Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/Flipper-Zero/STM32CubeWB.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'Drivers/CMSIS/DSP/Source/TransformFunctions/arm_rfft_q15.c')
-rw-r--r--Drivers/CMSIS/DSP/Source/TransformFunctions/arm_rfft_q15.c470
1 files changed, 212 insertions, 258 deletions
diff --git a/Drivers/CMSIS/DSP/Source/TransformFunctions/arm_rfft_q15.c b/Drivers/CMSIS/DSP/Source/TransformFunctions/arm_rfft_q15.c
index f85cf3023..fdc9bab1d 100644
--- a/Drivers/CMSIS/DSP/Source/TransformFunctions/arm_rfft_q15.c
+++ b/Drivers/CMSIS/DSP/Source/TransformFunctions/arm_rfft_q15.c
@@ -3,13 +3,13 @@
* Title: arm_rfft_q15.c
* Description: RFFT & RIFFT Q15 process function
*
- * $Date: 27. January 2017
- * $Revision: V.1.5.1
+ * $Date: 18. March 2019
+ * $Revision: V1.6.0
*
* Target Processor: Cortex-M cores
* -------------------------------------------------------------------- */
/*
- * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
@@ -33,173 +33,161 @@
* -------------------------------------------------------------------- */
void arm_split_rfft_q15(
- q15_t * pSrc,
- uint32_t fftLen,
- q15_t * pATable,
- q15_t * pBTable,
- q15_t * pDst,
- uint32_t modifier);
+ q15_t * pSrc,
+ uint32_t fftLen,
+ const q15_t * pATable,
+ const q15_t * pBTable,
+ q15_t * pDst,
+ uint32_t modifier);
void arm_split_rifft_q15(
- q15_t * pSrc,
- uint32_t fftLen,
- q15_t * pATable,
- q15_t * pBTable,
- q15_t * pDst,
- uint32_t modifier);
+ q15_t * pSrc,
+ uint32_t fftLen,
+ const q15_t * pATable,
+ const q15_t * pBTable,
+ q15_t * pDst,
+ uint32_t modifier);
/**
-* @addtogroup RealFFT
-* @{
-*/
+ @addtogroup RealFFT
+ @{
+ */
/**
-* @brief Processing function for the Q15 RFFT/RIFFT.
-* @param[in] *S points to an instance of the Q15 RFFT/RIFFT structure.
-* @param[in] *pSrc points to the input buffer.
-* @param[out] *pDst points to the output buffer.
-* @return none.
-*
-* \par Input an output formats:
-* \par
-* Internally input is downscaled by 2 for every stage to avoid saturations inside CFFT/CIFFT process.
-* Hence the output format is different for different RFFT sizes.
-* The input and output formats for different RFFT sizes and number of bits to upscale are mentioned in the tables below for RFFT and RIFFT:
-* \par
-* \image html RFFTQ15.gif "Input and Output Formats for Q15 RFFT"
-* \par
-* \image html RIFFTQ15.gif "Input and Output Formats for Q15 RIFFT"
-*/
+ @brief Processing function for the Q15 RFFT/RIFFT.
+ @param[in] S points to an instance of the Q15 RFFT/RIFFT structure
+ @param[in] pSrc points to input buffer
+ @param[out] pDst points to output buffer
+ @return none
+
+ @par Input an output formats
+ Internally input is downscaled by 2 for every stage to avoid saturations inside CFFT/CIFFT process.
+ Hence the output format is different for different RFFT sizes.
+ The input and output formats for different RFFT sizes and number of bits to upscale are mentioned in the tables below for RFFT and RIFFT:
+ @par
+ \image html RFFTQ15.gif "Input and Output Formats for Q15 RFFT"
+ @par
+ \image html RIFFTQ15.gif "Input and Output Formats for Q15 RIFFT"
+ */
void arm_rfft_q15(
- const arm_rfft_instance_q15 * S,
- q15_t * pSrc,
- q15_t * pDst)
+ const arm_rfft_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst)
{
- const arm_cfft_instance_q15 *S_CFFT = S->pCfft;
- uint32_t i;
- uint32_t L2 = S->fftLenReal >> 1;
-
- /* Calculation of RIFFT of input */
- if (S->ifftFlagR == 1U)
- {
- /* Real IFFT core process */
- arm_split_rifft_q15(pSrc, L2, S->pTwiddleAReal,
- S->pTwiddleBReal, pDst, S->twidCoefRModifier);
-
- /* Complex IFFT process */
- arm_cfft_q15(S_CFFT, pDst, S->ifftFlagR, S->bitReverseFlagR);
+ const arm_cfft_instance_q15 *S_CFFT = S->pCfft;
+ uint32_t L2 = S->fftLenReal >> 1U;
+ uint32_t i;
+
+ /* Calculation of RIFFT of input */
+ if (S->ifftFlagR == 1U)
+ {
+ /* Real IFFT core process */
+ arm_split_rifft_q15 (pSrc, L2, S->pTwiddleAReal, S->pTwiddleBReal, pDst, S->twidCoefRModifier);
+
+ /* Complex IFFT process */
+ arm_cfft_q15 (S_CFFT, pDst, S->ifftFlagR, S->bitReverseFlagR);
+
+ for(i = 0; i < S->fftLenReal; i++)
+ {
+ pDst[i] = pDst[i] << 1U;
+ }
+ }
+ else
+ {
+ /* Calculation of RFFT of input */
+
+ /* Complex FFT process */
+ arm_cfft_q15 (S_CFFT, pSrc, S->ifftFlagR, S->bitReverseFlagR);
+
+ /* Real FFT core process */
+ arm_split_rfft_q15 (pSrc, L2, S->pTwiddleAReal, S->pTwiddleBReal, pDst, S->twidCoefRModifier);
+ }
- for(i=0;i<S->fftLenReal;i++)
- {
- pDst[i] = pDst[i] << 1;
- }
- }
- else
- {
- /* Calculation of RFFT of input */
-
- /* Complex FFT process */
- arm_cfft_q15(S_CFFT, pSrc, S->ifftFlagR, S->bitReverseFlagR);
-
- /* Real FFT core process */
- arm_split_rfft_q15(pSrc, L2, S->pTwiddleAReal,
- S->pTwiddleBReal, pDst, S->twidCoefRModifier);
- }
}
/**
-* @} end of RealFFT group
-*/
+ @} end of RealFFT group
+ */
/**
-* @brief Core Real FFT process
-* @param *pSrc points to the input buffer.
-* @param fftLen length of FFT.
-* @param *pATable points to the A twiddle Coef buffer.
-* @param *pBTable points to the B twiddle Coef buffer.
-* @param *pDst points to the output buffer.
-* @param modifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
-* @return none.
-* The function implements a Real FFT
-*/
+ @brief Core Real FFT process
+ @param[in] pSrc points to input buffer
+ @param[in] fftLen length of FFT
+ @param[in] pATable points to twiddle Coef A buffer
+ @param[in] pBTable points to twiddle Coef B buffer
+ @param[out] pDst points to output buffer
+ @param[in] modifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table
+ @return none
+
+ @par
+ The function implements a Real FFT
+ */
void arm_split_rfft_q15(
- q15_t * pSrc,
- uint32_t fftLen,
- q15_t * pATable,
- q15_t * pBTable,
- q15_t * pDst,
- uint32_t modifier)
-{
- uint32_t i; /* Loop Counter */
- q31_t outR, outI; /* Temporary variables for output */
- q15_t *pCoefA, *pCoefB; /* Temporary pointers for twiddle factors */
- q15_t *pSrc1, *pSrc2;
+ q15_t * pSrc,
+ uint32_t fftLen,
+ const q15_t * pATable,
+ const q15_t * pBTable,
+ q15_t * pDst,
+ uint32_t modifier)
+{
+ uint32_t i; /* Loop Counter */
+ q31_t outR, outI; /* Temporary variables for output */
+ const q15_t *pCoefA, *pCoefB; /* Temporary pointers for twiddle factors */
+ q15_t *pSrc1, *pSrc2;
#if defined (ARM_MATH_DSP)
- q15_t *pD1, *pD2;
+ q15_t *pD1, *pD2;
#endif
- // pSrc[2U * fftLen] = pSrc[0];
- // pSrc[(2U * fftLen) + 1U] = pSrc[1];
+ /* Init coefficient pointers */
+ pCoefA = &pATable[modifier * 2];
+ pCoefB = &pBTable[modifier * 2];
- pCoefA = &pATable[modifier * 2U];
- pCoefB = &pBTable[modifier * 2U];
-
- pSrc1 = &pSrc[2];
- pSrc2 = &pSrc[(2U * fftLen) - 2U];
+ pSrc1 = &pSrc[2];
+ pSrc2 = &pSrc[(2U * fftLen) - 2U];
#if defined (ARM_MATH_DSP)
- /* Run the below code for Cortex-M4 and Cortex-M3 */
i = 1U;
pD1 = pDst + 2;
pD2 = pDst + (4U * fftLen) - 2;
- for(i = fftLen - 1; i > 0; i--)
+ for (i = fftLen - 1; i > 0; i--)
{
/*
- outR = (pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1]
- + pSrc[2 * n - 2 * i] * pBTable[2 * i] +
- pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);
- */
+ outR = ( pSrc[2 * i] * pATable[2 * i]
+ - pSrc[2 * i + 1] * pATable[2 * i + 1]
+ + pSrc[2 * n - 2 * i] * pBTable[2 * i]
+ + pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);
- /* outI = (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] +
- pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -
- pIn[2 * n - 2 * i + 1] * pBTable[2 * i]); */
+ outI = ( pIn[2 * i + 1] * pATable[2 * i]
+ + pIn[2 * i] * pATable[2 * i + 1]
+ + pIn[2 * n - 2 * i] * pBTable[2 * i + 1]
+ - pIn[2 * n - 2 * i + 1] * pBTable[2 * i])
+ */
#ifndef ARM_MATH_BIG_ENDIAN
-
/* pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1] */
- outR = __SMUSD(*__SIMD32(pSrc1), *__SIMD32(pCoefA));
-
+ outR = __SMUSD(read_q15x2 (pSrc1), read_q15x2((q15_t *) pCoefA));
#else
-
/* -(pSrc[2 * i + 1] * pATable[2 * i + 1] - pSrc[2 * i] * pATable[2 * i]) */
- outR = -(__SMUSD(*__SIMD32(pSrc1), *__SIMD32(pCoefA)));
-
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+ outR = -(__SMUSD(read_q15x2 (pSrc1), read_q15x2((q15_t *) pCoefA)));
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
- /* pSrc[2 * n - 2 * i] * pBTable[2 * i] +
- pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]) */
- outR = __SMLAD(*__SIMD32(pSrc2), *__SIMD32(pCoefB), outR) >> 16U;
-
- /* pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -
- pIn[2 * n - 2 * i + 1] * pBTable[2 * i] */
+ /* pSrc[2 * n - 2 * i] * pBTable[2 * i] + pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]) */
+ outR = __SMLAD(read_q15x2 (pSrc2), read_q15x2((q15_t *) pCoefB), outR) >> 16U;
+ /* pIn[2 * n - 2 * i] * pBTable[2 * i + 1] - pIn[2 * n - 2 * i + 1] * pBTable[2 * i] */
#ifndef ARM_MATH_BIG_ENDIAN
-
- outI = __SMUSDX(*__SIMD32(pSrc2)--, *__SIMD32(pCoefB));
-
+ outI = __SMUSDX(read_q15x2_da (&pSrc2), read_q15x2((q15_t *) pCoefB));
#else
-
- outI = __SMUSDX(*__SIMD32(pCoefB), *__SIMD32(pSrc2)--);
-
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+ outI = __SMUSDX(read_q15x2 ((q15_t *) pCoefB), read_q15x2_da (&pSrc2));
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] */
- outI = __SMLADX(*__SIMD32(pSrc1)++, *__SIMD32(pCoefA), outI);
+ outI = __SMLADX(read_q15x2_ia (&pSrc1), read_q15x2 ((q15_t *) pCoefA), outI);
/* write output */
*pD1++ = (q15_t) outR;
@@ -215,23 +203,23 @@ void arm_split_rfft_q15(
pCoefA = pCoefA + (2U * modifier);
}
- pDst[2U * fftLen] = (pSrc[0] - pSrc[1]) >> 1;
- pDst[(2U * fftLen) + 1U] = 0;
+ pDst[2U * fftLen] = (pSrc[0] - pSrc[1]) >> 1U;
+ pDst[2U * fftLen + 1U] = 0;
- pDst[0] = (pSrc[0] + pSrc[1]) >> 1;
+ pDst[0] = (pSrc[0] + pSrc[1]) >> 1U;
pDst[1] = 0;
#else
- /* Run the below code for Cortex-M0 */
i = 1U;
while (i < fftLen)
{
/*
- outR = (pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1]
- + pSrc[2 * n - 2 * i] * pBTable[2 * i] +
- pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);
+ outR = ( pSrc[2 * i] * pATable[2 * i]
+ - pSrc[2 * i + 1] * pATable[2 * i + 1]
+ + pSrc[2 * n - 2 * i] * pBTable[2 * i]
+ + pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);
*/
outR = *pSrc1 * *pCoefA;
@@ -239,10 +227,11 @@ void arm_split_rfft_q15(
outR = outR + (*pSrc2 * *pCoefB);
outR = (outR + (*(pSrc2 + 1) * *(pCoefB + 1))) >> 16;
-
- /* outI = (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] +
- pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -
- pIn[2 * n - 2 * i + 1] * pBTable[2 * i]);
+ /*
+ outI = ( pIn[2 * i + 1] * pATable[2 * i]
+ + pIn[2 * i] * pATable[2 * i + 1]
+ + pIn[2 * n - 2 * i] * pBTable[2 * i + 1]
+ - pIn[2 * n - 2 * i + 1] * pBTable[2 * i]);
*/
outI = *pSrc2 * *(pCoefB + 1);
@@ -256,7 +245,7 @@ void arm_split_rfft_q15(
/* write output */
pDst[2U * i] = (q15_t) outR;
- pDst[(2U * i) + 1U] = outI >> 16U;
+ pDst[2U * i + 1U] = outI >> 16U;
/* write complex conjugate output */
pDst[(4U * fftLen) - (2U * i)] = (q15_t) outR;
@@ -270,7 +259,7 @@ void arm_split_rfft_q15(
}
pDst[2U * fftLen] = (pSrc[0] - pSrc[1]) >> 1;
- pDst[(2U * fftLen) + 1U] = 0;
+ pDst[2U * fftLen + 1U] = 0;
pDst[0] = (pSrc[0] + pSrc[1]) >> 1;
pDst[1] = 0;
@@ -280,147 +269,112 @@ void arm_split_rfft_q15(
/**
-* @brief Core Real IFFT process
-* @param[in] *pSrc points to the input buffer.
-* @param[in] fftLen length of FFT.
-* @param[in] *pATable points to the twiddle Coef A buffer.
-* @param[in] *pBTable points to the twiddle Coef B buffer.
-* @param[out] *pDst points to the output buffer.
-* @param[in] modifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
-* @return none.
-* The function implements a Real IFFT
-*/
+ @brief Core Real IFFT process
+ @param[in] pSrc points to input buffer
+ @param[in] fftLen length of FFT
+ @param[in] pATable points to twiddle Coef A buffer
+ @param[in] pBTable points to twiddle Coef B buffer
+ @param[out] pDst points to output buffer
+ @param[in] modifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table
+ @return none
+
+ @par
+ The function implements a Real IFFT
+ */
+
void arm_split_rifft_q15(
- q15_t * pSrc,
- uint32_t fftLen,
- q15_t * pATable,
- q15_t * pBTable,
- q15_t * pDst,
- uint32_t modifier)
+ q15_t * pSrc,
+ uint32_t fftLen,
+ const q15_t * pATable,
+ const q15_t * pBTable,
+ q15_t * pDst,
+ uint32_t modifier)
{
- uint32_t i; /* Loop Counter */
- q31_t outR, outI; /* Temporary variables for output */
- q15_t *pCoefA, *pCoefB; /* Temporary pointers for twiddle factors */
- q15_t *pSrc1, *pSrc2;
- q15_t *pDst1 = &pDst[0];
-
- pCoefA = &pATable[0];
- pCoefB = &pBTable[0];
-
- pSrc1 = &pSrc[0];
- pSrc2 = &pSrc[2U * fftLen];
+ uint32_t i; /* Loop Counter */
+ q31_t outR, outI; /* Temporary variables for output */
+ const q15_t *pCoefA, *pCoefB; /* Temporary pointers for twiddle factors */
+ q15_t *pSrc1, *pSrc2;
+ q15_t *pDst1 = &pDst[0];
+
+ pCoefA = &pATable[0];
+ pCoefB = &pBTable[0];
+
+ pSrc1 = &pSrc[0];
+ pSrc2 = &pSrc[2 * fftLen];
+
+ i = fftLen;
+ while (i > 0U)
+ {
+ /*
+ outR = ( pIn[2 * i] * pATable[2 * i]
+ + pIn[2 * i + 1] * pATable[2 * i + 1]
+ + pIn[2 * n - 2 * i] * pBTable[2 * i]
+ - pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);
+
+ outI = ( pIn[2 * i + 1] * pATable[2 * i]
+ - pIn[2 * i] * pATable[2 * i + 1]
+ - pIn[2 * n - 2 * i] * pBTable[2 * i + 1]
+ - pIn[2 * n - 2 * i + 1] * pBTable[2 * i]);
+ */
#if defined (ARM_MATH_DSP)
- /* Run the below code for Cortex-M4 and Cortex-M3 */
- i = fftLen;
-
- while (i > 0U)
- {
- /*
- outR = (pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] +
- pIn[2 * n - 2 * i] * pBTable[2 * i] -
- pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);
-
- outI = (pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] -
- pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -
- pIn[2 * n - 2 * i + 1] * pBTable[2 * i]);
- */
-
-
#ifndef ARM_MATH_BIG_ENDIAN
-
- /* pIn[2 * n - 2 * i] * pBTable[2 * i] -
- pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]) */
- outR = __SMUSD(*__SIMD32(pSrc2), *__SIMD32(pCoefB));
-
+ /* pIn[2 * n - 2 * i] * pBTable[2 * i] - pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]) */
+ outR = __SMUSD(read_q15x2(pSrc2), read_q15x2((q15_t *) pCoefB));
#else
+ /* -(-pIn[2 * n - 2 * i] * pBTable[2 * i] + pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1])) */
+ outR = -(__SMUSD(read_q15x2(pSrc2), read_q15x2((q15_t *) pCoefB)));
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
- /* -(-pIn[2 * n - 2 * i] * pBTable[2 * i] +
- pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1])) */
- outR = -(__SMUSD(*__SIMD32(pSrc2), *__SIMD32(pCoefB)));
-
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+ /* pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] + pIn[2 * n - 2 * i] * pBTable[2 * i] */
+ outR = __SMLAD(read_q15x2(pSrc1), read_q15x2 ((q15_t *) pCoefA), outR) >> 16U;
- /* pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] +
- pIn[2 * n - 2 * i] * pBTable[2 * i] */
- outR = __SMLAD(*__SIMD32(pSrc1), *__SIMD32(pCoefA), outR) >> 16U;
-
- /*
- -pIn[2 * n - 2 * i] * pBTable[2 * i + 1] +
- pIn[2 * n - 2 * i + 1] * pBTable[2 * i] */
- outI = __SMUADX(*__SIMD32(pSrc2)--, *__SIMD32(pCoefB));
-
- /* pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] */
+ /* -pIn[2 * n - 2 * i] * pBTable[2 * i + 1] + pIn[2 * n - 2 * i + 1] * pBTable[2 * i] */
+ outI = __SMUADX(read_q15x2_da (&pSrc2), read_q15x2((q15_t *) pCoefB));
+ /* pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] */
#ifndef ARM_MATH_BIG_ENDIAN
-
- outI = __SMLSDX(*__SIMD32(pCoefA), *__SIMD32(pSrc1)++, -outI);
-
+ outI = __SMLSDX(read_q15x2 ((q15_t *) pCoefA), read_q15x2_ia (&pSrc1), -outI);
#else
+ outI = __SMLSDX(read_q15x2_ia (&pSrc1), read_q15x2 ((q15_t *) pCoefA), -outI);
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
- outI = __SMLSDX(*__SIMD32(pSrc1)++, *__SIMD32(pCoefA), -outI);
-
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
- /* write output */
-
+ /* write output */
#ifndef ARM_MATH_BIG_ENDIAN
-
- *__SIMD32(pDst1)++ = __PKHBT(outR, (outI >> 16U), 16);
-
+ write_q15x2_ia (&pDst1, __PKHBT(outR, (outI >> 16U), 16));
#else
+ write_q15x2_ia (&pDst1, __PKHBT((outI >> 16U), outR, 16));
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
- *__SIMD32(pDst1)++ = __PKHBT((outI >> 16U), outR, 16);
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+#else /* #if defined (ARM_MATH_DSP) */
- /* update coefficient pointer */
- pCoefB = pCoefB + (2U * modifier);
- pCoefA = pCoefA + (2U * modifier);
+ outR = *pSrc2 * *pCoefB;
+ outR = outR - (*(pSrc2 + 1) * *(pCoefB + 1));
+ outR = outR + (*pSrc1 * *pCoefA);
+ outR = (outR + (*(pSrc1 + 1) * *(pCoefA + 1))) >> 16;
- i--;
- }
-#else
- /* Run the below code for Cortex-M0 */
- i = fftLen;
+ outI = *(pSrc1 + 1) * *pCoefA;
+ outI = outI - (*pSrc1 * *(pCoefA + 1));
+ outI = outI - (*pSrc2 * *(pCoefB + 1));
+ outI = outI - (*(pSrc2 + 1) * *(pCoefB));
- while (i > 0U)
- {
- /*
- outR = (pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] +
- pIn[2 * n - 2 * i] * pBTable[2 * i] -
- pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);
- */
+ /* update input pointers */
+ pSrc1 += 2U;
+ pSrc2 -= 2U;
- outR = *pSrc2 * *pCoefB;
- outR = outR - (*(pSrc2 + 1) * *(pCoefB + 1));
- outR = outR + (*pSrc1 * *pCoefA);
- outR = (outR + (*(pSrc1 + 1) * *(pCoefA + 1))) >> 16;
+ /* write output */
+ *pDst1++ = (q15_t) outR;
+ *pDst1++ = (q15_t) (outI >> 16);
- /*
- outI = (pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] -
- pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -
- pIn[2 * n - 2 * i + 1] * pBTable[2 * i]);
- */
-
- outI = *(pSrc1 + 1) * *pCoefA;
- outI = outI - (*pSrc1 * *(pCoefA + 1));
- outI = outI - (*pSrc2 * *(pCoefB + 1));
- outI = outI - (*(pSrc2 + 1) * *(pCoefB));
-
- /* update input pointers */
- pSrc1 += 2U;
- pSrc2 -= 2U;
+#endif /* #if defined (ARM_MATH_DSP) */
- /* write output */
- *pDst1++ = (q15_t) outR;
- *pDst1++ = (q15_t) (outI >> 16);
+ /* update coefficient pointer */
+ pCoefB = pCoefB + (2 * modifier);
+ pCoefA = pCoefA + (2 * modifier);
- /* update coefficient pointer */
- pCoefB = pCoefB + (2U * modifier);
- pCoefA = pCoefA + (2U * modifier);
+ i--;
+ }
- i--;
- }
-#endif /* #if defined (ARM_MATH_DSP) */
}