1 _| _| |_ X21 X21 _|
- *
- * 2. In our implementation, pDst Matrix is used as identity matrix.
- *
- * 3. Begin with the first row. Let i = 1.
- *
- * 4. Check to see if the pivot for row i is zero.
- * The pivot is the element of the main diagonal that is on the current row.
- * For instance, if working with row i, then the pivot element is aii.
- * If the pivot is zero, exchange that row with a row below it that does not
- * contain a zero in column i. If this is not possible, then an inverse
- * to that matrix does not exist.
- *
- * 5. Divide every element of row i by the pivot.
- *
- * 6. For every row below and row i, replace that row with the sum of that row and
- * a multiple of row i so that each new element in column i below row i is zero.
- *
- * 7. Move to the next row and column and repeat steps 2 through 5 until you have zeros
- * for every element below and above the main diagonal.
- *
- * 8. Now an identical matrix is formed to the left of the bar(input matrix, src).
- * Therefore, the matrix to the right of the bar is our solution(dst matrix, dst).
- *----------------------------------------------------------------------------------------------------------------*/
+ * Matrix Inverse can be solved using elementary row operations.
+ *
+ * Gauss-Jordan Method:
+ *
+ * 1. First combine the identity matrix and the input matrix separated by a bar to form an
+ * augmented matrix as follows:
+ * _ _ _ _ _ _ _ _
+ * | | a11 a12 | | | 1 0 | | | X11 X12 |
+ * | | | | | | | = | |
+ * |_ |_ a21 a22 _| | |_0 1 _| _| |_ X21 X21 _|
+ *
+ * 2. In our implementation, pDst Matrix is used as identity matrix.
+ *
+ * 3. Begin with the first row. Let i = 1.
+ *
+ * 4. Check to see if the pivot for row i is zero.
+ * The pivot is the element of the main diagonal that is on the current row.
+ * For instance, if working with row i, then the pivot element is aii.
+ * If the pivot is zero, exchange that row with a row below it that does not
+ * contain a zero in column i. If this is not possible, then an inverse
+ * to that matrix does not exist.
+ *
+ * 5. Divide every element of row i by the pivot.
+ *
+ * 6. For every row below and row i, replace that row with the sum of that row and
+ * a multiple of row i so that each new element in column i below row i is zero.
+ *
+ * 7. Move to the next row and column and repeat steps 2 through 5 until you have zeros
+ * for every element below and above the main diagonal.
+ *
+ * 8. Now an identical matrix is formed to the left of the bar(input matrix, src).
+ * Therefore, the matrix to the right of the bar is our solution(dst matrix, dst).
+ *----------------------------------------------------------------------------------------------------------------*/
/* Working pointer for destination matrix */
pOutT1 = pOut;
@@ -481,22 +459,22 @@ arm_status arm_mat_inverse_f64(
j = numRows - rowCnt;
while (j > 0U)
{
- *pOutT1++ = 0.0f;
+ *pOutT1++ = 0.0;
j--;
}
/* Writing all ones in the diagonal of the destination matrix */
- *pOutT1++ = 1.0f;
+ *pOutT1++ = 1.0;
/* Writing all zeroes in upper triangle of the destination matrix */
j = rowCnt - 1U;
while (j > 0U)
{
- *pOutT1++ = 0.0f;
+ *pOutT1++ = 0.0;
j--;
}
- /* Decrement the loop counter */
+ /* Decrement loop counter */
rowCnt--;
}
@@ -506,7 +484,7 @@ arm_status arm_mat_inverse_f64(
/* Index modifier to navigate through the columns */
l = 0U;
- //for(loopCnt = 0U; loopCnt < numCols; loopCnt++)
+
while (loopCnt > 0U)
{
/* Check if the pivot element is zero..
@@ -529,7 +507,7 @@ arm_status arm_mat_inverse_f64(
k = 1U;
/* Check if the pivot element is zero */
- if (*pInT1 == 0.0f)
+ if (*pInT1 == 0.0)
{
/* Loop over the number rows present below */
for (i = (l + 1U); i < numRows; i++)
@@ -540,7 +518,7 @@ arm_status arm_mat_inverse_f64(
/* Check if there is a non zero pivot element to
* replace in the rows below */
- if (*pInT2 != 0.0f)
+ if (*pInT2 != 0.0)
{
/* Loop over number of columns
* to the right of the pilot element */
@@ -572,7 +550,7 @@ arm_status arm_mat_inverse_f64(
}
/* Update the status if the matrix is singular */
- if ((flag != 1U) && (in == 0.0f))
+ if ((flag != 1U) && (in == 0.0))
{
return ARM_MATH_SINGULAR;
}
@@ -640,6 +618,7 @@ arm_status arm_mat_inverse_f64(
*pInT1 = *pInT1 - (in * *pPRT_in++);
pInT1++;
}
+
/* Loop over the number of columns to
replace the elements in the destination matrix */
for (j = 0U; j < numCols; j++)
@@ -651,30 +630,32 @@ arm_status arm_mat_inverse_f64(
}
}
- /* Increment the temporary input pointer */
+
+ /* Increment temporary input pointer */
pInT1 = pInT1 + l;
}
+
/* Increment the input pointer */
pIn++;
/* Decrement the loop counter */
loopCnt--;
+
/* Increment the index modifier */
l++;
}
-
#endif /* #if defined (ARM_MATH_DSP) */
/* Set status as ARM_MATH_SUCCESS */
status = ARM_MATH_SUCCESS;
- if ((flag != 1U) && (in == 0.0f))
+ if ((flag != 1U) && (in == 0.0))
{
pIn = pSrc->pData;
for (i = 0; i < numRows * numCols; i++)
{
- if (pIn[i] != 0.0f)
+ if (pIn[i] != 0.0)
break;
}
@@ -682,10 +663,11 @@ arm_status arm_mat_inverse_f64(
status = ARM_MATH_SINGULAR;
}
}
+
/* Return to application */
return (status);
}
/**
- * @} end of MatrixInv group
+ @} end of MatrixInv group
*/