Welcome to mirror list, hosted at ThFree Co, Russian Federation.

arm_correlate_f32.c « FilteringFunctions « Source « DSP « CMSIS « Drivers - github.com/Flipper-Zero/STM32CubeWB.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 109652652d97b8b88c97a521d4303b7c82754bc4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
/* ----------------------------------------------------------------------
 * Project:      CMSIS DSP Library
 * Title:        arm_correlate_f32.c
 * Description:  Correlation of floating-point sequences
 *
 * $Date:        18. March 2019
 * $Revision:    V1.6.0
 *
 * Target Processor: Cortex-M cores
 * -------------------------------------------------------------------- */
/*
 * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Licensed under the Apache License, Version 2.0 (the License); you may
 * not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "arm_math.h"

/**
  @ingroup groupFilters
 */

/**
  @defgroup Corr Correlation

  Correlation is a mathematical operation that is similar to convolution.
  As with convolution, correlation uses two signals to produce a third signal.
  The underlying algorithms in correlation and convolution are identical except that one of the inputs is flipped in convolution.
  Correlation is commonly used to measure the similarity between two signals.
  It has applications in pattern recognition, cryptanalysis, and searching.
  The CMSIS library provides correlation functions for Q7, Q15, Q31 and floating-point data types.
  Fast versions of the Q15 and Q31 functions are also provided.

  @par           Algorithm
                   Let <code>a[n]</code> and <code>b[n]</code> be sequences of length <code>srcALen</code> and <code>srcBLen</code> samples respectively.
                   The convolution of the two signals is denoted by
  <pre>
      c[n] = a[n] * b[n]
  </pre>
                   In correlation, one of the signals is flipped in time
  <pre>
       c[n] = a[n] * b[-n]
  </pre>
  @par
                   and this is mathematically defined as
                   \image html CorrelateEquation.gif
  @par
                   The <code>pSrcA</code> points to the first input vector of length <code>srcALen</code> and <code>pSrcB</code> points to the second input vector of length <code>srcBLen</code>.
                   The result <code>c[n]</code> is of length <code>2 * max(srcALen, srcBLen) - 1</code> and is defined over the interval <code>n=0, 1, 2, ..., (2 * max(srcALen, srcBLen) - 2)</code>.
                   The output result is written to <code>pDst</code> and the calling function must allocate <code>2 * max(srcALen, srcBLen) - 1</code> words for the result.

  @note
                   The <code>pDst</code> should be initialized to all zeros before being used.

  @par           Fixed-Point Behavior
                   Correlation requires summing up a large number of intermediate products.
                   As such, the Q7, Q15, and Q31 functions run a risk of overflow and saturation.
                   Refer to the function specific documentation below for further details of the particular algorithm used.

  @par           Fast Versions
                   Fast versions are supported for Q31 and Q15.  Cycles for Fast versions are less compared to Q31 and Q15 of correlate and the design requires
                   the input signals should be scaled down to avoid intermediate overflows.

  @par           Opt Versions
                   Opt versions are supported for Q15 and Q7.  Design uses internal scratch buffer for getting good optimisation.
                   These versions are optimised in cycles and consumes more memory (Scratch memory) compared to Q15 and Q7 versions of correlate
 */

/**
  @addtogroup Corr
  @{
 */

/**
  @brief         Correlation of floating-point sequences.
  @param[in]     pSrcA      points to the first input sequence
  @param[in]     srcALen    length of the first input sequence
  @param[in]     pSrcB      points to the second input sequence
  @param[in]     srcBLen    length of the second input sequence
  @param[out]    pDst       points to the location where the output result is written.  Length 2 * max(srcALen, srcBLen) - 1.
  @return        none
 */

void arm_correlate_f32(
  const float32_t * pSrcA,
        uint32_t srcALen,
  const float32_t * pSrcB,
        uint32_t srcBLen,
        float32_t * pDst)
{

#if (1)
//#if !defined(ARM_MATH_CM0_FAMILY)
  
  const float32_t *pIn1;                               /* InputA pointer */
  const float32_t *pIn2;                               /* InputB pointer */
        float32_t *pOut = pDst;                        /* Output pointer */
  const float32_t *px;                                 /* Intermediate inputA pointer */
  const float32_t *py;                                 /* Intermediate inputB pointer */
  const float32_t *pSrc1;
        float32_t sum;
        uint32_t blockSize1, blockSize2, blockSize3;   /* Loop counters */
        uint32_t j, k, count, blkCnt;                  /* Loop counters */
        uint32_t outBlockSize;                         /* Loop counter */
        int32_t inc = 1;                               /* Destination address modifier */

#if defined (ARM_MATH_LOOPUNROLL) || defined (ARM_MATH_NEON)
  float32_t acc0, acc1, acc2, acc3;                    /* Accumulators */
  float32_t x0, x1, x2, x3, c0;                        /* temporary variables for holding input and coefficient values */
#endif

  /* The algorithm implementation is based on the lengths of the inputs. */
  /* srcB is always made to slide across srcA. */
  /* So srcBLen is always considered as shorter or equal to srcALen */
  /* But CORR(x, y) is reverse of CORR(y, x) */
  /* So, when srcBLen > srcALen, output pointer is made to point to the end of the output buffer */
  /* and the destination pointer modifier, inc is set to -1 */
  /* If srcALen > srcBLen, zero pad has to be done to srcB to make the two inputs of same length */
  /* But to improve the performance,
   * we assume zeroes in the output instead of zero padding either of the the inputs*/
  /* If srcALen > srcBLen,
   * (srcALen - srcBLen) zeroes has to included in the starting of the output buffer */
  /* If srcALen < srcBLen,
   * (srcALen - srcBLen) zeroes has to included in the ending of the output buffer */
  if (srcALen >= srcBLen)
  {
    /* Initialization of inputA pointer */
    pIn1 = pSrcA;

    /* Initialization of inputB pointer */
    pIn2 = pSrcB;

    /* Number of output samples is calculated */
    outBlockSize = (2U * srcALen) - 1U;

    /* When srcALen > srcBLen, zero padding has to be done to srcB
     * to make their lengths equal.
     * Instead, (outBlockSize - (srcALen + srcBLen - 1))
     * number of output samples are made zero */
    j = outBlockSize - (srcALen + (srcBLen - 1U));

    /* Updating the pointer position to non zero value */
    pOut += j;
  }
  else
  {
    /* Initialization of inputA pointer */
    pIn1 = pSrcB;

    /* Initialization of inputB pointer */
    pIn2 = pSrcA;

    /* srcBLen is always considered as shorter or equal to srcALen */
    j = srcBLen;
    srcBLen = srcALen;
    srcALen = j;

    /* CORR(x, y) = Reverse order(CORR(y, x)) */
    /* Hence set the destination pointer to point to the last output sample */
    pOut = pDst + ((srcALen + srcBLen) - 2U);

    /* Destination address modifier is set to -1 */
    inc = -1;
  }

  /* The function is internally
   * divided into three stages according to the number of multiplications that has to be
   * taken place between inputA samples and inputB samples. In the first stage of the
   * algorithm, the multiplications increase by one for every iteration.
   * In the second stage of the algorithm, srcBLen number of multiplications are done.
   * In the third stage of the algorithm, the multiplications decrease by one
   * for every iteration. */

  /* The algorithm is implemented in three stages.
     The loop counters of each stage is initiated here. */
  blockSize1 = srcBLen - 1U;
  blockSize2 = srcALen - (srcBLen - 1U);
  blockSize3 = blockSize1;

  /* --------------------------
   * Initializations of stage1
   * -------------------------*/

  /* sum = x[0] * y[srcBlen - 1]
   * sum = x[0] * y[srcBlen-2] + x[1] * y[srcBlen - 1]
   * ....
   * sum = x[0] * y[0] + x[1] * y[1] +...+ x[srcBLen - 1] * y[srcBLen - 1]
   */

  /* In this stage the MAC operations are increased by 1 for every iteration.
     The count variable holds the number of MAC operations performed */
  count = 1U;

  /* Working pointer of inputA */
  px = pIn1;

  /* Working pointer of inputB */
  pSrc1 = pIn2 + (srcBLen - 1U);
  py = pSrc1;

  /* ------------------------
   * Stage1 process
   * ----------------------*/

  /* The first stage starts here */
  while (blockSize1 > 0U)
  {
    /* Accumulator is made zero for every iteration */
    sum = 0.0f;

#if defined (ARM_MATH_LOOPUNROLL) || defined(ARM_MATH_NEON)

    /* Loop unrolling: Compute 4 outputs at a time */
    k = count >> 2U;

#if defined(ARM_MATH_NEON)
    float32x4_t x,y;
    float32x4_t res = vdupq_n_f32(0) ;
    float32x2_t accum = vdup_n_f32(0);

    while (k > 0U)
    {
      x = vld1q_f32(px);
      y = vld1q_f32(py);

      res = vmlaq_f32(res,x, y);

      px += 4;
      py += 4;

      /* Decrement the loop counter */
      k--;
    }

    accum = vpadd_f32(vget_low_f32(res), vget_high_f32(res));
    sum += accum[0] + accum[1];

    k = count & 0x3;
#else
    /* First part of the processing with loop unrolling.  Compute 4 MACs at a time.
     ** a second loop below computes MACs for the remaining 1 to 3 samples. */
    while (k > 0U)
    {
      /* x[0] * y[srcBLen - 4] */
      sum += *px++ * *py++;

      /* x[1] * y[srcBLen - 3] */
      sum += *px++ * *py++;

      /* x[2] * y[srcBLen - 2] */
      sum += *px++ * *py++;

      /* x[3] * y[srcBLen - 1] */
      sum += *px++ * *py++;

      /* Decrement loop counter */
      k--;
    }

    /* Loop unrolling: Compute remaining outputs */
    k = count % 0x4U;

#endif /* #if defined(ARM_MATH_NEON) */
#else

    /* Initialize k with number of samples */
    k = count;

#endif /* #if defined (ARM_MATH_LOOPUNROLL) || defined(ARM_MATH_NEON) */

    while (k > 0U)
    {
      /* Perform the multiply-accumulate */
      /* x[0] * y[srcBLen - 1] */
      sum += *px++ * *py++;

      /* Decrement loop counter */
      k--;
    }

    /* Store the result in the accumulator in the destination buffer. */
    *pOut = sum;
    /* Destination pointer is updated according to the address modifier, inc */
    pOut += inc;

    /* Update the inputA and inputB pointers for next MAC calculation */
    py = pSrc1 - count;
    px = pIn1;

    /* Increment MAC count */
    count++;

    /* Decrement loop counter */
    blockSize1--;
  }

  /* --------------------------
   * Initializations of stage2
   * ------------------------*/

  /* sum = x[0] * y[0] + x[1] * y[1] +...+ x[srcBLen-1] * y[srcBLen-1]
   * sum = x[1] * y[0] + x[2] * y[1] +...+ x[srcBLen]   * y[srcBLen-1]
   * ....
   * sum = x[srcALen-srcBLen-2] * y[0] + x[srcALen-srcBLen-1] * y[1] +...+ x[srcALen-1] * y[srcBLen-1]
   */

  /* Working pointer of inputA */
  px = pIn1;

  /* Working pointer of inputB */
  py = pIn2;

  /* count is index by which the pointer pIn1 to be incremented */
  count = 0U;

  /* -------------------
   * Stage2 process
   * ------------------*/

  /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
   * So, to loop unroll over blockSize2,
   * srcBLen should be greater than or equal to 4 */
  if (srcBLen >= 4U)
  {
#if defined (ARM_MATH_LOOPUNROLL) || defined(ARM_MATH_NEON)

    /* Loop unrolling: Compute 4 outputs at a time */
    blkCnt = blockSize2 >> 2U;

#if defined(ARM_MATH_NEON)
      float32x4_t c;
      float32x4_t x1v;
      float32x4_t x2v;
      uint32x4_t x1v_u;
      uint32x4_t x2v_u;
      float32x4_t x;
      uint32x4_t x_u;
      float32x4_t res = vdupq_n_f32(0) ;
#endif /* #if defined(ARM_MATH_NEON) */

    while (blkCnt > 0U)
    {
      /* Set all accumulators to zero */
      acc0 = 0.0f;
      acc1 = 0.0f;
      acc2 = 0.0f;
      acc3 = 0.0f;

#if defined(ARM_MATH_NEON)
      /* Compute 4 MACs simultaneously. */
      k = srcBLen >> 2U;

      res = vdupq_n_f32(0) ;

      x1v = vld1q_f32(px);
      px += 4;
      do
      {
        x2v = vld1q_f32(px);
        c = vld1q_f32(py);

        py += 4;

        x = x1v;
        res = vmlaq_n_f32(res,x,c[0]);

        x = vextq_f32(x1v,x2v,1);

        res = vmlaq_n_f32(res,x,c[1]);

        x = vextq_f32(x1v,x2v,2);

	res = vmlaq_n_f32(res,x,c[2]);

        x = vextq_f32(x1v,x2v,3);

	res = vmlaq_n_f32(res,x,c[3]);

        x1v = x2v;
        px+=4;
        x2v = vld1q_f32(px);

      } while (--k);
      
      /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
       ** No loop unrolling is used. */
      k = srcBLen & 0x3;

      while (k > 0U)
      {
        /* Read y[srcBLen - 5] sample */
        c0 = *(py++);

        res = vmlaq_n_f32(res,x1v,c0);

        /* Reuse the present samples for the next MAC */
        x1v[0] = x1v[1];
        x1v[1] = x1v[2];
        x1v[2] = x1v[3];

        x1v[3] = *(px++);

        /* Decrement the loop counter */
        k--;
      }

      px-=1;

      acc0 = res[0];
      acc1 = res[1];
      acc2 = res[2];
      acc3 = res[3];
#else
      /* read x[0], x[1], x[2] samples */
      x0 = *px++;
      x1 = *px++;
      x2 = *px++;

      /* Apply loop unrolling and compute 4 MACs simultaneously. */
      k = srcBLen >> 2U;

      /* First part of the processing with loop unrolling.  Compute 4 MACs at a time.
       ** a second loop below computes MACs for the remaining 1 to 3 samples. */
      do
      {
        /* Read y[0] sample */
        c0 = *(py++);
        /* Read x[3] sample */
        x3 = *(px++);

        /* Perform the multiply-accumulate */
        /* acc0 +=  x[0] * y[0] */
        acc0 += x0 * c0;
        /* acc1 +=  x[1] * y[0] */
        acc1 += x1 * c0;
        /* acc2 +=  x[2] * y[0] */
        acc2 += x2 * c0;
        /* acc3 +=  x[3] * y[0] */
        acc3 += x3 * c0;

        /* Read y[1] sample */
        c0 = *(py++);
        /* Read x[4] sample */
        x0 = *(px++);

        /* Perform the multiply-accumulate */
        /* acc0 +=  x[1] * y[1] */
        acc0 += x1 * c0;
        /* acc1 +=  x[2] * y[1] */
        acc1 += x2 * c0;
        /* acc2 +=  x[3] * y[1] */
        acc2 += x3 * c0;
        /* acc3 +=  x[4] * y[1] */
        acc3 += x0 * c0;

        /* Read y[2] sample */
        c0 = *(py++);
        /* Read x[5] sample */
        x1 = *(px++);

        /* Perform the multiply-accumulate */
        /* acc0 +=  x[2] * y[2] */
        acc0 += x2 * c0;
        /* acc1 +=  x[3] * y[2] */
        acc1 += x3 * c0;
        /* acc2 +=  x[4] * y[2] */
        acc2 += x0 * c0;
        /* acc3 +=  x[5] * y[2] */
        acc3 += x1 * c0;

        /* Read y[3] sample */
        c0 = *(py++);
        /* Read x[6] sample */
        x2 = *(px++);

        /* Perform the multiply-accumulate */
        /* acc0 +=  x[3] * y[3] */
        acc0 += x3 * c0;
        /* acc1 +=  x[4] * y[3] */
        acc1 += x0 * c0;
        /* acc2 +=  x[5] * y[3] */
        acc2 += x1 * c0;
        /* acc3 +=  x[6] * y[3] */
        acc3 += x2 * c0;

      } while (--k);

      /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
       ** No loop unrolling is used. */
      k = srcBLen % 0x4U;

      while (k > 0U)
      {
        /* Read y[4] sample */
        c0 = *(py++);
        /* Read x[7] sample */
        x3 = *(px++);

        /* Perform the multiply-accumulate */
        /* acc0 +=  x[4] * y[4] */
        acc0 += x0 * c0;
        /* acc1 +=  x[5] * y[4] */
        acc1 += x1 * c0;
        /* acc2 +=  x[6] * y[4] */
        acc2 += x2 * c0;
        /* acc3 +=  x[7] * y[4] */
        acc3 += x3 * c0;

        /* Reuse the present samples for the next MAC */
        x0 = x1;
        x1 = x2;
        x2 = x3;

        /* Decrement the loop counter */
        k--;
      }

#endif /* #if defined(ARM_MATH_NEON) */

      /* Store the result in the accumulator in the destination buffer. */
      *pOut = acc0;
      /* Destination pointer is updated according to the address modifier, inc */
      pOut += inc;

      *pOut = acc1;
      pOut += inc;

      *pOut = acc2;
      pOut += inc;

      *pOut = acc3;
      pOut += inc;

      /* Increment the pointer pIn1 index, count by 4 */
      count += 4U;

      /* Update the inputA and inputB pointers for next MAC calculation */
      px = pIn1 + count;
      py = pIn2;

      /* Decrement loop counter */
      blkCnt--;
    }

    /* Loop unrolling: Compute remaining outputs */
    blkCnt = blockSize2 % 0x4U;

#else

    /* Initialize blkCnt with number of samples */
    blkCnt = blockSize2;

#endif /* #if defined (ARM_MATH_LOOPUNROLL) || defined(ARM_MATH_NEON) */

    while (blkCnt > 0U)
    {
      /* Accumulator is made zero for every iteration */
      sum = 0.0f;

#if defined (ARM_MATH_LOOPUNROLL) || defined(ARM_MATH_NEON)

    /* Loop unrolling: Compute 4 outputs at a time */
      k = srcBLen >> 2U;

#if defined(ARM_MATH_NEON)
    float32x4_t x,y;
    float32x4_t res = vdupq_n_f32(0) ;
    float32x2_t accum = vdup_n_f32(0);

    while (k > 0U)
    {
      x = vld1q_f32(px);
      y = vld1q_f32(py);

      res = vmlaq_f32(res,x, y);

      px += 4;
      py += 4;
      /* Decrement the loop counter */
      k--;
    }

    accum = vpadd_f32(vget_low_f32(res), vget_high_f32(res));
    sum += accum[0] + accum[1];
#else
      /* First part of the processing with loop unrolling.  Compute 4 MACs at a time.
       ** a second loop below computes MACs for the remaining 1 to 3 samples. */
      while (k > 0U)
      {
        /* Perform the multiply-accumulate */
        sum += *px++ * *py++;
        sum += *px++ * *py++;
        sum += *px++ * *py++;
        sum += *px++ * *py++;

        /* Decrement loop counter */
        k--;
      }
#endif /* #if defined(ARM_MATH_NEON) */
      /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
       ** No loop unrolling is used. */
      k = srcBLen % 0x4U;
#else

      /* Initialize blkCnt with number of samples */
      k = srcBLen;

#endif /* #if defined (ARM_MATH_LOOPUNROLL) || defined(ARM_MATH_NEON) */

      while (k > 0U)
      {
        /* Perform the multiply-accumulate */
        sum += *px++ * *py++;

        /* Decrement the loop counter */
        k--;
      }

      /* Store the result in the accumulator in the destination buffer. */
      *pOut = sum;

      /* Destination pointer is updated according to the address modifier, inc */
      pOut += inc;

      /* Increment the pointer pIn1 index, count by 1 */
      count++;

      /* Update the inputA and inputB pointers for next MAC calculation */
      px = pIn1 + count;
      py = pIn2;

      /* Decrement the loop counter */
      blkCnt--;
    }
  }
  else
  {
    /* If the srcBLen is not a multiple of 4,
     * the blockSize2 loop cannot be unrolled by 4 */
    blkCnt = blockSize2;

    while (blkCnt > 0U)
    {
      /* Accumulator is made zero for every iteration */
      sum = 0.0f;

      /* Loop over srcBLen */
      k = srcBLen;

      while (k > 0U)
      {
        /* Perform the multiply-accumulate */
        sum += *px++ * *py++;

        /* Decrement the loop counter */
        k--;
      }

      /* Store the result in the accumulator in the destination buffer. */
      *pOut = sum;
      /* Destination pointer is updated according to the address modifier, inc */
      pOut += inc;

      /* Increment the pointer pIn1 index, count by 1 */
      count++;

      /* Update the inputA and inputB pointers for next MAC calculation */
      px = pIn1 + count;
      py = pIn2;

      /* Decrement the loop counter */
      blkCnt--;
    }
  }


  /* --------------------------
   * Initializations of stage3
   * -------------------------*/

  /* sum += x[srcALen-srcBLen+1] * y[0] + x[srcALen-srcBLen+2] * y[1] +...+ x[srcALen-1] * y[srcBLen-1]
   * sum += x[srcALen-srcBLen+2] * y[0] + x[srcALen-srcBLen+3] * y[1] +...+ x[srcALen-1] * y[srcBLen-1]
   * ....
   * sum +=  x[srcALen-2] * y[0] + x[srcALen-1] * y[1]
   * sum +=  x[srcALen-1] * y[0]
   */

  /* In this stage the MAC operations are decreased by 1 for every iteration.
     The count variable holds the number of MAC operations performed */
  count = srcBLen - 1U;

  /* Working pointer of inputA */
  pSrc1 = pIn1 + (srcALen - (srcBLen - 1U));
  px = pSrc1;

  /* Working pointer of inputB */
  py = pIn2;

  /* -------------------
   * Stage3 process
   * ------------------*/

  while (blockSize3 > 0U)
  {
    /* Accumulator is made zero for every iteration */
    sum = 0.0f;

#if defined (ARM_MATH_LOOPUNROLL) || defined(ARM_MATH_NEON)

    /* Loop unrolling: Compute 4 outputs at a time */
    k = count >> 2U;

#if defined(ARM_MATH_NEON)
    float32x4_t x,y;
    float32x4_t res = vdupq_n_f32(0) ;
    float32x2_t accum = vdup_n_f32(0);

    while (k > 0U)
    {
      x = vld1q_f32(px);
      y = vld1q_f32(py);

      res = vmlaq_f32(res,x, y);

      px += 4;
      py += 4;

      /* Decrement the loop counter */
      k--;
    }

    accum = vpadd_f32(vget_low_f32(res), vget_high_f32(res));
    sum += accum[0] + accum[1];
#else
    /* First part of the processing with loop unrolling.  Compute 4 MACs at a time.
     ** a second loop below computes MACs for the remaining 1 to 3 samples. */
    while (k > 0U)
    {
      /* Perform the multiply-accumulate */
      /* sum += x[srcALen - srcBLen + 4] * y[3] */
      sum += *px++ * *py++;

      /* sum += x[srcALen - srcBLen + 3] * y[2] */
      sum += *px++ * *py++;

      /* sum += x[srcALen - srcBLen + 2] * y[1] */
      sum += *px++ * *py++;

      /* sum += x[srcALen - srcBLen + 1] * y[0] */
      sum += *px++ * *py++;

      /* Decrement loop counter */
      k--;
    }

#endif /* #if defined (ARM_MATH_NEON) */
    /* Loop unrolling: Compute remaining outputs */
    k = count % 0x4U;

#else

    /* Initialize blkCnt with number of samples */
    k = count;

#endif /* #if defined (ARM_MATH_LOOPUNROLL) || defined(ARM_MATH_NEON) */

    while (k > 0U)
    {
      /* Perform the multiply-accumulate */
      sum += *px++ * *py++;

      /* Decrement loop counter */
      k--;
    }

    /* Store the result in the accumulator in the destination buffer. */
    *pOut = sum;
    /* Destination pointer is updated according to the address modifier, inc */
    pOut += inc;

    /* Update the inputA and inputB pointers for next MAC calculation */
    px = ++pSrc1;
    py = pIn2;

    /* Decrement MAC count */
    count--;

    /* Decrement the loop counter */
    blockSize3--;
  }

#else
/* alternate version for CM0_FAMILY */

  const float32_t *pIn1 = pSrcA;                       /* inputA pointer */
  const float32_t *pIn2 = pSrcB + (srcBLen - 1U);      /* inputB pointer */
        float32_t sum;                                 /* Accumulator */
        uint32_t i = 0U, j;                            /* Loop counters */
        uint32_t inv = 0U;                             /* Reverse order flag */
        uint32_t tot = 0U;                             /* Length */

  /* The algorithm implementation is based on the lengths of the inputs. */
  /* srcB is always made to slide across srcA. */
  /* So srcBLen is always considered as shorter or equal to srcALen */
  /* But CORR(x, y) is reverse of CORR(y, x) */
  /* So, when srcBLen > srcALen, output pointer is made to point to the end of the output buffer */
  /* and a varaible, inv is set to 1 */
  /* If lengths are not equal then zero pad has to be done to  make the two
   * inputs of same length. But to improve the performance, we assume zeroes
   * in the output instead of zero padding either of the the inputs*/
  /* If srcALen > srcBLen, (srcALen - srcBLen) zeroes has to included in the
   * starting of the output buffer */
  /* If srcALen < srcBLen, (srcALen - srcBLen) zeroes has to included in the
   * ending of the output buffer */
  /* Once the zero padding is done the remaining of the output is calcualted
   * using convolution but with the shorter signal time shifted. */

  /* Calculate the length of the remaining sequence */
  tot = ((srcALen + srcBLen) - 2U);

  if (srcALen > srcBLen)
  {
    /* Calculating the number of zeros to be padded to the output */
    j = srcALen - srcBLen;

    /* Initialise the pointer after zero padding */
    pDst += j;
  }

  else if (srcALen < srcBLen)
  {
    /* Initialization to inputB pointer */
    pIn1 = pSrcB;

    /* Initialization to the end of inputA pointer */
    pIn2 = pSrcA + (srcALen - 1U);

    /* Initialisation of the pointer after zero padding */
    pDst = pDst + tot;

    /* Swapping the lengths */
    j = srcALen;
    srcALen = srcBLen;
    srcBLen = j;

    /* Setting the reverse flag */
    inv = 1;

  }

  /* Loop to calculate convolution for output length number of times */
  for (i = 0U; i <= tot; i++)
  {
    /* Initialize sum with zero to carry out MAC operations */
    sum = 0.0f;

    /* Loop to perform MAC operations according to convolution equation */
    for (j = 0U; j <= i; j++)
    {
      /* Check the array limitations */
      if ((((i - j) < srcBLen) && (j < srcALen)))
      {
        /* z[i] += x[i-j] * y[j] */
        sum += pIn1[j] * pIn2[-((int32_t) i - j)];
      }
    }

    /* Store the output in the destination buffer */
    if (inv == 1)
      *pDst-- = sum;
    else
      *pDst++ = sum;
  }

#endif /* #if !defined(ARM_MATH_CM0_FAMILY) */

}

/**
  @} end of Corr group
 */