Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/Flipper-Zero/STM32CubeWB.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'Drivers/CMSIS/DSP/Source/TransformFunctions/arm_cfft_f32.c')
-rw-r--r--Drivers/CMSIS/DSP/Source/TransformFunctions/arm_cfft_f32.c931
1 files changed, 470 insertions, 461 deletions
diff --git a/Drivers/CMSIS/DSP/Source/TransformFunctions/arm_cfft_f32.c b/Drivers/CMSIS/DSP/Source/TransformFunctions/arm_cfft_f32.c
index 4abb6f591..2fff61cab 100644
--- a/Drivers/CMSIS/DSP/Source/TransformFunctions/arm_cfft_f32.c
+++ b/Drivers/CMSIS/DSP/Source/TransformFunctions/arm_cfft_f32.c
@@ -3,13 +3,13 @@
* Title: arm_cfft_f32.c
* Description: Combined Radix Decimation in Frequency CFFT Floating point processing function
*
- * $Date: 27. January 2017
- * $Revision: V.1.5.1
+ * $Date: 18. March 2019
+ * $Revision: V1.6.0
*
* Target Processor: Cortex-M cores
* -------------------------------------------------------------------- */
/*
- * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
@@ -30,281 +30,283 @@
#include "arm_common_tables.h"
extern void arm_radix8_butterfly_f32(
- float32_t * pSrc,
- uint16_t fftLen,
- const float32_t * pCoef,
- uint16_t twidCoefModifier);
+ float32_t * pSrc,
+ uint16_t fftLen,
+ const float32_t * pCoef,
+ uint16_t twidCoefModifier);
extern void arm_bitreversal_32(
- uint32_t * pSrc,
- const uint16_t bitRevLen,
- const uint16_t * pBitRevTable);
+ uint32_t * pSrc,
+ const uint16_t bitRevLen,
+ const uint16_t * pBitRevTable);
/**
-* @ingroup groupTransforms
-*/
+ @ingroup groupTransforms
+ */
/**
-* @defgroup ComplexFFT Complex FFT Functions
-*
-* \par
-* The Fast Fourier Transform (FFT) is an efficient algorithm for computing the
-* Discrete Fourier Transform (DFT). The FFT can be orders of magnitude faster
-* than the DFT, especially for long lengths.
-* The algorithms described in this section
-* operate on complex data. A separate set of functions is devoted to handling
-* of real sequences.
-* \par
-* There are separate algorithms for handling floating-point, Q15, and Q31 data
-* types. The algorithms available for each data type are described next.
-* \par
-* The FFT functions operate in-place. That is, the array holding the input data
-* will also be used to hold the corresponding result. The input data is complex
-* and contains <code>2*fftLen</code> interleaved values as shown below.
-* <pre> {real[0], imag[0], real[1], imag[1],..} </pre>
-* The FFT result will be contained in the same array and the frequency domain
-* values will have the same interleaving.
-*
-* \par Floating-point
-* The floating-point complex FFT uses a mixed-radix algorithm. Multiple radix-8
-* stages are performed along with a single radix-2 or radix-4 stage, as needed.
-* The algorithm supports lengths of [16, 32, 64, ..., 4096] and each length uses
-* a different twiddle factor table.
-* \par
-* The function uses the standard FFT definition and output values may grow by a
-* factor of <code>fftLen</code> when computing the forward transform. The
-* inverse transform includes a scale of <code>1/fftLen</code> as part of the
-* calculation and this matches the textbook definition of the inverse FFT.
-* \par
-* Pre-initialized data structures containing twiddle factors and bit reversal
-* tables are provided and defined in <code>arm_const_structs.h</code>. Include
-* this header in your function and then pass one of the constant structures as
-* an argument to arm_cfft_f32. For example:
-* \par
-* <code>arm_cfft_f32(arm_cfft_sR_f32_len64, pSrc, 1, 1)</code>
-* \par
-* computes a 64-point inverse complex FFT including bit reversal.
-* The data structures are treated as constant data and not modified during the
-* calculation. The same data structure can be reused for multiple transforms
-* including mixing forward and inverse transforms.
-* \par
-* Earlier releases of the library provided separate radix-2 and radix-4
-* algorithms that operated on floating-point data. These functions are still
-* provided but are deprecated. The older functions are slower and less general
-* than the new functions.
-* \par
-* An example of initialization of the constants for the arm_cfft_f32 function follows:
-* \code
-* const static arm_cfft_instance_f32 *S;
-* ...
-* switch (length) {
-* case 16:
-* S = &arm_cfft_sR_f32_len16;
-* break;
-* case 32:
-* S = &arm_cfft_sR_f32_len32;
-* break;
-* case 64:
-* S = &arm_cfft_sR_f32_len64;
-* break;
-* case 128:
-* S = &arm_cfft_sR_f32_len128;
-* break;
-* case 256:
-* S = &arm_cfft_sR_f32_len256;
-* break;
-* case 512:
-* S = &arm_cfft_sR_f32_len512;
-* break;
-* case 1024:
-* S = &arm_cfft_sR_f32_len1024;
-* break;
-* case 2048:
-* S = &arm_cfft_sR_f32_len2048;
-* break;
-* case 4096:
-* S = &arm_cfft_sR_f32_len4096;
-* break;
-* }
-* \endcode
-* \par Q15 and Q31
-* The floating-point complex FFT uses a mixed-radix algorithm. Multiple radix-4
-* stages are performed along with a single radix-2 stage, as needed.
-* The algorithm supports lengths of [16, 32, 64, ..., 4096] and each length uses
-* a different twiddle factor table.
-* \par
-* The function uses the standard FFT definition and output values may grow by a
-* factor of <code>fftLen</code> when computing the forward transform. The
-* inverse transform includes a scale of <code>1/fftLen</code> as part of the
-* calculation and this matches the textbook definition of the inverse FFT.
-* \par
-* Pre-initialized data structures containing twiddle factors and bit reversal
-* tables are provided and defined in <code>arm_const_structs.h</code>. Include
-* this header in your function and then pass one of the constant structures as
-* an argument to arm_cfft_q31. For example:
-* \par
-* <code>arm_cfft_q31(arm_cfft_sR_q31_len64, pSrc, 1, 1)</code>
-* \par
-* computes a 64-point inverse complex FFT including bit reversal.
-* The data structures are treated as constant data and not modified during the
-* calculation. The same data structure can be reused for multiple transforms
-* including mixing forward and inverse transforms.
-* \par
-* Earlier releases of the library provided separate radix-2 and radix-4
-* algorithms that operated on floating-point data. These functions are still
-* provided but are deprecated. The older functions are slower and less general
-* than the new functions.
-* \par
-* An example of initialization of the constants for the arm_cfft_q31 function follows:
-* \code
-* const static arm_cfft_instance_q31 *S;
-* ...
-* switch (length) {
-* case 16:
-* S = &arm_cfft_sR_q31_len16;
-* break;
-* case 32:
-* S = &arm_cfft_sR_q31_len32;
-* break;
-* case 64:
-* S = &arm_cfft_sR_q31_len64;
-* break;
-* case 128:
-* S = &arm_cfft_sR_q31_len128;
-* break;
-* case 256:
-* S = &arm_cfft_sR_q31_len256;
-* break;
-* case 512:
-* S = &arm_cfft_sR_q31_len512;
-* break;
-* case 1024:
-* S = &arm_cfft_sR_q31_len1024;
-* break;
-* case 2048:
-* S = &arm_cfft_sR_q31_len2048;
-* break;
-* case 4096:
-* S = &arm_cfft_sR_q31_len4096;
-* break;
-* }
-* \endcode
-*
-*/
-
-void arm_cfft_radix8by2_f32( arm_cfft_instance_f32 * S, float32_t * p1)
+ @defgroup ComplexFFT Complex FFT Functions
+
+ @par
+ The Fast Fourier Transform (FFT) is an efficient algorithm for computing the
+ Discrete Fourier Transform (DFT). The FFT can be orders of magnitude faster
+ than the DFT, especially for long lengths.
+ The algorithms described in this section
+ operate on complex data. A separate set of functions is devoted to handling
+ of real sequences.
+ @par
+ There are separate algorithms for handling floating-point, Q15, and Q31 data
+ types. The algorithms available for each data type are described next.
+ @par
+ The FFT functions operate in-place. That is, the array holding the input data
+ will also be used to hold the corresponding result. The input data is complex
+ and contains <code>2*fftLen</code> interleaved values as shown below.
+ <pre>{real[0], imag[0], real[1], imag[1], ...} </pre>
+ The FFT result will be contained in the same array and the frequency domain
+ values will have the same interleaving.
+
+ @par Floating-point
+ The floating-point complex FFT uses a mixed-radix algorithm. Multiple radix-8
+ stages are performed along with a single radix-2 or radix-4 stage, as needed.
+ The algorithm supports lengths of [16, 32, 64, ..., 4096] and each length uses
+ a different twiddle factor table.
+ @par
+ The function uses the standard FFT definition and output values may grow by a
+ factor of <code>fftLen</code> when computing the forward transform. The
+ inverse transform includes a scale of <code>1/fftLen</code> as part of the
+ calculation and this matches the textbook definition of the inverse FFT.
+ @par
+ Pre-initialized data structures containing twiddle factors and bit reversal
+ tables are provided and defined in <code>arm_const_structs.h</code>. Include
+ this header in your function and then pass one of the constant structures as
+ an argument to arm_cfft_f32. For example:
+ @par
+ <code>arm_cfft_f32(arm_cfft_sR_f32_len64, pSrc, 1, 1)</code>
+ @par
+ computes a 64-point inverse complex FFT including bit reversal.
+ The data structures are treated as constant data and not modified during the
+ calculation. The same data structure can be reused for multiple transforms
+ including mixing forward and inverse transforms.
+ @par
+ Earlier releases of the library provided separate radix-2 and radix-4
+ algorithms that operated on floating-point data. These functions are still
+ provided but are deprecated. The older functions are slower and less general
+ than the new functions.
+ @par
+ An example of initialization of the constants for the arm_cfft_f32 function follows:
+ @code
+ const static arm_cfft_instance_f32 *S;
+ ...
+ switch (length) {
+ case 16:
+ S = &arm_cfft_sR_f32_len16;
+ break;
+ case 32:
+ S = &arm_cfft_sR_f32_len32;
+ break;
+ case 64:
+ S = &arm_cfft_sR_f32_len64;
+ break;
+ case 128:
+ S = &arm_cfft_sR_f32_len128;
+ break;
+ case 256:
+ S = &arm_cfft_sR_f32_len256;
+ break;
+ case 512:
+ S = &arm_cfft_sR_f32_len512;
+ break;
+ case 1024:
+ S = &arm_cfft_sR_f32_len1024;
+ break;
+ case 2048:
+ S = &arm_cfft_sR_f32_len2048;
+ break;
+ case 4096:
+ S = &arm_cfft_sR_f32_len4096;
+ break;
+ }
+ @endcode
+ @par Q15 and Q31
+ The floating-point complex FFT uses a mixed-radix algorithm. Multiple radix-4
+ stages are performed along with a single radix-2 stage, as needed.
+ The algorithm supports lengths of [16, 32, 64, ..., 4096] and each length uses
+ a different twiddle factor table.
+ @par
+ The function uses the standard FFT definition and output values may grow by a
+ factor of <code>fftLen</code> when computing the forward transform. The
+ inverse transform includes a scale of <code>1/fftLen</code> as part of the
+ calculation and this matches the textbook definition of the inverse FFT.
+ @par
+ Pre-initialized data structures containing twiddle factors and bit reversal
+ tables are provided and defined in <code>arm_const_structs.h</code>. Include
+ this header in your function and then pass one of the constant structures as
+ an argument to arm_cfft_q31. For example:
+ @par
+ <code>arm_cfft_q31(arm_cfft_sR_q31_len64, pSrc, 1, 1)</code>
+ @par
+ computes a 64-point inverse complex FFT including bit reversal.
+ The data structures are treated as constant data and not modified during the
+ calculation. The same data structure can be reused for multiple transforms
+ including mixing forward and inverse transforms.
+ @par
+ Earlier releases of the library provided separate radix-2 and radix-4
+ algorithms that operated on floating-point data. These functions are still
+ provided but are deprecated. The older functions are slower and less general
+ than the new functions.
+ @par
+ An example of initialization of the constants for the arm_cfft_q31 function follows:
+ @code
+ const static arm_cfft_instance_q31 *S;
+ ...
+ switch (length) {
+ case 16:
+ S = &arm_cfft_sR_q31_len16;
+ break;
+ case 32:
+ S = &arm_cfft_sR_q31_len32;
+ break;
+ case 64:
+ S = &arm_cfft_sR_q31_len64;
+ break;
+ case 128:
+ S = &arm_cfft_sR_q31_len128;
+ break;
+ case 256:
+ S = &arm_cfft_sR_q31_len256;
+ break;
+ case 512:
+ S = &arm_cfft_sR_q31_len512;
+ break;
+ case 1024:
+ S = &arm_cfft_sR_q31_len1024;
+ break;
+ case 2048:
+ S = &arm_cfft_sR_q31_len2048;
+ break;
+ case 4096:
+ S = &arm_cfft_sR_q31_len4096;
+ break;
+ }
+ @endcode
+
+ */
+
+void arm_cfft_radix8by2_f32 (arm_cfft_instance_f32 * S, float32_t * p1)
{
- uint32_t L = S->fftLen;
- float32_t * pCol1, * pCol2, * pMid1, * pMid2;
- float32_t * p2 = p1 + L;
- const float32_t * tw = (float32_t *) S->pTwiddle;
- float32_t t1[4], t2[4], t3[4], t4[4], twR, twI;
- float32_t m0, m1, m2, m3;
- uint32_t l;
+ uint32_t L = S->fftLen;
+ float32_t * pCol1, * pCol2, * pMid1, * pMid2;
+ float32_t * p2 = p1 + L;
+ const float32_t * tw = (float32_t *) S->pTwiddle;
+ float32_t t1[4], t2[4], t3[4], t4[4], twR, twI;
+ float32_t m0, m1, m2, m3;
+ uint32_t l;
+
+ pCol1 = p1;
+ pCol2 = p2;
+
+ /* Define new length */
+ L >>= 1;
+
+ /* Initialize mid pointers */
+ pMid1 = p1 + L;
+ pMid2 = p2 + L;
+
+ /* do two dot Fourier transform */
+ for (l = L >> 2; l > 0; l-- )
+ {
+ t1[0] = p1[0];
+ t1[1] = p1[1];
+ t1[2] = p1[2];
+ t1[3] = p1[3];
+
+ t2[0] = p2[0];
+ t2[1] = p2[1];
+ t2[2] = p2[2];
+ t2[3] = p2[3];
+
+ t3[0] = pMid1[0];
+ t3[1] = pMid1[1];
+ t3[2] = pMid1[2];
+ t3[3] = pMid1[3];
+
+ t4[0] = pMid2[0];
+ t4[1] = pMid2[1];
+ t4[2] = pMid2[2];
+ t4[3] = pMid2[3];
+
+ *p1++ = t1[0] + t2[0];
+ *p1++ = t1[1] + t2[1];
+ *p1++ = t1[2] + t2[2];
+ *p1++ = t1[3] + t2[3]; /* col 1 */
+
+ t2[0] = t1[0] - t2[0];
+ t2[1] = t1[1] - t2[1];
+ t2[2] = t1[2] - t2[2];
+ t2[3] = t1[3] - t2[3]; /* for col 2 */
+
+ *pMid1++ = t3[0] + t4[0];
+ *pMid1++ = t3[1] + t4[1];
+ *pMid1++ = t3[2] + t4[2];
+ *pMid1++ = t3[3] + t4[3]; /* col 1 */
+
+ t4[0] = t4[0] - t3[0];
+ t4[1] = t4[1] - t3[1];
+ t4[2] = t4[2] - t3[2];
+ t4[3] = t4[3] - t3[3]; /* for col 2 */
+
+ twR = *tw++;
+ twI = *tw++;
+
+ /* multiply by twiddle factors */
+ m0 = t2[0] * twR;
+ m1 = t2[1] * twI;
+ m2 = t2[1] * twR;
+ m3 = t2[0] * twI;
- pCol1 = p1;
- pCol2 = p2;
+ /* R = R * Tr - I * Ti */
+ *p2++ = m0 + m1;
+ /* I = I * Tr + R * Ti */
+ *p2++ = m2 - m3;
- // Define new length
- L >>= 1;
- // Initialize mid pointers
- pMid1 = p1 + L;
- pMid2 = p2 + L;
+ /* use vertical symmetry */
+ /* 0.9988 - 0.0491i <==> -0.0491 - 0.9988i */
+ m0 = t4[0] * twI;
+ m1 = t4[1] * twR;
+ m2 = t4[1] * twI;
+ m3 = t4[0] * twR;
- // do two dot Fourier transform
- for ( l = L >> 2; l > 0; l-- )
- {
- t1[0] = p1[0];
- t1[1] = p1[1];
- t1[2] = p1[2];
- t1[3] = p1[3];
-
- t2[0] = p2[0];
- t2[1] = p2[1];
- t2[2] = p2[2];
- t2[3] = p2[3];
-
- t3[0] = pMid1[0];
- t3[1] = pMid1[1];
- t3[2] = pMid1[2];
- t3[3] = pMid1[3];
-
- t4[0] = pMid2[0];
- t4[1] = pMid2[1];
- t4[2] = pMid2[2];
- t4[3] = pMid2[3];
-
- *p1++ = t1[0] + t2[0];
- *p1++ = t1[1] + t2[1];
- *p1++ = t1[2] + t2[2];
- *p1++ = t1[3] + t2[3]; // col 1
-
- t2[0] = t1[0] - t2[0];
- t2[1] = t1[1] - t2[1];
- t2[2] = t1[2] - t2[2];
- t2[3] = t1[3] - t2[3]; // for col 2
-
- *pMid1++ = t3[0] + t4[0];
- *pMid1++ = t3[1] + t4[1];
- *pMid1++ = t3[2] + t4[2];
- *pMid1++ = t3[3] + t4[3]; // col 1
-
- t4[0] = t4[0] - t3[0];
- t4[1] = t4[1] - t3[1];
- t4[2] = t4[2] - t3[2];
- t4[3] = t4[3] - t3[3]; // for col 2
-
- twR = *tw++;
- twI = *tw++;
-
- // multiply by twiddle factors
- m0 = t2[0] * twR;
- m1 = t2[1] * twI;
- m2 = t2[1] * twR;
- m3 = t2[0] * twI;
-
- // R = R * Tr - I * Ti
- *p2++ = m0 + m1;
- // I = I * Tr + R * Ti
- *p2++ = m2 - m3;
-
- // use vertical symmetry
- // 0.9988 - 0.0491i <==> -0.0491 - 0.9988i
- m0 = t4[0] * twI;
- m1 = t4[1] * twR;
- m2 = t4[1] * twI;
- m3 = t4[0] * twR;
-
- *pMid2++ = m0 - m1;
- *pMid2++ = m2 + m3;
-
- twR = *tw++;
- twI = *tw++;
-
- m0 = t2[2] * twR;
- m1 = t2[3] * twI;
- m2 = t2[3] * twR;
- m3 = t2[2] * twI;
-
- *p2++ = m0 + m1;
- *p2++ = m2 - m3;
-
- m0 = t4[2] * twI;
- m1 = t4[3] * twR;
- m2 = t4[3] * twI;
- m3 = t4[2] * twR;
-
- *pMid2++ = m0 - m1;
- *pMid2++ = m2 + m3;
- }
+ *pMid2++ = m0 - m1;
+ *pMid2++ = m2 + m3;
+
+ twR = *tw++;
+ twI = *tw++;
- // first col
- arm_radix8_butterfly_f32( pCol1, L, (float32_t *) S->pTwiddle, 2U);
- // second col
- arm_radix8_butterfly_f32( pCol2, L, (float32_t *) S->pTwiddle, 2U);
+ m0 = t2[2] * twR;
+ m1 = t2[3] * twI;
+ m2 = t2[3] * twR;
+ m3 = t2[2] * twI;
+
+ *p2++ = m0 + m1;
+ *p2++ = m2 - m3;
+
+ m0 = t4[2] * twI;
+ m1 = t4[3] * twR;
+ m2 = t4[3] * twI;
+ m3 = t4[2] * twR;
+
+ *pMid2++ = m0 - m1;
+ *pMid2++ = m2 + m3;
+ }
+
+ /* first col */
+ arm_radix8_butterfly_f32 (pCol1, L, (float32_t *) S->pTwiddle, 2U);
+
+ /* second col */
+ arm_radix8_butterfly_f32 (pCol2, L, (float32_t *) S->pTwiddle, 2U);
}
-void arm_cfft_radix8by4_f32( arm_cfft_instance_f32 * S, float32_t * p1)
+void arm_cfft_radix8by4_f32 (arm_cfft_instance_f32 * S, float32_t * p1)
{
uint32_t L = S->fftLen >> 1;
float32_t * pCol1, *pCol2, *pCol3, *pCol4, *pEnd1, *pEnd2, *pEnd3, *pEnd4;
@@ -317,11 +319,11 @@ void arm_cfft_radix8by4_f32( arm_cfft_instance_f32 * S, float32_t * p1)
float32_t m0, m1, m2, m3;
uint32_t l, twMod2, twMod3, twMod4;
- pCol1 = p1; // points to real values by default
+ pCol1 = p1; /* points to real values by default */
pCol2 = p2;
pCol3 = p3;
pCol4 = p4;
- pEnd1 = p2 - 1; // points to imaginary values by default
+ pEnd1 = p2 - 1; /* points to imaginary values by default */
pEnd2 = p3 - 1;
pEnd3 = p4 - 1;
pEnd4 = pEnd3 + L;
@@ -330,32 +332,32 @@ void arm_cfft_radix8by4_f32( arm_cfft_instance_f32 * S, float32_t * p1)
L >>= 1;
- // do four dot Fourier transform
+ /* do four dot Fourier transform */
twMod2 = 2;
twMod3 = 4;
twMod4 = 6;
- // TOP
+ /* TOP */
p1ap3_0 = p1[0] + p3[0];
p1sp3_0 = p1[0] - p3[0];
p1ap3_1 = p1[1] + p3[1];
p1sp3_1 = p1[1] - p3[1];
- // col 2
+ /* col 2 */
t2[0] = p1sp3_0 + p2[1] - p4[1];
t2[1] = p1sp3_1 - p2[0] + p4[0];
- // col 3
+ /* col 3 */
t3[0] = p1ap3_0 - p2[0] - p4[0];
t3[1] = p1ap3_1 - p2[1] - p4[1];
- // col 4
+ /* col 4 */
t4[0] = p1sp3_0 - p2[1] + p4[1];
t4[1] = p1sp3_1 + p2[0] - p4[0];
- // col 1
+ /* col 1 */
*p1++ = p1ap3_0 + p2[0] + p4[0];
*p1++ = p1ap3_1 + p2[1] + p4[1];
- // Twiddle factors are ones
+ /* Twiddle factors are ones */
*p2++ = t2[0];
*p2++ = t2[1];
*p3++ = t3[0];
@@ -369,138 +371,138 @@ void arm_cfft_radix8by4_f32( arm_cfft_instance_f32 * S, float32_t * p1)
for (l = (L - 2) >> 1; l > 0; l-- )
{
- // TOP
- p1ap3_0 = p1[0] + p3[0];
- p1sp3_0 = p1[0] - p3[0];
- p1ap3_1 = p1[1] + p3[1];
- p1sp3_1 = p1[1] - p3[1];
- // col 2
- t2[0] = p1sp3_0 + p2[1] - p4[1];
- t2[1] = p1sp3_1 - p2[0] + p4[0];
- // col 3
- t3[0] = p1ap3_0 - p2[0] - p4[0];
- t3[1] = p1ap3_1 - p2[1] - p4[1];
- // col 4
- t4[0] = p1sp3_0 - p2[1] + p4[1];
- t4[1] = p1sp3_1 + p2[0] - p4[0];
- // col 1 - top
- *p1++ = p1ap3_0 + p2[0] + p4[0];
- *p1++ = p1ap3_1 + p2[1] + p4[1];
-
- // BOTTOM
- p1ap3_1 = pEnd1[-1] + pEnd3[-1];
- p1sp3_1 = pEnd1[-1] - pEnd3[-1];
- p1ap3_0 = pEnd1[0] + pEnd3[0];
- p1sp3_0 = pEnd1[0] - pEnd3[0];
- // col 2
- t2[2] = pEnd2[0] - pEnd4[0] + p1sp3_1;
- t2[3] = pEnd1[0] - pEnd3[0] - pEnd2[-1] + pEnd4[-1];
- // col 3
- t3[2] = p1ap3_1 - pEnd2[-1] - pEnd4[-1];
- t3[3] = p1ap3_0 - pEnd2[0] - pEnd4[0];
- // col 4
- t4[2] = pEnd2[0] - pEnd4[0] - p1sp3_1;
- t4[3] = pEnd4[-1] - pEnd2[-1] - p1sp3_0;
- // col 1 - Bottom
- *pEnd1-- = p1ap3_0 + pEnd2[0] + pEnd4[0];
- *pEnd1-- = p1ap3_1 + pEnd2[-1] + pEnd4[-1];
-
- // COL 2
- // read twiddle factors
- twR = *tw2++;
- twI = *tw2++;
- // multiply by twiddle factors
- // let Z1 = a + i(b), Z2 = c + i(d)
- // => Z1 * Z2 = (a*c - b*d) + i(b*c + a*d)
-
- // Top
- m0 = t2[0] * twR;
- m1 = t2[1] * twI;
- m2 = t2[1] * twR;
- m3 = t2[0] * twI;
-
- *p2++ = m0 + m1;
- *p2++ = m2 - m3;
- // use vertical symmetry col 2
- // 0.9997 - 0.0245i <==> 0.0245 - 0.9997i
- // Bottom
- m0 = t2[3] * twI;
- m1 = t2[2] * twR;
- m2 = t2[2] * twI;
- m3 = t2[3] * twR;
-
- *pEnd2-- = m0 - m1;
- *pEnd2-- = m2 + m3;
-
- // COL 3
- twR = tw3[0];
- twI = tw3[1];
- tw3 += twMod3;
- // Top
- m0 = t3[0] * twR;
- m1 = t3[1] * twI;
- m2 = t3[1] * twR;
- m3 = t3[0] * twI;
-
- *p3++ = m0 + m1;
- *p3++ = m2 - m3;
- // use vertical symmetry col 3
- // 0.9988 - 0.0491i <==> -0.9988 - 0.0491i
- // Bottom
- m0 = -t3[3] * twR;
- m1 = t3[2] * twI;
- m2 = t3[2] * twR;
- m3 = t3[3] * twI;
-
- *pEnd3-- = m0 - m1;
- *pEnd3-- = m3 - m2;
-
- // COL 4
- twR = tw4[0];
- twI = tw4[1];
- tw4 += twMod4;
- // Top
- m0 = t4[0] * twR;
- m1 = t4[1] * twI;
- m2 = t4[1] * twR;
- m3 = t4[0] * twI;
-
- *p4++ = m0 + m1;
- *p4++ = m2 - m3;
- // use vertical symmetry col 4
- // 0.9973 - 0.0736i <==> -0.0736 + 0.9973i
- // Bottom
- m0 = t4[3] * twI;
- m1 = t4[2] * twR;
- m2 = t4[2] * twI;
- m3 = t4[3] * twR;
-
- *pEnd4-- = m0 - m1;
- *pEnd4-- = m2 + m3;
+ /* TOP */
+ p1ap3_0 = p1[0] + p3[0];
+ p1sp3_0 = p1[0] - p3[0];
+ p1ap3_1 = p1[1] + p3[1];
+ p1sp3_1 = p1[1] - p3[1];
+ /* col 2 */
+ t2[0] = p1sp3_0 + p2[1] - p4[1];
+ t2[1] = p1sp3_1 - p2[0] + p4[0];
+ /* col 3 */
+ t3[0] = p1ap3_0 - p2[0] - p4[0];
+ t3[1] = p1ap3_1 - p2[1] - p4[1];
+ /* col 4 */
+ t4[0] = p1sp3_0 - p2[1] + p4[1];
+ t4[1] = p1sp3_1 + p2[0] - p4[0];
+ /* col 1 - top */
+ *p1++ = p1ap3_0 + p2[0] + p4[0];
+ *p1++ = p1ap3_1 + p2[1] + p4[1];
+
+ /* BOTTOM */
+ p1ap3_1 = pEnd1[-1] + pEnd3[-1];
+ p1sp3_1 = pEnd1[-1] - pEnd3[-1];
+ p1ap3_0 = pEnd1[ 0] + pEnd3[0];
+ p1sp3_0 = pEnd1[ 0] - pEnd3[0];
+ /* col 2 */
+ t2[2] = pEnd2[0] - pEnd4[0] + p1sp3_1;
+ t2[3] = pEnd1[0] - pEnd3[0] - pEnd2[-1] + pEnd4[-1];
+ /* col 3 */
+ t3[2] = p1ap3_1 - pEnd2[-1] - pEnd4[-1];
+ t3[3] = p1ap3_0 - pEnd2[ 0] - pEnd4[ 0];
+ /* col 4 */
+ t4[2] = pEnd2[ 0] - pEnd4[ 0] - p1sp3_1;
+ t4[3] = pEnd4[-1] - pEnd2[-1] - p1sp3_0;
+ /* col 1 - Bottom */
+ *pEnd1-- = p1ap3_0 + pEnd2[ 0] + pEnd4[ 0];
+ *pEnd1-- = p1ap3_1 + pEnd2[-1] + pEnd4[-1];
+
+ /* COL 2 */
+ /* read twiddle factors */
+ twR = *tw2++;
+ twI = *tw2++;
+ /* multiply by twiddle factors */
+ /* let Z1 = a + i(b), Z2 = c + i(d) */
+ /* => Z1 * Z2 = (a*c - b*d) + i(b*c + a*d) */
+
+ /* Top */
+ m0 = t2[0] * twR;
+ m1 = t2[1] * twI;
+ m2 = t2[1] * twR;
+ m3 = t2[0] * twI;
+
+ *p2++ = m0 + m1;
+ *p2++ = m2 - m3;
+ /* use vertical symmetry col 2 */
+ /* 0.9997 - 0.0245i <==> 0.0245 - 0.9997i */
+ /* Bottom */
+ m0 = t2[3] * twI;
+ m1 = t2[2] * twR;
+ m2 = t2[2] * twI;
+ m3 = t2[3] * twR;
+
+ *pEnd2-- = m0 - m1;
+ *pEnd2-- = m2 + m3;
+
+ /* COL 3 */
+ twR = tw3[0];
+ twI = tw3[1];
+ tw3 += twMod3;
+ /* Top */
+ m0 = t3[0] * twR;
+ m1 = t3[1] * twI;
+ m2 = t3[1] * twR;
+ m3 = t3[0] * twI;
+
+ *p3++ = m0 + m1;
+ *p3++ = m2 - m3;
+ /* use vertical symmetry col 3 */
+ /* 0.9988 - 0.0491i <==> -0.9988 - 0.0491i */
+ /* Bottom */
+ m0 = -t3[3] * twR;
+ m1 = t3[2] * twI;
+ m2 = t3[2] * twR;
+ m3 = t3[3] * twI;
+
+ *pEnd3-- = m0 - m1;
+ *pEnd3-- = m3 - m2;
+
+ /* COL 4 */
+ twR = tw4[0];
+ twI = tw4[1];
+ tw4 += twMod4;
+ /* Top */
+ m0 = t4[0] * twR;
+ m1 = t4[1] * twI;
+ m2 = t4[1] * twR;
+ m3 = t4[0] * twI;
+
+ *p4++ = m0 + m1;
+ *p4++ = m2 - m3;
+ /* use vertical symmetry col 4 */
+ /* 0.9973 - 0.0736i <==> -0.0736 + 0.9973i */
+ /* Bottom */
+ m0 = t4[3] * twI;
+ m1 = t4[2] * twR;
+ m2 = t4[2] * twI;
+ m3 = t4[3] * twR;
+
+ *pEnd4-- = m0 - m1;
+ *pEnd4-- = m2 + m3;
}
- //MIDDLE
- // Twiddle factors are
- // 1.0000 0.7071-0.7071i -1.0000i -0.7071-0.7071i
+ /* MIDDLE */
+ /* Twiddle factors are */
+ /* 1.0000 0.7071-0.7071i -1.0000i -0.7071-0.7071i */
p1ap3_0 = p1[0] + p3[0];
p1sp3_0 = p1[0] - p3[0];
p1ap3_1 = p1[1] + p3[1];
p1sp3_1 = p1[1] - p3[1];
- // col 2
+ /* col 2 */
t2[0] = p1sp3_0 + p2[1] - p4[1];
t2[1] = p1sp3_1 - p2[0] + p4[0];
- // col 3
+ /* col 3 */
t3[0] = p1ap3_0 - p2[0] - p4[0];
t3[1] = p1ap3_1 - p2[1] - p4[1];
- // col 4
+ /* col 4 */
t4[0] = p1sp3_0 - p2[1] + p4[1];
t4[1] = p1sp3_1 + p2[0] - p4[0];
- // col 1 - Top
+ /* col 1 - Top */
*p1++ = p1ap3_0 + p2[0] + p4[0];
*p1++ = p1ap3_1 + p2[1] + p4[1];
- // COL 2
+ /* COL 2 */
twR = tw2[0];
twI = tw2[1];
@@ -511,7 +513,7 @@ void arm_cfft_radix8by4_f32( arm_cfft_instance_f32 * S, float32_t * p1)
*p2++ = m0 + m1;
*p2++ = m2 - m3;
- // COL 3
+ /* COL 3 */
twR = tw3[0];
twI = tw3[1];
@@ -522,7 +524,7 @@ void arm_cfft_radix8by4_f32( arm_cfft_instance_f32 * S, float32_t * p1)
*p3++ = m0 + m1;
*p3++ = m2 - m3;
- // COL 4
+ /* COL 4 */
twR = tw4[0];
twI = tw4[1];
@@ -534,87 +536,94 @@ void arm_cfft_radix8by4_f32( arm_cfft_instance_f32 * S, float32_t * p1)
*p4++ = m0 + m1;
*p4++ = m2 - m3;
- // first col
- arm_radix8_butterfly_f32( pCol1, L, (float32_t *) S->pTwiddle, 4U);
- // second col
- arm_radix8_butterfly_f32( pCol2, L, (float32_t *) S->pTwiddle, 4U);
- // third col
- arm_radix8_butterfly_f32( pCol3, L, (float32_t *) S->pTwiddle, 4U);
- // fourth col
- arm_radix8_butterfly_f32( pCol4, L, (float32_t *) S->pTwiddle, 4U);
+ /* first col */
+ arm_radix8_butterfly_f32 (pCol1, L, (float32_t *) S->pTwiddle, 4U);
+
+ /* second col */
+ arm_radix8_butterfly_f32 (pCol2, L, (float32_t *) S->pTwiddle, 4U);
+
+ /* third col */
+ arm_radix8_butterfly_f32 (pCol3, L, (float32_t *) S->pTwiddle, 4U);
+
+ /* fourth col */
+ arm_radix8_butterfly_f32 (pCol4, L, (float32_t *) S->pTwiddle, 4U);
}
/**
-* @addtogroup ComplexFFT
-* @{
-*/
+ @addtogroup ComplexFFT
+ @{
+ */
/**
-* @details
-* @brief Processing function for the floating-point complex FFT.
-* @param[in] *S points to an instance of the floating-point CFFT structure.
-* @param[in, out] *p1 points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place.
-* @param[in] ifftFlag flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform.
-* @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output.
-* @return none.
-*/
+ @brief Processing function for the floating-point complex FFT.
+ @param[in] S points to an instance of the floating-point CFFT structure
+ @param[in,out] p1 points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place
+ @param[in] ifftFlag flag that selects transform direction
+ - value = 0: forward transform
+ - value = 1: inverse transform
+ @param[in] bitReverseFlag flag that enables / disables bit reversal of output
+ - value = 0: disables bit reversal of output
+ - value = 1: enables bit reversal of output
+ @return none
+ */
void arm_cfft_f32(
- const arm_cfft_instance_f32 * S,
- float32_t * p1,
- uint8_t ifftFlag,
- uint8_t bitReverseFlag)
+ const arm_cfft_instance_f32 * S,
+ float32_t * p1,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag)
{
- uint32_t L = S->fftLen, l;
- float32_t invL, * pSrc;
-
- if (ifftFlag == 1U)
- {
- /* Conjugate input data */
- pSrc = p1 + 1;
- for(l=0; l<L; l++)
- {
- *pSrc = -*pSrc;
- pSrc += 2;
- }
- }
-
- switch (L)
+ uint32_t L = S->fftLen, l;
+ float32_t invL, * pSrc;
+
+ if (ifftFlag == 1U)
+ {
+ /* Conjugate input data */
+ pSrc = p1 + 1;
+ for (l = 0; l < L; l++)
{
- case 16:
- case 128:
- case 1024:
- arm_cfft_radix8by2_f32 ( (arm_cfft_instance_f32 *) S, p1);
- break;
- case 32:
- case 256:
- case 2048:
- arm_cfft_radix8by4_f32 ( (arm_cfft_instance_f32 *) S, p1);
- break;
- case 64:
- case 512:
- case 4096:
- arm_radix8_butterfly_f32( p1, L, (float32_t *) S->pTwiddle, 1);
- break;
+ *pSrc = -*pSrc;
+ pSrc += 2;
}
-
- if ( bitReverseFlag )
- arm_bitreversal_32((uint32_t*)p1,S->bitRevLength,S->pBitRevTable);
-
- if (ifftFlag == 1U)
+ }
+
+ switch (L)
+ {
+ case 16:
+ case 128:
+ case 1024:
+ arm_cfft_radix8by2_f32 ( (arm_cfft_instance_f32 *) S, p1);
+ break;
+ case 32:
+ case 256:
+ case 2048:
+ arm_cfft_radix8by4_f32 ( (arm_cfft_instance_f32 *) S, p1);
+ break;
+ case 64:
+ case 512:
+ case 4096:
+ arm_radix8_butterfly_f32 ( p1, L, (float32_t *) S->pTwiddle, 1);
+ break;
+ }
+
+ if ( bitReverseFlag )
+ arm_bitreversal_32 ((uint32_t*) p1, S->bitRevLength, S->pBitRevTable);
+
+ if (ifftFlag == 1U)
+ {
+ invL = 1.0f / (float32_t)L;
+
+ /* Conjugate and scale output data */
+ pSrc = p1;
+ for (l= 0; l < L; l++)
{
- invL = 1.0f/(float32_t)L;
- /* Conjugate and scale output data */
- pSrc = p1;
- for(l=0; l<L; l++)
- {
- *pSrc++ *= invL ;
- *pSrc = -(*pSrc) * invL;
- pSrc++;
- }
+ *pSrc++ *= invL ;
+ *pSrc = -(*pSrc) * invL;
+ pSrc++;
}
+ }
}
/**
-* @} end of ComplexFFT group
-*/
+ @} end of ComplexFFT group
+ */