Welcome to mirror list, hosted at ThFree Co, Russian Federation.

arm_fir_f32.c « FilteringFunctions « Source « DSP « CMSIS « Drivers - github.com/Flipper-Zero/STM32CubeWB.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 0531cfeb113fbacb8739815114f874bc111f63ff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
/* ----------------------------------------------------------------------
 * Project:      CMSIS DSP Library
 * Title:        arm_fir_f32.c
 * Description:  Floating-point FIR filter processing function
 *
 * $Date:        18. March 2019
 * $Revision:    V1.6.0
 *
 * Target Processor: Cortex-M cores
 * -------------------------------------------------------------------- */
/*
 * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Licensed under the Apache License, Version 2.0 (the License); you may
 * not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "arm_math.h"

/**
  @ingroup groupFilters
 */

/**
  @defgroup FIR Finite Impulse Response (FIR) Filters

  This set of functions implements Finite Impulse Response (FIR) filters
  for Q7, Q15, Q31, and floating-point data types.  Fast versions of Q15 and Q31 are also provided.
  The functions operate on blocks of input and output data and each call to the function processes
  <code>blockSize</code> samples through the filter.  <code>pSrc</code> and
  <code>pDst</code> points to input and output arrays containing <code>blockSize</code> values.

  @par           Algorithm
                   The FIR filter algorithm is based upon a sequence of multiply-accumulate (MAC) operations.
                   Each filter coefficient <code>b[n]</code> is multiplied by a state variable which equals a previous input sample <code>x[n]</code>.
  <pre>
      y[n] = b[0] * x[n] + b[1] * x[n-1] + b[2] * x[n-2] + ...+ b[numTaps-1] * x[n-numTaps+1]
  </pre>
  @par
                   \image html FIR.GIF "Finite Impulse Response filter"
  @par
                   <code>pCoeffs</code> points to a coefficient array of size <code>numTaps</code>.
                   Coefficients are stored in time reversed order.
  @par
  <pre>
      {b[numTaps-1], b[numTaps-2], b[N-2], ..., b[1], b[0]}
  </pre>
  @par
                   <code>pState</code> points to a state array of size <code>numTaps + blockSize - 1</code>.
                   Samples in the state buffer are stored in the following order.
  @par
  <pre>
      {x[n-numTaps+1], x[n-numTaps], x[n-numTaps-1], x[n-numTaps-2]....x[0], x[1], ..., x[blockSize-1]}
  </pre>
  @par
                   Note that the length of the state buffer exceeds the length of the coefficient array by <code>blockSize-1</code>.
                   The increased state buffer length allows circular addressing, which is traditionally used in the FIR filters,
                   to be avoided and yields a significant speed improvement.
                   The state variables are updated after each block of data is processed; the coefficients are untouched.

  @par           Instance Structure
                   The coefficients and state variables for a filter are stored together in an instance data structure.
                   A separate instance structure must be defined for each filter.
                   Coefficient arrays may be shared among several instances while state variable arrays cannot be shared.
                   There are separate instance structure declarations for each of the 4 supported data types.

  @par           Initialization Functions
                   There is also an associated initialization function for each data type.
                   The initialization function performs the following operations:
                   - Sets the values of the internal structure fields.
                   - Zeros out the values in the state buffer.
                   To do this manually without calling the init function, assign the follow subfields of the instance structure:
                   numTaps, pCoeffs, pState. Also set all of the values in pState to zero.
  @par
                   Use of the initialization function is optional.
                   However, if the initialization function is used, then the instance structure cannot be placed into a const data section.
                   To place an instance structure into a const data section, the instance structure must be manually initialized.
                   Set the values in the state buffer to zeros before static initialization.
                   The code below statically initializes each of the 4 different data type filter instance structures
  <pre>
      arm_fir_instance_f32 S = {numTaps, pState, pCoeffs};
      arm_fir_instance_q31 S = {numTaps, pState, pCoeffs};
      arm_fir_instance_q15 S = {numTaps, pState, pCoeffs};
      arm_fir_instance_q7 S =  {numTaps, pState, pCoeffs};
  </pre>
                   where <code>numTaps</code> is the number of filter coefficients in the filter; <code>pState</code> is the address of the state buffer;
                   <code>pCoeffs</code> is the address of the coefficient buffer.

  @par           Fixed-Point Behavior
                   Care must be taken when using the fixed-point versions of the FIR filter functions.
                   In particular, the overflow and saturation behavior of the accumulator used in each function must be considered.
                   Refer to the function specific documentation below for usage guidelines.
 */

/**
  @addtogroup FIR
  @{
 */

/**
  @brief         Processing function for floating-point FIR filter.
  @param[in]     S          points to an instance of the floating-point FIR filter structure
  @param[in]     pSrc       points to the block of input data
  @param[out]    pDst       points to the block of output data
  @param[in]     blockSize  number of samples to process
  @return        none
 */
#if defined(ARM_MATH_NEON)

void arm_fir_f32(
const arm_fir_instance_f32 * S,
const float32_t * pSrc,
float32_t * pDst,
uint32_t blockSize)
{
   float32_t *pState = S->pState;                 /* State pointer */
   const float32_t *pCoeffs = S->pCoeffs;         /* Coefficient pointer */
   float32_t *pStateCurnt;                        /* Points to the current sample of the state */
   float32_t *px;                                 /* Temporary pointers for state buffer */
   const float32_t *pb;                           /* Temporary pointers for coefficient buffer */
   uint32_t numTaps = S->numTaps;                 /* Number of filter coefficients in the filter */
   uint32_t i, tapCnt, blkCnt;                    /* Loop counters */

   float32x4_t accv0,accv1,samples0,samples1,x0,x1,x2,xa,xb,x,b,accv;
   uint32x4_t x0_u,x1_u,x2_u,xa_u,xb_u;
   float32_t acc;

   /* S->pState points to state array which contains previous frame (numTaps - 1) samples */
   /* pStateCurnt points to the location where the new input data should be written */
   pStateCurnt = &(S->pState[(numTaps - 1U)]);

   /* Loop unrolling */
   blkCnt = blockSize >> 3;

   while (blkCnt > 0U)
   {
      /* Copy 8 samples at a time into state buffers */
      samples0 = vld1q_f32(pSrc);
      vst1q_f32(pStateCurnt,samples0);

      pStateCurnt += 4;
      pSrc += 4 ;

      samples1 = vld1q_f32(pSrc);
      vst1q_f32(pStateCurnt,samples1);

      pStateCurnt += 4;
      pSrc += 4 ;

      /* Set the accumulators to zero */
      accv0 = vdupq_n_f32(0);
      accv1 = vdupq_n_f32(0);

      /* Initialize state pointer */
      px = pState;

      /* Initialize coefficient pointer */
      pb = pCoeffs;

      /* Loop unroling */
      i = numTaps >> 2;

      /* Perform the multiply-accumulates */
      x0 = vld1q_f32(px);
      x1 = vld1q_f32(px + 4);

      while(i > 0)
      {
         /* acc =  b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0] */
         x2 = vld1q_f32(px + 8);
         b = vld1q_f32(pb);
         xa = x0;
         xb = x1;
         accv0 = vmlaq_n_f32(accv0,xa,b[0]);
         accv1 = vmlaq_n_f32(accv1,xb,b[0]);

         xa = vextq_f32(x0,x1,1);
         xb = vextq_f32(x1,x2,1);
         
	 accv0 = vmlaq_n_f32(accv0,xa,b[1]);
         accv1 = vmlaq_n_f32(accv1,xb,b[1]);

	 xa = vextq_f32(x0,x1,2);
         xb = vextq_f32(x1,x2,2);

         accv0 = vmlaq_n_f32(accv0,xa,b[2]);
         accv1 = vmlaq_n_f32(accv1,xb,b[2]);

	 xa = vextq_f32(x0,x1,3);
	 xb = vextq_f32(x1,x2,3);
         
 	 accv0 = vmlaq_n_f32(accv0,xa,b[3]);
         accv1 = vmlaq_n_f32(accv1,xb,b[3]);

         pb += 4;
         x0 = x1;
         x1 = x2;
         px += 4;
         i--;

      }

      /* Tail */
      i = numTaps & 3;
      x2 = vld1q_f32(px + 8);

      /* Perform the multiply-accumulates */
      switch(i)
      {
         case 3:
         {
           accv0 = vmlaq_n_f32(accv0,x0,*pb);
           accv1 = vmlaq_n_f32(accv1,x1,*pb);

           pb++;

	   xa = vextq_f32(x0,x1,1);
	   xb = vextq_f32(x1,x2,1);

           accv0 = vmlaq_n_f32(accv0,xa,*pb);
           accv1 = vmlaq_n_f32(accv1,xb,*pb);

           pb++;

           xa = vextq_f32(x0,x1,2);
           xb = vextq_f32(x1,x2,2);
           
	   accv0 = vmlaq_n_f32(accv0,xa,*pb);
           accv1 = vmlaq_n_f32(accv1,xb,*pb);

         }
         break;
         case 2:
         {
           accv0 = vmlaq_n_f32(accv0,x0,*pb);
           accv1 = vmlaq_n_f32(accv1,x1,*pb);

           pb++;

           xa = vextq_f32(x0,x1,1);
           xb = vextq_f32(x1,x2,1);
           
	   accv0 = vmlaq_n_f32(accv0,xa,*pb);
           accv1 = vmlaq_n_f32(accv1,xb,*pb);

         }
         break;
         case 1:
         {
           
           accv0 = vmlaq_n_f32(accv0,x0,*pb);
           accv1 = vmlaq_n_f32(accv1,x1,*pb);

         }
         break;
         default:
         break;
      }

      /* The result is stored in the destination buffer. */
      vst1q_f32(pDst,accv0);
      pDst += 4;
      vst1q_f32(pDst,accv1);
      pDst += 4;

      /* Advance state pointer by 8 for the next 8 samples */
      pState = pState + 8;

      blkCnt--;
   }

   /* Tail */
   blkCnt = blockSize & 0x7;

   while (blkCnt > 0U)
   {
      /* Copy one sample at a time into state buffer */
      *pStateCurnt++ = *pSrc++;

      /* Set the accumulator to zero */
      acc = 0.0f;

      /* Initialize state pointer */
      px = pState;

      /* Initialize Coefficient pointer */
      pb = pCoeffs;

      i = numTaps;

      /* Perform the multiply-accumulates */
      do
      {
         /* acc =  b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0] */
         acc += *px++ * *pb++;
         i--;

      } while (i > 0U);

      /* The result is stored in the destination buffer. */
      *pDst++ = acc;

      /* Advance state pointer by 1 for the next sample */
      pState = pState + 1;

      blkCnt--;
   }

   /* Processing is complete.
   ** Now copy the last numTaps - 1 samples to the starting of the state buffer.
   ** This prepares the state buffer for the next function call. */

   /* Points to the start of the state buffer */
   pStateCurnt = S->pState;

   /* Copy numTaps number of values */
   tapCnt = numTaps - 1U;

   /* Copy data */
   while (tapCnt > 0U)
   {
      *pStateCurnt++ = *pState++;

      /* Decrement the loop counter */
      tapCnt--;
   }

}
#else
void arm_fir_f32(
  const arm_fir_instance_f32 * S,
  const float32_t * pSrc,
        float32_t * pDst,
        uint32_t blockSize)
{
        float32_t *pState = S->pState;                 /* State pointer */
  const float32_t *pCoeffs = S->pCoeffs;               /* Coefficient pointer */
        float32_t *pStateCurnt;                        /* Points to the current sample of the state */
        float32_t *px;                                 /* Temporary pointer for state buffer */
  const float32_t *pb;                                 /* Temporary pointer for coefficient buffer */
        float32_t acc0;                                /* Accumulator */
        uint32_t numTaps = S->numTaps;                 /* Number of filter coefficients in the filter */
        uint32_t i, tapCnt, blkCnt;                    /* Loop counters */

#if defined (ARM_MATH_LOOPUNROLL)
        float32_t acc1, acc2, acc3, acc4, acc5, acc6, acc7;     /* Accumulators */
        float32_t x0, x1, x2, x3, x4, x5, x6, x7;               /* Temporary variables to hold state values */
        float32_t c0;                                           /* Temporary variable to hold coefficient value */
#endif

  /* S->pState points to state array which contains previous frame (numTaps - 1) samples */
  /* pStateCurnt points to the location where the new input data should be written */
  pStateCurnt = &(S->pState[(numTaps - 1U)]);

#if defined (ARM_MATH_LOOPUNROLL)

  /* Loop unrolling: Compute 8 output values simultaneously.
   * The variables acc0 ... acc7 hold output values that are being computed:
   *
   *    acc0 =  b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0]
   *    acc1 =  b[numTaps-1] * x[n-numTaps]   + b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1]
   *    acc2 =  b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps]   + b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2]
   *    acc3 =  b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps]   +...+ b[0] * x[3]
   */

  blkCnt = blockSize >> 3U;

  while (blkCnt > 0U)
  {
    /* Copy 4 new input samples into the state buffer. */
    *pStateCurnt++ = *pSrc++;
    *pStateCurnt++ = *pSrc++;
    *pStateCurnt++ = *pSrc++;
    *pStateCurnt++ = *pSrc++;

    /* Set all accumulators to zero */
    acc0 = 0.0f;
    acc1 = 0.0f;
    acc2 = 0.0f;
    acc3 = 0.0f;
    acc4 = 0.0f;
    acc5 = 0.0f;
    acc6 = 0.0f;
    acc7 = 0.0f;

    /* Initialize state pointer */
    px = pState;

    /* Initialize coefficient pointer */
    pb = pCoeffs;

    /* This is separated from the others to avoid
     * a call to __aeabi_memmove which would be slower
     */
    *pStateCurnt++ = *pSrc++;
    *pStateCurnt++ = *pSrc++;
    *pStateCurnt++ = *pSrc++;
    *pStateCurnt++ = *pSrc++;

    /* Read the first 7 samples from the state buffer:  x[n-numTaps], x[n-numTaps-1], x[n-numTaps-2] */
    x0 = *px++;
    x1 = *px++;
    x2 = *px++;
    x3 = *px++;
    x4 = *px++;
    x5 = *px++;
    x6 = *px++;

    /* Loop unrolling: process 8 taps at a time. */
    tapCnt = numTaps >> 3U;

    while (tapCnt > 0U)
    {
      /* Read the b[numTaps-1] coefficient */
      c0 = *(pb++);

      /* Read x[n-numTaps-3] sample */
      x7 = *(px++);

      /* acc0 +=  b[numTaps-1] * x[n-numTaps] */
      acc0 += x0 * c0;

      /* acc1 +=  b[numTaps-1] * x[n-numTaps-1] */
      acc1 += x1 * c0;

      /* acc2 +=  b[numTaps-1] * x[n-numTaps-2] */
      acc2 += x2 * c0;

      /* acc3 +=  b[numTaps-1] * x[n-numTaps-3] */
      acc3 += x3 * c0;

      /* acc4 +=  b[numTaps-1] * x[n-numTaps-4] */
      acc4 += x4 * c0;

      /* acc1 +=  b[numTaps-1] * x[n-numTaps-5] */
      acc5 += x5 * c0;

      /* acc2 +=  b[numTaps-1] * x[n-numTaps-6] */
      acc6 += x6 * c0;

      /* acc3 +=  b[numTaps-1] * x[n-numTaps-7] */
      acc7 += x7 * c0;

      /* Read the b[numTaps-2] coefficient */
      c0 = *(pb++);

      /* Read x[n-numTaps-4] sample */
      x0 = *(px++);

      /* Perform the multiply-accumulate */
      acc0 += x1 * c0;
      acc1 += x2 * c0;
      acc2 += x3 * c0;
      acc3 += x4 * c0;
      acc4 += x5 * c0;
      acc5 += x6 * c0;
      acc6 += x7 * c0;
      acc7 += x0 * c0;

      /* Read the b[numTaps-3] coefficient */
      c0 = *(pb++);

      /* Read x[n-numTaps-5] sample */
      x1 = *(px++);

      /* Perform the multiply-accumulates */
      acc0 += x2 * c0;
      acc1 += x3 * c0;
      acc2 += x4 * c0;
      acc3 += x5 * c0;
      acc4 += x6 * c0;
      acc5 += x7 * c0;
      acc6 += x0 * c0;
      acc7 += x1 * c0;

      /* Read the b[numTaps-4] coefficient */
      c0 = *(pb++);

      /* Read x[n-numTaps-6] sample */
      x2 = *(px++);

      /* Perform the multiply-accumulates */
      acc0 += x3 * c0;
      acc1 += x4 * c0;
      acc2 += x5 * c0;
      acc3 += x6 * c0;
      acc4 += x7 * c0;
      acc5 += x0 * c0;
      acc6 += x1 * c0;
      acc7 += x2 * c0;

      /* Read the b[numTaps-4] coefficient */
      c0 = *(pb++);

      /* Read x[n-numTaps-6] sample */
      x3 = *(px++);
      /* Perform the multiply-accumulates */
      acc0 += x4 * c0;
      acc1 += x5 * c0;
      acc2 += x6 * c0;
      acc3 += x7 * c0;
      acc4 += x0 * c0;
      acc5 += x1 * c0;
      acc6 += x2 * c0;
      acc7 += x3 * c0;

      /* Read the b[numTaps-4] coefficient */
      c0 = *(pb++);

      /* Read x[n-numTaps-6] sample */
      x4 = *(px++);

      /* Perform the multiply-accumulates */
      acc0 += x5 * c0;
      acc1 += x6 * c0;
      acc2 += x7 * c0;
      acc3 += x0 * c0;
      acc4 += x1 * c0;
      acc5 += x2 * c0;
      acc6 += x3 * c0;
      acc7 += x4 * c0;

      /* Read the b[numTaps-4] coefficient */
      c0 = *(pb++);

      /* Read x[n-numTaps-6] sample */
      x5 = *(px++);

      /* Perform the multiply-accumulates */
      acc0 += x6 * c0;
      acc1 += x7 * c0;
      acc2 += x0 * c0;
      acc3 += x1 * c0;
      acc4 += x2 * c0;
      acc5 += x3 * c0;
      acc6 += x4 * c0;
      acc7 += x5 * c0;

      /* Read the b[numTaps-4] coefficient */
      c0 = *(pb++);

      /* Read x[n-numTaps-6] sample */
      x6 = *(px++);

      /* Perform the multiply-accumulates */
      acc0 += x7 * c0;
      acc1 += x0 * c0;
      acc2 += x1 * c0;
      acc3 += x2 * c0;
      acc4 += x3 * c0;
      acc5 += x4 * c0;
      acc6 += x5 * c0;
      acc7 += x6 * c0;

      /* Decrement loop counter */
      tapCnt--;
    }

    /* Loop unrolling: Compute remaining outputs */
    tapCnt = numTaps % 0x8U;

    while (tapCnt > 0U)
    {
      /* Read coefficients */
      c0 = *(pb++);

      /* Fetch 1 state variable */
      x7 = *(px++);

      /* Perform the multiply-accumulates */
      acc0 += x0 * c0;
      acc1 += x1 * c0;
      acc2 += x2 * c0;
      acc3 += x3 * c0;
      acc4 += x4 * c0;
      acc5 += x5 * c0;
      acc6 += x6 * c0;
      acc7 += x7 * c0;

      /* Reuse the present sample states for next sample */
      x0 = x1;
      x1 = x2;
      x2 = x3;
      x3 = x4;
      x4 = x5;
      x5 = x6;
      x6 = x7;

      /* Decrement loop counter */
      tapCnt--;
    }

    /* Advance the state pointer by 8 to process the next group of 8 samples */
    pState = pState + 8;

    /* The results in the 8 accumulators, store in the destination buffer. */
    *pDst++ = acc0;
    *pDst++ = acc1;
    *pDst++ = acc2;
    *pDst++ = acc3;
    *pDst++ = acc4;
    *pDst++ = acc5;
    *pDst++ = acc6;
    *pDst++ = acc7;


    /* Decrement loop counter */
    blkCnt--;
  }

  /* Loop unrolling: Compute remaining output samples */
  blkCnt = blockSize % 0x8U;

#else

  /* Initialize blkCnt with number of taps */
  blkCnt = blockSize;

#endif /* #if defined (ARM_MATH_LOOPUNROLL) */

  while (blkCnt > 0U)
  {
    /* Copy one sample at a time into state buffer */
    *pStateCurnt++ = *pSrc++;

    /* Set the accumulator to zero */
    acc0 = 0.0f;

    /* Initialize state pointer */
    px = pState;

    /* Initialize Coefficient pointer */
    pb = pCoeffs;

    i = numTaps;

    /* Perform the multiply-accumulates */
    do
    {
      /* acc =  b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0] */
      acc0 += *px++ * *pb++;

      i--;
    } while (i > 0U);

    /* Store result in destination buffer. */
    *pDst++ = acc0;

    /* Advance state pointer by 1 for the next sample */
    pState = pState + 1U;

    /* Decrement loop counter */
    blkCnt--;
  }

  /* Processing is complete.
     Now copy the last numTaps - 1 samples to the start of the state buffer.
     This prepares the state buffer for the next function call. */

  /* Points to the start of the state buffer */
  pStateCurnt = S->pState;

#if defined (ARM_MATH_LOOPUNROLL)

  /* Loop unrolling: Compute 4 taps at a time */
  tapCnt = (numTaps - 1U) >> 2U;

  /* Copy data */
  while (tapCnt > 0U)
  {
    *pStateCurnt++ = *pState++;
    *pStateCurnt++ = *pState++;
    *pStateCurnt++ = *pState++;
    *pStateCurnt++ = *pState++;

    /* Decrement loop counter */
    tapCnt--;
  }

  /* Calculate remaining number of copies */
  tapCnt = (numTaps - 1U) % 0x4U;

#else

  /* Initialize tapCnt with number of taps */
  tapCnt = (numTaps - 1U);

#endif /* #if defined (ARM_MATH_LOOPUNROLL) */

  /* Copy remaining data */
  while (tapCnt > 0U)
  {
    *pStateCurnt++ = *pState++;

    /* Decrement loop counter */
    tapCnt--;
  }

}

#endif /* #if defined(ARM_MATH_NEON) */
/**
* @} end of FIR group
*/