Welcome to mirror list, hosted at ThFree Co, Russian Federation.

arm_cmplx_dot_prod_q15.c « ComplexMathFunctions « Source « DSP « CMSIS « Drivers - github.com/Flipper-Zero/STM32CubeWB.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 2ecd8014415d57366914c56f639cba1cf7730377 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
/* ----------------------------------------------------------------------
 * Project:      CMSIS DSP Library
 * Title:        arm_cmplx_dot_prod_q15.c
 * Description:  Processing function for the Q15 Complex Dot product
 *
 * $Date:        18. March 2019
 * $Revision:    V1.6.0
 *
 * Target Processor: Cortex-M cores
 * -------------------------------------------------------------------- */
/*
 * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Licensed under the Apache License, Version 2.0 (the License); you may
 * not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "arm_math.h"

/**
  @ingroup groupCmplxMath
 */

/**
  @addtogroup cmplx_dot_prod
  @{
 */

/**
  @brief         Q15 complex dot product.
  @param[in]     pSrcA       points to the first input vector
  @param[in]     pSrcB       points to the second input vector
  @param[in]     numSamples  number of samples in each vector
  @param[out]    realResult  real part of the result returned here
  @param[out]    imagResult  imaginary part of the result returned her
  @return        none

  @par           Scaling and Overflow Behavior
                   The function is implemented using an internal 64-bit accumulator.
                   The intermediate 1.15 by 1.15 multiplications are performed with full precision and yield a 2.30 result.
                   These are accumulated in a 64-bit accumulator with 34.30 precision.
                   As a final step, the accumulators are converted to 8.24 format.
                   The return results <code>realResult</code> and <code>imagResult</code> are in 8.24 format.
 */

void arm_cmplx_dot_prod_q15(
  const q15_t * pSrcA,
  const q15_t * pSrcB,
        uint32_t numSamples,
        q31_t * realResult,
        q31_t * imagResult)
{
        uint32_t blkCnt;                               /* Loop counter */
        q63_t real_sum = 0, imag_sum = 0;              /* Temporary result variables */
        q15_t a0,b0,c0,d0;

#if defined (ARM_MATH_LOOPUNROLL)

  /* Loop unrolling: Compute 4 outputs at a time */
  blkCnt = numSamples >> 2U;

  while (blkCnt > 0U)
  {
    a0 = *pSrcA++;
    b0 = *pSrcA++;
    c0 = *pSrcB++;
    d0 = *pSrcB++;

    real_sum += (q31_t)a0 * c0;
    imag_sum += (q31_t)a0 * d0;
    real_sum -= (q31_t)b0 * d0;
    imag_sum += (q31_t)b0 * c0;

    a0 = *pSrcA++;
    b0 = *pSrcA++;
    c0 = *pSrcB++;
    d0 = *pSrcB++;

    real_sum += (q31_t)a0 * c0;
    imag_sum += (q31_t)a0 * d0;
    real_sum -= (q31_t)b0 * d0;
    imag_sum += (q31_t)b0 * c0;

    a0 = *pSrcA++;
    b0 = *pSrcA++;
    c0 = *pSrcB++;
    d0 = *pSrcB++;

    real_sum += (q31_t)a0 * c0;
    imag_sum += (q31_t)a0 * d0;
    real_sum -= (q31_t)b0 * d0;
    imag_sum += (q31_t)b0 * c0;

    a0 = *pSrcA++;
    b0 = *pSrcA++;
    c0 = *pSrcB++;
    d0 = *pSrcB++;

    real_sum += (q31_t)a0 * c0;
    imag_sum += (q31_t)a0 * d0;
    real_sum -= (q31_t)b0 * d0;
    imag_sum += (q31_t)b0 * c0;

    /* Decrement loop counter */
    blkCnt--;
  }

  /* Loop unrolling: Compute remaining outputs */
  blkCnt = numSamples % 0x4U;

#else

  /* Initialize blkCnt with number of samples */
  blkCnt = numSamples;

#endif /* #if defined (ARM_MATH_LOOPUNROLL) */

  while (blkCnt > 0U)
  {
    a0 = *pSrcA++;
    b0 = *pSrcA++;
    c0 = *pSrcB++;
    d0 = *pSrcB++;

    real_sum += (q31_t)a0 * c0;
    imag_sum += (q31_t)a0 * d0;
    real_sum -= (q31_t)b0 * d0;
    imag_sum += (q31_t)b0 * c0;

    /* Decrement loop counter */
    blkCnt--;
  }

  /* Store real and imaginary result in 8.24 format  */
  /* Convert real data in 34.30 to 8.24 by 6 right shifts */
  *realResult = (q31_t) (real_sum >> 6);
  /* Convert imaginary data in 34.30 to 8.24 by 6 right shifts */
  *imagResult = (q31_t) (imag_sum >> 6);
}

/**
  @} end of cmplx_dot_prod group
 */