Welcome to mirror list, hosted at ThFree Co, Russian Federation.

arm_conv_opt_q15.c « FilteringFunctions « Source « DSP « CMSIS « Drivers - github.com/Flipper-Zero/STM32CubeWB.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 6ad34cdc666c46d3f3625f66e6f8d4e237e1aaa8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
/* ----------------------------------------------------------------------
 * Project:      CMSIS DSP Library
 * Title:        arm_conv_opt_q15.c
 * Description:  Convolution of Q15 sequences
 *
 * $Date:        18. March 2019
 * $Revision:    V1.6.0
 *
 * Target Processor: Cortex-M cores
 * -------------------------------------------------------------------- */
/*
 * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Licensed under the Apache License, Version 2.0 (the License); you may
 * not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "arm_math.h"

/**
  @ingroup groupFilters
 */

/**
  @addtogroup Conv
  @{
 */

/**
  @brief         Convolution of Q15 sequences.
  @param[in]     pSrcA      points to the first input sequence
  @param[in]     srcALen    length of the first input sequence
  @param[in]     pSrcB      points to the second input sequence
  @param[in]     srcBLen    length of the second input sequence
  @param[out]    pDst       points to the location where the output result is written.  Length srcALen+srcBLen-1.
  @param[in]     pScratch1  points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
  @param[in]     pScratch2  points to scratch buffer of size min(srcALen, srcBLen).
  @return        none

  @par           Scaling and Overflow Behavior
                   The function is implemented using a 64-bit internal accumulator.
                   Both inputs are in 1.15 format and multiplications yield a 2.30 result.
                   The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
                   This approach provides 33 guard bits and there is no risk of overflow.
                   The 34.30 result is then truncated to 34.15 format by discarding the low 15 bits and then saturated to 1.15 format.
  @remark
                   Refer to \ref arm_conv_fast_q15() for a faster but less precise version of this function.
 */

void arm_conv_opt_q15(
  const q15_t * pSrcA,
        uint32_t srcALen,
  const q15_t * pSrcB,
        uint32_t srcBLen,
        q15_t * pDst,
        q15_t * pScratch1,
        q15_t * pScratch2)
{
        q63_t acc0;                                    /* Accumulators */
  const q15_t *pIn1;                                   /* InputA pointer */
  const q15_t *pIn2;                                   /* InputB pointer */
        q15_t *pOut = pDst;                            /* Output pointer */
        q15_t *pScr1 = pScratch1;                      /* Temporary pointer for scratch1 */
        q15_t *pScr2 = pScratch2;                      /* Temporary pointer for scratch1 */
  const q15_t *px;                                     /* Intermediate inputA pointer */
        q15_t *py;                                     /* Intermediate inputB pointer */
        uint32_t j, k, blkCnt;                         /* Loop counter */
        uint32_t tapCnt;                               /* Loop count */

#if defined (ARM_MATH_LOOPUNROLL)
        q63_t acc1, acc2, acc3;                        /* Accumulators */
        q31_t x1, x2, x3;                              /* Temporary variables to hold state and coefficient values */
        q31_t y1, y2;                                  /* State variables */
#endif


  /* The algorithm implementation is based on the lengths of the inputs. */
  /* srcB is always made to slide across srcA. */
  /* So srcBLen is always considered as shorter or equal to srcALen */
  if (srcALen >= srcBLen)
  {
    /* Initialization of inputA pointer */
    pIn1 = pSrcA;

    /* Initialization of inputB pointer */
    pIn2 = pSrcB;
  }
  else
  {
    /* Initialization of inputA pointer */
    pIn1 = pSrcB;

    /* Initialization of inputB pointer */
    pIn2 = pSrcA;

    /* srcBLen is always considered as shorter or equal to srcALen */
    j = srcBLen;
    srcBLen = srcALen;
    srcALen = j;
  }

  /* Pointer to take end of scratch2 buffer */
  pScr2 = pScratch2 + srcBLen - 1;

  /* points to smaller length sequence */
  px = pIn2;

#if defined (ARM_MATH_LOOPUNROLL)

  /* Loop unrolling: Compute 4 outputs at a time */
  k = srcBLen >> 2U;

  /* Copy smaller length input sequence in reverse order into second scratch buffer */
  while (k > 0U)
  {
    /* copy second buffer in reversal manner */
    *pScr2-- = *px++;
    *pScr2-- = *px++;
    *pScr2-- = *px++;
    *pScr2-- = *px++;

    /* Decrement loop counter */
    k--;
  }

  /* Loop unrolling: Compute remaining outputs */
  k = srcBLen % 0x4U;

#else

  /* Initialize k with number of samples */
  k = srcBLen;

#endif /* #if defined (ARM_MATH_LOOPUNROLL) */

  while (k > 0U)
  {
    /* copy second buffer in reversal manner for remaining samples */
    *pScr2-- = *px++;

    /* Decrement loop counter */
    k--;
  }

  /* Initialze temporary scratch pointer */
  pScr1 = pScratch1;

  /* Assuming scratch1 buffer is aligned by 32-bit */
  /* Fill (srcBLen - 1U) zeros in scratch1 buffer */
  arm_fill_q15(0, pScr1, (srcBLen - 1U));

  /* Update temporary scratch pointer */
  pScr1 += (srcBLen - 1U);

  /* Copy bigger length sequence(srcALen) samples in scratch1 buffer */

  /* Copy (srcALen) samples in scratch buffer */
  arm_copy_q15(pIn1, pScr1, srcALen);

  /* Update pointers */
  pScr1 += srcALen;


  /* Fill (srcBLen - 1U) zeros at end of scratch buffer */
  arm_fill_q15(0, pScr1, (srcBLen - 1U));

  /* Update pointer */
  pScr1 += (srcBLen - 1U);

  /* Temporary pointer for scratch2 */
  py = pScratch2;


  /* Initialization of pIn2 pointer */
  pIn2 = py;

#if defined (ARM_MATH_LOOPUNROLL)

  /* Loop unrolling: Compute 4 outputs at a time */
  blkCnt = (srcALen + srcBLen - 1U) >> 2;

  while (blkCnt > 0)
  {
    /* Initialze temporary scratch pointer as scratch1 */
    pScr1 = pScratch1;

    /* Clear Accumlators */
    acc0 = 0;
    acc1 = 0;
    acc2 = 0;
    acc3 = 0;

    /* Read two samples from scratch1 buffer */
    x1 = read_q15x2_ia (&pScr1);

    /* Read next two samples from scratch1 buffer */
    x2 = read_q15x2_ia (&pScr1);

    tapCnt = (srcBLen) >> 2U;

    while (tapCnt > 0U)
    {

      /* Read four samples from smaller buffer */
      y1 = read_q15x2_ia ((q15_t **) &pIn2);
      y2 = read_q15x2_ia ((q15_t **) &pIn2);

      /* multiply and accumlate */
      acc0 = __SMLALD(x1, y1, acc0);
      acc2 = __SMLALD(x2, y1, acc2);

      /* pack input data */
#ifndef ARM_MATH_BIG_ENDIAN
      x3 = __PKHBT(x2, x1, 0);
#else
      x3 = __PKHBT(x1, x2, 0);
#endif

      /* multiply and accumlate */
      acc1 = __SMLALDX(x3, y1, acc1);

      /* Read next two samples from scratch1 buffer */
      x1 = read_q15x2_ia (&pScr1);

      /* multiply and accumlate */
      acc0 = __SMLALD(x2, y2, acc0);
      acc2 = __SMLALD(x1, y2, acc2);

      /* pack input data */
#ifndef ARM_MATH_BIG_ENDIAN
      x3 = __PKHBT(x1, x2, 0);
#else
      x3 = __PKHBT(x2, x1, 0);
#endif

      acc3 = __SMLALDX(x3, y1, acc3);
      acc1 = __SMLALDX(x3, y2, acc1);

      x2 = read_q15x2_ia (&pScr1);

#ifndef ARM_MATH_BIG_ENDIAN
      x3 = __PKHBT(x2, x1, 0);
#else
      x3 = __PKHBT(x1, x2, 0);
#endif

      acc3 = __SMLALDX(x3, y2, acc3);

      /* Decrement loop counter */
      tapCnt--;
    }

    /* Update scratch pointer for remaining samples of smaller length sequence */
    pScr1 -= 4U;

    /* apply same above for remaining samples of smaller length sequence */
    tapCnt = (srcBLen) & 3U;

    while (tapCnt > 0U)
    {
      /* accumlate the results */
      acc0 += (*pScr1++ * *pIn2);
      acc1 += (*pScr1++ * *pIn2);
      acc2 += (*pScr1++ * *pIn2);
      acc3 += (*pScr1++ * *pIn2++);

      pScr1 -= 3U;

      /* Decrement loop counter */
      tapCnt--;
    }

    blkCnt--;

    /* Store the results in the accumulators in the destination buffer. */
#ifndef ARM_MATH_BIG_ENDIAN
    write_q15x2_ia (&pOut, __PKHBT(__SSAT((acc0 >> 15), 16), __SSAT((acc1 >> 15), 16), 16));
    write_q15x2_ia (&pOut, __PKHBT(__SSAT((acc2 >> 15), 16), __SSAT((acc3 >> 15), 16), 16));
#else
    write_q15x2_ia (&pOut, __PKHBT(__SSAT((acc1 >> 15), 16), __SSAT((acc0 >> 15), 16), 16));
    write_q15x2_ia (&pOut, __PKHBT(__SSAT((acc3 >> 15), 16), __SSAT((acc2 >> 15), 16), 16));
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */

    /* Initialization of inputB pointer */
    pIn2 = py;

    pScratch1 += 4U;
  }

  /* Loop unrolling: Compute remaining outputs */
  blkCnt = (srcALen + srcBLen - 1U) & 0x3;

#else

  /* Initialize blkCnt with number of samples */
  blkCnt = (srcALen + srcBLen - 1U);

#endif /* #if defined (ARM_MATH_LOOPUNROLL) */

  /* Calculate convolution for remaining samples of Bigger length sequence */
  while (blkCnt > 0)
  {
    /* Initialze temporary scratch pointer as scratch1 */
    pScr1 = pScratch1;

    /* Clear Accumlators */
    acc0 = 0;

    tapCnt = (srcBLen) >> 1U;

    while (tapCnt > 0U)
    {

      /* Read next two samples from scratch1 buffer */
      acc0 += (*pScr1++ * *pIn2++);
      acc0 += (*pScr1++ * *pIn2++);

      /* Decrement loop counter */
      tapCnt--;
    }

    tapCnt = (srcBLen) & 1U;

    /* apply same above for remaining samples of smaller length sequence */
    while (tapCnt > 0U)
    {

      /* accumlate the results */
      acc0 += (*pScr1++ * *pIn2++);

      /* Decrement loop counter */
      tapCnt--;
    }

    blkCnt--;

    /* The result is in 2.30 format.  Convert to 1.15 with saturation.
       Then store the output in the destination buffer. */
    *pOut++ = (q15_t) (__SSAT((acc0 >> 15), 16));

    /* Initialization of inputB pointer */
    pIn2 = py;

    pScratch1 += 1U;
  }

}

/**
  @} end of Conv group
 */