Welcome to mirror list, hosted at ThFree Co, Russian Federation.

arm_mat_scale_f32.c « MatrixFunctions « Source « DSP « CMSIS « Drivers - github.com/Flipper-Zero/STM32CubeWB.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: a0097b1a5e87eadc498b204aef301af39a0745bb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
/* ----------------------------------------------------------------------
 * Project:      CMSIS DSP Library
 * Title:        arm_mat_scale_f32.c
 * Description:  Multiplies a floating-point matrix by a scalar
 *
 * $Date:        18. March 2019
 * $Revision:    V1.6.0
 *
 * Target Processor: Cortex-M cores
 * -------------------------------------------------------------------- */
/*
 * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Licensed under the Apache License, Version 2.0 (the License); you may
 * not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "arm_math.h"

/**
  @ingroup groupMatrix
 */

/**
  @defgroup MatrixScale Matrix Scale

  Multiplies a matrix by a scalar.  This is accomplished by multiplying each element in the
  matrix by the scalar.  For example:
  \image html MatrixScale.gif "Matrix Scaling of a 3 x 3 matrix"

  The function checks to make sure that the input and output matrices are of the same size.

  In the fixed-point Q15 and Q31 functions, <code>scale</code> is represented by
  a fractional multiplication <code>scaleFract</code> and an arithmetic shift <code>shift</code>.
  The shift allows the gain of the scaling operation to exceed 1.0.
  The overall scale factor applied to the fixed-point data is
  <pre>
      scale = scaleFract * 2^shift.
  </pre>
 */

/**
  @addtogroup MatrixScale
  @{
 */

/**
  @brief         Floating-point matrix scaling.
  @param[in]     pSrc       points to input matrix
  @param[in]     scale      scale factor to be applied
  @param[out]    pDst       points to output matrix structure
  @return        execution status
                   - \ref ARM_MATH_SUCCESS       : Operation successful
                   - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
 */
#if defined(ARM_MATH_NEON_EXPERIMENTAL)
arm_status arm_mat_scale_f32(
  const arm_matrix_instance_f32 * pSrc,
  float32_t scale,
  arm_matrix_instance_f32 * pDst)
{
  float32_t *pIn = pSrc->pData;                  /* input data matrix pointer */
  float32_t *pOut = pDst->pData;                 /* output data matrix pointer */
  uint32_t numSamples;                           /* total number of elements in the matrix */
  uint32_t blkCnt;                               /* loop counters */
  arm_status status;                             /* status of matrix scaling     */


  float32_t in1, in2, in3, in4;                  /* temporary variables */
  float32_t out1, out2, out3, out4;              /* temporary variables */


#ifdef ARM_MATH_MATRIX_CHECK
  /* Check for matrix mismatch condition */
  if ((pSrc->numRows != pDst->numRows) || (pSrc->numCols != pDst->numCols))
  {
    /* Set status as ARM_MATH_SIZE_MISMATCH */
    status = ARM_MATH_SIZE_MISMATCH;
  }
  else
#endif /*    #ifdef ARM_MATH_MATRIX_CHECK    */
  {
    float32x4_t vec1;
    float32x4_t res;

    /* Total number of samples in the input matrix */
    numSamples = (uint32_t) pSrc->numRows * pSrc->numCols;

    blkCnt = numSamples >> 2;

    /* Compute 4 outputs at a time.
     ** a second loop below computes the remaining 1 to 3 samples. */
    while (blkCnt > 0U)
    {
      /* C(m,n) = A(m,n) * scale */
      /* Scaling and results are stored in the destination buffer. */
      vec1 = vld1q_f32(pIn);
      res = vmulq_f32(vec1, vdupq_n_f32(scale));
      vst1q_f32(pOut, res);

      /* update pointers to process next sampels */
      pIn += 4U;
      pOut += 4U;

      /* Decrement the numSamples loop counter */
      blkCnt--;
    }

    /* If the numSamples is not a multiple of 4, compute any remaining output samples here.
     ** No loop unrolling is used. */
    blkCnt = numSamples % 0x4U;

    while (blkCnt > 0U)
    {
      /* C(m,n) = A(m,n) * scale */
      /* The results are stored in the destination buffer. */
      *pOut++ = (*pIn++) * scale;

      /* Decrement the loop counter */
      blkCnt--;
    }

    /* Set status as ARM_MATH_SUCCESS */
    status = ARM_MATH_SUCCESS;
  }

  /* Return to application */
  return (status);
}
#else
arm_status arm_mat_scale_f32(
  const arm_matrix_instance_f32 * pSrc,
        float32_t                 scale,
        arm_matrix_instance_f32 * pDst)
{
  float32_t *pIn = pSrc->pData;                  /* Input data matrix pointer */
  float32_t *pOut = pDst->pData;                 /* Output data matrix pointer */
  uint32_t numSamples;                           /* Total number of elements in the matrix */
  uint32_t blkCnt;                               /* Loop counters */
  arm_status status;                             /* Status of matrix scaling */

#ifdef ARM_MATH_MATRIX_CHECK

  /* Check for matrix mismatch condition */
  if ((pSrc->numRows != pDst->numRows) ||
      (pSrc->numCols != pDst->numCols)   )
  {
    /* Set status as ARM_MATH_SIZE_MISMATCH */
    status = ARM_MATH_SIZE_MISMATCH;
  }
  else

#endif /* #ifdef ARM_MATH_MATRIX_CHECK */

  {
    /* Total number of samples in input matrix */
    numSamples = (uint32_t) pSrc->numRows * pSrc->numCols;

#if defined (ARM_MATH_LOOPUNROLL)

    /* Loop unrolling: Compute 4 outputs at a time */
    blkCnt = numSamples >> 2U;

    while (blkCnt > 0U)
    {
      /* C(m,n) = A(m,n) * scale */

      /* Scale and store result in destination buffer. */
      *pOut++ = (*pIn++) * scale;
      *pOut++ = (*pIn++) * scale;
      *pOut++ = (*pIn++) * scale;
      *pOut++ = (*pIn++) * scale;

      /* Decrement loop counter */
      blkCnt--;
    }

    /* Loop unrolling: Compute remaining outputs */
    blkCnt = numSamples % 0x4U;

#else

    /* Initialize blkCnt with number of samples */
    blkCnt = numSamples;

#endif /* #if defined (ARM_MATH_LOOPUNROLL) */

    while (blkCnt > 0U)
    {
      /* C(m,n) = A(m,n) * scale */

      /* Scale and store result in destination buffer. */
      *pOut++ = (*pIn++) * scale;

      /* Decrement loop counter */
      blkCnt--;
    }

    /* Set status as ARM_MATH_SUCCESS */
    status = ARM_MATH_SUCCESS;
  }

  /* Return to application */
  return (status);
}
#endif /* #if defined(ARM_MATH_NEON) */

/**
  @} end of MatrixScale group
 */