Welcome to mirror list, hosted at ThFree Co, Russian Federation.

tsl_acq_stm32l1xx_hw.c « src « STM32_TouchSensing_Library « ST « Middlewares - github.com/Flipper-Zero/STM32CubeWB.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: e16f5c3749eee60fcc947193bffecdb890d8886a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
/**
  ******************************************************************************
  * @file    tsl_acq_stm32l1xx_hw.c
  * @author  MCD Application Team
  * @brief   This file contains all functions to manage the acquisition
  *          on STM32l1xx products using the Hardware mode (with Timers).
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; COPYRIGHT 2014 STMicroelectronics</center></h2>
  *
  * Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
  * You may not use this file except in compliance with the License.
  * You may obtain a copy of the License at:
  *
  *        http://www.st.com/software_license_agreement_liberty_v2
  *
  * Unless required by applicable law or agreed to in writing, software
  * distributed under the License is distributed on an "AS IS" BASIS,
  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  * See the License for the specific language governing permissions and
  * limitations under the License.
  *
  ******************************************************************************
  */

/* Includes ------------------------------------------------------------------*/
#include "tsl_acq_stm32l1xx_hw.h"
#include "tsl_globals.h"

/* Private typedefs ----------------------------------------------------------*/

// Register configuration
typedef struct
{
  unsigned int RI_ASCR     : 3;
  unsigned int RI_ASCR_bit : 5;
} TSL_RIConf_t;

/* Private defines -----------------------------------------------------------*/

/* Private macros ------------------------------------------------------------*/

#define IS_BANK_INDEX_OK(INDEX)   (((INDEX) == 0) || (((INDEX) > 0) && ((INDEX) < TSLPRM_TOTAL_BANKS)))

// Acquisition pulses period
/** Master timer reload value for HW acquisition only (range=4..65534, even number)
    --> Period for Charge/Transfer cycle = ((TSLPRM_TIM_RELOAD*2)/FTimer)
*/
#define TIM_RELOAD          ((TSLPRM_CT_PERIOD * TSLPRM_TIMER_FREQ) / 2)
#define TIM9_PWM_CH1_WIDTH  ((TIM_RELOAD >> 1) + 1) // Configure channel 1 Pulse Width
#define TIM9_PWM_CH2_WIDTH  ((TIM_RELOAD >> 1) - 1) // Configure channel 2 Pulse Width

#define TSL_CHANNEL_PORT(channel)  (channel >> 4)
#define TSL_CHANNEL_IO(channel)    (channel & 0x0F)

#define TSL_GPIO_AFR(channel)        ((TSL_CHANNEL_IO(channel) < 8) ? 0 : 1)
#define TSL_GPIO_AFR_Shift(channel)  ((TSL_CHANNEL_IO(channel) < 8) ? (4 * TSL_CHANNEL_IO(channel)) : (4 * (TSL_CHANNEL_IO(channel) - 8)))

#define TSL_RI_HYSCR_MASK(channel) (1 << TSL_CHANNEL_IO(channel))
#define TSL_RI_ASMR_MASK(channel)  (1 << TSL_CHANNEL_IO(channel))
#define TSL_RI_CMR_MASK(channel)   (1 << TSL_CHANNEL_IO(channel))
#define TSL_RI_CICR_MASK(channel)  (1 << TSL_CHANNEL_IO(channel))

#define TSL_RCC_AHBENR_Config(channel) (RCC->AHBENR |= TSL_GPIO_Clock_LookUpTable[TSL_CHANNEL_PORT(channel)])

#define TSL_RI_ASCR_Config(channel)        (*TSL_RI_ASCR_LookUpTable[TSL_RI_Conf_LookUpTable[channel].RI_ASCR] |= (1 << (TSL_RI_Conf_LookUpTable[channel].RI_ASCR_bit)))
#define TSL_RI_HYSCR_Config(channel)       (*TSL_RI_HYSCR_LookUpTable[TSL_CHANNEL_PORT(channel)] |= TSL_RI_HYSCR_MASK(channel))
#define TSL_RI_ASMR_Config(channel)        (*TSL_RI_ASMR_LookUpTable[TSL_CHANNEL_PORT(channel)] |= TSL_RI_ASMR_MASK(channel))
#define TSL_RI_ASMR_Config_Clear(channel)  (*TSL_RI_ASMR_LookUpTable[TSL_CHANNEL_PORT(channel)] &= (uint32_t)(~TSL_RI_ASMR_MASK(channel)))
#define TSL_RI_CMR_Config(channel)         (*TSL_RI_CMR_LookUpTable[TSL_CHANNEL_PORT(channel)] |= TSL_RI_CMR_MASK(channel))
#define TSL_RI_CMR_Config_Clear(channel)   (*TSL_RI_CMR_LookUpTable[TSL_CHANNEL_PORT(channel)] &= (uint32_t)(~TSL_RI_CMR_MASK(channel)))
#define TSL_RI_CICR_Config(channel)        (*TSL_RI_CICR_LookUpTable[TSL_CHANNEL_PORT(channel)] |= TSL_RI_CICR_MASK(channel))
#define TSL_RI_CICR_Config_Clear(channel)  (*TSL_RI_CICR_LookUpTable[TSL_CHANNEL_PORT(channel)] &= (uint32_t)(~TSL_RI_CICR_MASK(channel)))

#define TSL_GPIO_MODER_IN_Config(channel)      (TSL_GPIO_LookUpTable[TSL_CHANNEL_PORT(channel)]->MODER &= (uint32_t)(~(3 << (2 * TSL_CHANNEL_IO(channel)))))
#define TSL_GPIO_MODER_AF_Config(channel)      (TSL_GPIO_LookUpTable[TSL_CHANNEL_PORT(channel)]->MODER = (TSL_GPIO_LookUpTable[TSL_CHANNEL_PORT(channel)]->MODER & (uint32_t)(~(3 << (2 * TSL_CHANNEL_IO(channel))))) | (2 << (2 * TSL_CHANNEL_IO(channel))))
#define TSL_GPIO_MODER_OUT_Config(channel)     (TSL_GPIO_LookUpTable[TSL_CHANNEL_PORT(channel)]->MODER = (TSL_GPIO_LookUpTable[TSL_CHANNEL_PORT(channel)]->MODER & (uint32_t)(~(3 << (2 * TSL_CHANNEL_IO(channel))))) | (1 << (2 * TSL_CHANNEL_IO(channel))))
#define TSL_GPIO_PUPDR_NO_PUPD_Config(channel) (TSL_GPIO_LookUpTable[TSL_CHANNEL_PORT(channel)]->PUPDR &= (uint32_t)(~(3 << (2 * TSL_CHANNEL_IO(channel)))))
#define TSL_GPIO_OTYPER_PP_Config(channel)     (TSL_GPIO_LookUpTable[TSL_CHANNEL_PORT(channel)]->OTYPER &= (uint32_t)(~(1 << TSL_CHANNEL_IO(channel))))
#define TSL_GPIO_OSPEEDR_VL_Config(channel)    (TSL_GPIO_LookUpTable[TSL_CHANNEL_PORT(channel)]->OSPEEDR &= (uint32_t)~(3 << (2 * TSL_CHANNEL_IO(channel))))
#define TSL_GPIO_AFR_Config(channel)           (TSL_GPIO_LookUpTable[TSL_CHANNEL_PORT(channel)]->AFR[TSL_GPIO_AFR(channel)] |= (0x0E << (TSL_GPIO_AFR_Shift(channel))))
#define TSL_GPIO_BS_Config(channel)            (TSL_GPIO_LookUpTable[TSL_CHANNEL_PORT(channel)]->BSRR = (uint16_t)(1 << (TSL_CHANNEL_IO(channel))))
#define TSL_GPIO_BR_Config(channel)            (TSL_GPIO_LookUpTable[TSL_CHANNEL_PORT(channel)]->BSRR = (uint32_t)(1 << (TSL_CHANNEL_IO(channel)+16)))

#define TSL_GPIO_AFR_NOAF_Config(channel)      (TSL_GPIO_LookUpTable[TSL_CHANNEL_PORT(channel)]->AFR[TSL_GPIO_AFR(channel)] &= (uint32_t)(~(0x0F << (TSL_GPIO_AFR_Shift(channel)))))

#define TSL_GPIO_IDR_XOR_RI_CMR(channel)     ((TSL_GPIO_LookUpTable[TSL_CHANNEL_PORT(channel)]->IDR)^(*TSL_RI_CMR_LookUpTable[TSL_CHANNEL_PORT(channel)]))
#define TSL_GPIO_IDR_AND_RI_CMR(channel)     ((TSL_GPIO_LookUpTable[TSL_CHANNEL_PORT(channel)]->IDR)&(*TSL_RI_CMR_LookUpTable[TSL_CHANNEL_PORT(channel)]))

/* Private variables ---------------------------------------------------------*/
CONST TSL_Bank_T *bank;
TSL_tIndex_T NumberOfChannelOn = 0;
TSL_tNb_T NumberOfChannels = 0;
uint32_t tab_MeasurementCounter[11];
TSL_Status_enum_T TSL_Acq_Status = TSL_STATUS_BUSY;
static uint16_t GroupToCheck = 0;
static TSL_tIndex_T NumberOfChannelChecked = 0;

#if defined(GPIOE_BASE)
#define TSL_GPIOE_1 RCC_AHBENR_GPIOEEN
#define TSL_GPIOE_2 GPIOE
#else
#define TSL_GPIOE_1 0
#define TSL_GPIOE_2 0
#endif

#if defined(GPIOF_BASE)
#define TSL_GPIOF_1 RCC_AHBENR_GPIOFEN
#define TSL_GPIOF_2 GPIOF
#else
#define TSL_GPIOF_1 0
#define TSL_GPIOF_2 0
#endif

#if defined(GPIOG_BASE)
#define TSL_GPIOG_1 RCC_AHBENR_GPIOGEN
#define TSL_GPIOG_2 GPIOG
#else
#define TSL_GPIOG_1 0
#define TSL_GPIOG_2 0
#endif

#if defined(GPIOH_BASE)
#define TSL_GPIOH_1 RCC_AHBENR_GPIOHEN
#define TSL_GPIOH_2 GPIOH
#else
#define TSL_GPIOH_1 0
#define TSL_GPIOH_2 0
#endif

#if defined(RI_HYSCR3_PE) || defined(RI_HYSCR3_PF)
#define TSL_HYSCR3 (uint16_t *)&RI->HYSCR3, (uint16_t *)&RI->HYSCR3 + 1
#else
#define TSL_HYSCR3 0
#endif

#if defined(RI_HYSCR4_PG) || defined(RI_HYSCR4_PH)
#define TSL_HYSCR4 (uint16_t *)&RI->HYSCR4, (uint16_t *)&RI->HYSCR4 + 1
#else
#define TSL_HYSCR4 0
#endif

uint32_t TSL_GPIO_Clock_LookUpTable[] = {RCC_AHBENR_GPIOAEN, RCC_AHBENR_GPIOBEN, RCC_AHBENR_GPIOCEN, RCC_AHBENR_GPIODEN,\
                                         TSL_GPIOE_1, TSL_GPIOF_1, TSL_GPIOG_1, TSL_GPIOH_1};

GPIO_TypeDef *TSL_GPIO_LookUpTable[] = {GPIOA, GPIOB, GPIOC, GPIOD, TSL_GPIOE_2, TSL_GPIOF_2, TSL_GPIOG_2, TSL_GPIOH_2};

uint16_t *TSL_RI_HYSCR_LookUpTable[] =
{
  (uint16_t *)&RI->HYSCR1, (uint16_t *)&RI->HYSCR1 + 1,
  (uint16_t *)&RI->HYSCR2, (uint16_t *)&RI->HYSCR2 + 1,
  TSL_HYSCR3,
  TSL_HYSCR4
};

uint32_t *TSL_RI_ASCR_LookUpTable[] = {(uint32_t *)&RI->ASCR1, (uint32_t *)&RI->ASCR2};

uint32_t *TSL_RI_ASMR_LookUpTable[] = {(uint32_t *)&RI->ASMR1, (uint32_t *)&RI->ASMR2, (uint32_t *)&RI->ASMR3, 0, 0, (uint32_t *)&RI->ASMR4, (uint32_t *)&RI->ASMR5};
uint32_t *TSL_RI_CMR_LookUpTable[] = {(uint32_t *)&RI->CMR1, (uint32_t *)&RI->CMR2, (uint32_t *)&RI->CMR3, 0, 0, (uint32_t *)&RI->CMR4, (uint32_t *)&RI->CMR5};
uint32_t *TSL_RI_CICR_LookUpTable[] = {(uint32_t *)&RI->CICR1, (uint32_t *)&RI->CICR2, (uint32_t *)&RI->CICR3, 0, 0, (uint32_t *)&RI->CICR4, (uint32_t *)&RI->CICR5};

CONST TSL_RIConf_t TSL_RI_Conf_LookUpTable[101] =
{
    {0, 0},
    {0, 1},
    {0, 2},
    {0, 3},
    {0, 0},//padding
    {0, 0},//padding
    {0, 6},
    {0, 7},
    {1, 9},
    {1, 10},
    {1, 11},
    {1, 15},
    {0, 0},//padding
    {1, 6},
    {1, 7},
    {1, 8},

    {0, 8},
    {0, 9},
    {1, 16},
    {0, 0},//padding
    {1, 4},
    {1, 5},
    {1, 27},
    {1, 28},
    {0, 0},//padding
    {0, 0},//padding
    {0, 0},//padding
    {0, 0},//padding
    {0, 18},
    {0, 19},
    {0, 20},
    {0, 21},

    {0, 10},
    {0, 11},
    {0, 12},
    {0, 13},
    {0, 14},
    {0, 15},
    {1, 0},
    {1, 1},
    {1, 2},
    {1, 3},
    {1, 29},
    {0, 0},//padding
    {0, 0},//padding
    {0, 0},//padding
    {0, 0},//padding
    {0, 0},//padding

    {0, 0},//padding
    {0, 0},//padding
    {0, 0},//padding
    {0, 0},//padding
    {0, 0},//padding
    {0, 0},//padding
    {0, 0},//padding
    {0, 0},//padding
    {0, 0},//padding
    {0, 0},//padding
    {0, 0},//padding
    {0, 0},//padding
    {0, 0},//padding
    {0, 0},//padding
    {0, 0},//padding
    {0, 0},//padding

    {0, 0},//padding
    {0, 0},//padding
    {0, 0},//padding
    {0, 0},//padding
    {0, 0},//padding
    {0, 0},//padding
    {0, 0},//padding
    {0, 0},//padding
    {0, 0},//padding
    {0, 0},//padding
    {0, 0},//padding
    {0, 0},//padding
    {0, 0},//padding
    {0, 0},//padding
    {0, 0},//padding
    {0, 0},//padding

    {0, 0},//padding
    {0, 0},//padding
    {0, 0},//padding
    {0, 0},//padding
    {0, 0},//padding
    {0, 0},//padding
    {0, 27},
    {0, 28},
    {0, 29},
    {0, 30},
    {0, 16},
    {1, 17},
    {1, 18},
    {1, 19},
    {1, 20},
    {1, 21},

    {1, 22},
    {1, 23},
    {1, 24},
    {1, 25},
    {1, 26}
};

/* Private functions prototype -----------------------------------------------*/
void TSL_Init_GPIOs(void);
void TSL_Init_TIMs(void);
void TSL_Init_RI(void);
uint8_t TSL_Check_GPIO_IDR(uint8_t sample);
void SoftDelay(uint16_t val);


/**
  * @brief  Initializes the TouchSensing GPIOs.
  * @param  None
  * @retval None
  */
void TSL_Init_GPIOs(void)
{
  CONST TSL_Bank_T *LocalBank = &(TSL_Globals.Bank_Array[0]);
  TSL_tNb_T NumberOfBanks = TSLPRM_TOTAL_BANKS;
  TSL_tNb_T LocalNumberOfChannels = 0;
  TSL_tIndex_T idx_bk;
  TSL_tIndex_T idx_ch;
  CONST TSL_ChannelSrc_T *p_chSrc = LocalBank->p_chSrc; // Pointer to the current channel

  for (idx_bk = 0; idx_bk < NumberOfBanks; idx_bk++)
  {
    LocalBank = &(TSL_Globals.Bank_Array[idx_bk]);
    p_chSrc = LocalBank->p_chSrc;

#if (TSLPRM_USE_SHIELD > 0)
    // Enables GPIOs clock
    TSL_RCC_AHBENR_Config(LocalBank->shield_sample);

    // Bank shield configuration
    TSL_GPIO_OTYPER_PP_Config(LocalBank->shield_channel);
    TSL_GPIO_OSPEEDR_VL_Config(LocalBank->shield_channel);
    TSL_GPIO_PUPDR_NO_PUPD_Config(LocalBank->shield_channel);
    TSL_GPIO_AFR_Config(LocalBank->shield_channel);

    TSL_GPIO_OSPEEDR_VL_Config(LocalBank->shield_sample);
    TSL_GPIO_BR_Config(LocalBank->shield_sample);
    TSL_GPIO_OTYPER_PP_Config(LocalBank->shield_sample);
    TSL_GPIO_PUPDR_NO_PUPD_Config(LocalBank->shield_sample);

    TSL_GPIO_MODER_OUT_Config(LocalBank->shield_sample);
    TSL_GPIO_MODER_OUT_Config(LocalBank->shield_channel);
#endif

    LocalNumberOfChannels = LocalBank->NbChannels;

    for (idx_ch = 0;
         idx_ch < LocalNumberOfChannels;
         idx_ch++)
    {
      TSL_RCC_AHBENR_Config(p_chSrc->t_sample);
      TSL_RCC_AHBENR_Config(p_chSrc->t_channel);

      TSL_GPIO_OTYPER_PP_Config(p_chSrc->t_channel);
      TSL_GPIO_OSPEEDR_VL_Config(p_chSrc->t_channel);
      TSL_GPIO_PUPDR_NO_PUPD_Config(p_chSrc->t_channel);
      TSL_GPIO_AFR_Config(p_chSrc->t_channel);

      TSL_GPIO_OSPEEDR_VL_Config(p_chSrc->t_sample);
      TSL_GPIO_BR_Config(p_chSrc->t_sample);
      TSL_GPIO_OTYPER_PP_Config(p_chSrc->t_sample);
      TSL_GPIO_PUPDR_NO_PUPD_Config(p_chSrc->t_sample);

      TSL_GPIO_MODER_OUT_Config(p_chSrc->t_sample);
      TSL_GPIO_MODER_OUT_Config(p_chSrc->t_channel);

      p_chSrc++;
    }
  }
}

/**
  * @brief  Initializes the TouchSensing timers.
  * @param  None
  * @retval None
  */
// Acquisition pulses period
/** Master timer reload value for HW acquisition only (range=4..65534, even number)
    --> Period for Charge/Transfer cycle = ((TSLPRM_TIM_RELOAD*2)/FTimer)
*/
void TSL_Init_TIMs(void)
{
  // Enable Timers clocks
  RCC->APB2ENR |= ((1 << 4) | (1 << 2)); // TIM11, TIM9

  //==============================
  // TIMER 9 configuration: Master
  //==============================
  // Set the option register to redirect RI_tim9_itr_O to TIM9_itr
  TIM9->OR |= 4;
  // Set the Autoreload value (signal frequency)
  //TIM9->ARR = 64; // freq = (64*2)*31.25ns = 1us
  TIM9->ARR = TIM_RELOAD; // freq = (64*2)*31.25ns = 1us
  // Set the Prescaler value
  //TIM9->PSC = 0; // fCK_CNT = 32MHz/(0+1) = 32MHz --> T=31.25ns
  //TIM9->PSC = TSLPRM_TIM_PRESCALER; // fCK_CNT = 32MHz/(1+1) = 32MHz --> T=31.25ns
  TIM9->PSC = 0; // fCK_CNT = 32MHz/(1+1) = 32MHz --> T=31.25ns
  // Set UP counter, Center-Aligned mode 1
  TIM9->CR1 = 0x20;
  // OC1REF used as TRGO
  TIM9->CR2 |= 0x40; // MMS=100
  // Select Master mode
  TIM9->SMCR = 0x95;
  // Set Update generation
  TIM9->EGR |= 0x01;

  // Channel 1 PWM configuration
  // Set the Output Compare Mode, PWM2
  TIM9->CCMR1 |= 0x0070;
  // Set the Pulse value
  //TIM9->CCR1 = 34; // duty cycle
  TIM9->CCR1 = TIM9_PWM_CH1_WIDTH; // duty cycle
  // Compare output enable, active high
  TIM9->CCER |= 0x01;

  // Channel 2 PWM configuration
  // Set the Output Compare Mode, PWM2
  TIM9->CCMR1 |= 0x6000;
  // Set the Pulse value
  //TIM9->CCR2 = 30;
  TIM9->CCR2 = TIM9_PWM_CH2_WIDTH;
  // Compare output enable, active high
  TIM9->CCER |= 0x10;

  //==============================
  // TIMER 11 configuration: slave
  //==============================
  // Set the option register to redirect TIM11_ic_o to TIM11_ti
  TIM11->OR |= 8;
  // Set the option register to redirect TIM9_tgo_cktim to TIM11_etri
  TIM11->OR |= 4;
  // Set the Prescaler value
  TIM11->PSC = 0;
  // Set UP counter, edge-aligned mode
  TIM11->CR1 = 0;
  // Select Slave mode, Internal Trigger 2 (ITR2 = TIM9), External clock mode 1
  TIM11->SMCR = 0x4000; // ECE bit
  // Channel 1 configured in Input capture mode
  TIM11->CCMR1 = 0x01; // No prescaler, no filter
  // Channel 1 capture enable (CCE1 = 1)
  TIM11->CCER = 0x01;
    // Set auto reload regarding the max count
#if (TSLPRM_ACQ_MAX < 16534)
  TIM11->ARR = TSLPRM_ACQ_MAX+1;
#endif  
  // Interrupt Enable, active high, Enable interrupt when counter reaches max count (ARR)
  TIM11->DIER |= 0x03;
  // Start slave timer
  TIM11->CR1 |= 0x01;
	
	// Init NVIC
  HAL_NVIC_SetPriority(TIM11_IRQn, 1, 1);
  HAL_NVIC_EnableIRQ(TIM11_IRQn);	
}


/**
  * @brief  Init TS routing interface.
  * @param  None
  * @retval None
  */
void TSL_Init_RI(void)
{
  CONST TSL_Bank_T *LocalBank;
  TSL_tNb_T NumberOfBanks = TSLPRM_TOTAL_BANKS;
  TSL_tNb_T LocalNumberOfChannels = 0;
  TSL_tIndex_T idx_bk;
  TSL_tIndex_T idx_ch;
  CONST TSL_ChannelSrc_T *p_chSrc; // Pointer to the current channel

  RCC->APB1ENR |= (uint32_t)((uint32_t)1 << 31); // COMP enable

  for (idx_bk = 0; idx_bk < NumberOfBanks; idx_bk++)
  {
    LocalBank = &(TSL_Globals.Bank_Array[idx_bk]);

#if (TSLPRM_USE_SHIELD > 0)
    TSL_RI_HYSCR_Config(LocalBank->shield_sample);
    TSL_RI_CICR_Config(LocalBank->shield_sample);
    TSL_RI_CICR_Config_Clear(LocalBank->shield_channel);

    TSL_RI_ASCR_Config(LocalBank->shield_sample);
#endif

    LocalNumberOfChannels = LocalBank->NbChannels;

    p_chSrc = LocalBank->p_chSrc;
    for (idx_ch = 0; idx_ch < LocalNumberOfChannels; idx_ch++)
    {
      TSL_RI_HYSCR_Config(p_chSrc->t_sample);
      TSL_RI_CICR_Config(p_chSrc->t_sample);
      TSL_RI_CICR_Config_Clear(p_chSrc->t_channel);
      TSL_RI_ASCR_Config(p_chSrc->t_sample);
      p_chSrc++;
    }
  }

  // Reset TSUSP bit, TIM9 ITR enabled to suspend OC TIM9 generation
  COMP->CSR &= (uint32_t)(~0x80000000);

}


/**
  * @brief  Initializes the acquisition module.
  * @param  None
  * @retval retval
  */
TSL_Status_enum_T TSL_acq_Init(void)
{
  TSL_Init_GPIOs();
  TSL_Init_TIMs();
  TSL_Init_RI();

  return TSL_STATUS_OK;
}


/**
  * @brief Configures a Bank.
  * @param[in] idx_bk  Index of the Bank to configure
  * @retval Status
  */
TSL_Status_enum_T TSL_acq_BankConfig(TSL_tIndex_T idx_bk)
{
  TSL_tIndex_T idx_dest;
  TSL_tIndex_T idx_ch;
  CONST TSL_ChannelDest_T *p_chDest; // Pointer to the current channel
  CONST TSL_ChannelSrc_T *p_chSrc; // Pointer to the current channel

  // Check parameters (if USE_FULL_ASSERT is defined)
  assert_param(IS_BANK_INDEX_OK(idx_bk));

  bank = &(TSL_Globals.Bank_Array[idx_bk]);

  NumberOfChannels = bank->NbChannels;

  GroupToCheck = 0;//init group to check
  NumberOfChannelOn = 0;//init number of channel on

  // init RI ASMR
  RI->ASMR1 = 0;
  RI->ASMR2 = 0;
  RI->ASMR3 = 0;
  RI->ASMR4 = 0;
  RI->ASMR5 = 0;

  p_chDest = bank->p_chDest;
  p_chSrc = bank->p_chSrc;
  for (idx_ch = 0; idx_ch < NumberOfChannels; idx_ch++)
  {
    // Get index in the result array associated to the current channel
    idx_dest = p_chDest->IdxDest;
    if (bank->p_chData[idx_dest].Flags.ObjStatus != TSL_OBJ_STATUS_OFF)
    {
      TSL_RI_CMR_Config(p_chSrc->t_sample);
      TSL_RI_ASMR_Config(p_chSrc->t_channel);
      GroupToCheck |= (1 << (p_chSrc->IdxSrc));
      NumberOfChannelOn++;
    }
    p_chDest++;
    p_chSrc++;
  }

  return TSL_STATUS_OK;

}


/**
  * @brief Start acquisition on a previously configured bank
  * @param None
  * @retval None
  */
void TSL_acq_BankStartAcq(void)
{
#if (TSLPRM_IODEF > 0)
  CONST TSL_Bank_T *LocalBank = &(TSL_Globals.Bank_Array[0]);
  TSL_tNb_T NumberOfBanks = TSLPRM_TOTAL_BANKS;
  TSL_tNb_T LocalNumberOfChannels = 0;
  TSL_tIndex_T BankIndex;
#endif
  CONST TSL_ChannelSrc_T *p_chSrc;
  CONST TSL_ChannelDest_T *p_chDest;
  TSL_tIndex_T idx_dest;
  TSL_tIndex_T idx_ch;

  if (NumberOfChannelOn)
  {
#if (TSLPRM_IODEF > 0)
    //============================
    // All GPIOs in Input floating
    //============================
    for (BankIndex = 0; BankIndex < NumberOfBanks; BankIndex++)
    {
      LocalBank = &(TSL_Globals.Bank_Array[BankIndex]);
      p_chSrc = LocalBank->p_chSrc;

#if (TSLPRM_USE_SHIELD > 0)
      TSL_GPIO_MODER_IN_Config(LocalBank->shield_sample);
      TSL_GPIO_MODER_IN_Config(LocalBank->shield_channel);
#endif

      LocalNumberOfChannels = LocalBank->NbChannels;

      for (idx_ch = 0;
           idx_ch < LocalNumberOfChannels;
           idx_ch++)
      {
        TSL_GPIO_MODER_IN_Config(p_chSrc->t_sample);
        TSL_GPIO_MODER_IN_Config(p_chSrc->t_channel);

        p_chSrc++;
      }
    }
#endif


    // Reset count
    TIM11->CNT = 0;

    // Discharge sample capacitors
    p_chDest = bank->p_chDest;
    p_chSrc = bank->p_chSrc;
    for (idx_ch = 0; idx_ch < NumberOfChannels; idx_ch++)
    {
      // Get index in the result array associated to the current channel
      idx_dest = p_chDest->IdxDest;
      if (bank->p_chData[idx_dest].Flags.ObjStatus != TSL_OBJ_STATUS_OFF)
      {
        TSL_GPIO_MODER_OUT_Config(p_chSrc->t_sample);
      }
      p_chDest++;
      p_chSrc++;
    }

#if (TSLPRM_USE_SHIELD > 0)
    // Discharge shield sample capacitor
    TSL_GPIO_MODER_OUT_Config(bank->shield_sample);
#endif

    // Wait for capa discharge
    SoftDelay(0x80);

#if (TSLPRM_USE_SHIELD > 0)
    // Init sample shield in floating input
    TSL_GPIO_MODER_IN_Config(bank->shield_sample);
    TSL_GPIO_MODER_AF_Config(bank->shield_channel);

    TSL_RI_ASMR_Config(bank->shield_channel);
#endif

    // Init samples in floating input and channels in alternate
    p_chDest = bank->p_chDest;
    p_chSrc = bank->p_chSrc;
    for (idx_ch = 0; idx_ch < NumberOfChannels; idx_ch++)
    {
      // Get index in the result array associated to the current channel
      idx_dest = p_chDest->IdxDest;

      if (bank->p_chData[idx_dest].Flags.ObjStatus != TSL_OBJ_STATUS_OFF)
      {
        TSL_GPIO_MODER_IN_Config(p_chSrc->t_sample);
        TSL_GPIO_MODER_AF_Config(p_chSrc->t_channel);
      }

      p_chDest++;
      p_chSrc++;
    }

    /* Start acquisition */
    TSL_Acq_Status = TSL_STATUS_BUSY;
    TIM9 ->CR1 |= 0x01; // Master
  }
  else
  {
    TSL_Acq_Status = TSL_STATUS_OK;
  }
}


/**
  * @brief Wait end of acquisition
  * @param None
  * @retval status
  */
TSL_Status_enum_T TSL_acq_BankWaitEOC(void)
{
  return TSL_Acq_Status;
}


/**
  * @brief Return the current measure
  * @param[in] index Index of the measure source
  * @retval Measure
  */
TSL_tMeas_T TSL_acq_GetMeas(TSL_tIndex_T index)
{
  return(tab_MeasurementCounter[index]);
}


/**
  * @brief  Check noise (not used)
  * @param  None
  * @retval Status
  */
TSL_AcqStatus_enum_T TSL_acq_CheckNoise(void)
{
  return TSL_ACQ_STATUS_OK;
}


/**
  * @brief Check GPIO IDR for the sample
  * @param[in] sample
  * @retval Status
  */
uint8_t TSL_Check_GPIO_IDR(uint8_t sample)
{
  GPIO_TypeDef *GPIO;
  uint32_t GPIO_IDR_Mask = 0;

  GPIO = TSL_GPIO_LookUpTable[TSL_CHANNEL_PORT(sample)];

  GPIO_IDR_Mask = (1 << (sample & 0x0F));

  if (((GPIO->IDR) & GPIO_IDR_Mask) == GPIO_IDR_Mask)
  {
    return 1;
  }
  else
  {
    return 0;
  }
}


/**
  * @brief  Process the TS Interrupt routine
  * @param  None
  * @retval None
  */
void TSL_acq_ProcessIT(void)
{
  CONST TSL_Bank_T *LocalBank = &(TSL_Globals.Bank_Array[0]);
  TSL_tNb_T NumberOfBanks = TSLPRM_TOTAL_BANKS;
  TSL_tNb_T LocalNumberOfChannels = 0;
  TSL_tIndex_T BankIndex;
  
  CONST TSL_ChannelSrc_T *p_chSrc;
  CONST TSL_ChannelDest_T *p_chDest;
  TSL_tIndex_T idx_dest;
  TSL_tIndex_T idx_ch;
  TSL_tNb_T  CounterOverflowFlag = 0;
  
  CounterOverflowFlag = TIM11->SR & TIM_SR_UIF;

  // Reset flags
  TIM11->SR = 0;
  idx_ch = 0;

  p_chDest = bank->p_chDest;
  p_chSrc = bank->p_chSrc;
  do
  {
    // Get index in the result array associated to the current channel
    idx_dest = p_chDest->IdxDest;

    if (bank->p_chData[idx_dest].Flags.ObjStatus != TSL_OBJ_STATUS_OFF)
    {
      if ((TSL_Check_GPIO_IDR(p_chSrc->t_sample)) &&
          ((GroupToCheck & (1 << (p_chSrc->IdxSrc))) == (1 << (p_chSrc->IdxSrc))))
      {
        tab_MeasurementCounter[p_chSrc->IdxSrc] = TIM11->CCR1;
        NumberOfChannelChecked++;
        GroupToCheck &= (uint32_t)(~(1 << (p_chSrc->IdxSrc)));

        // Reset CMR register to restart the timer
        TSL_RI_CMR_Config_Clear(p_chSrc->t_sample);
      }
      // Manage Overflow
      else if((CounterOverflowFlag) &&
         ((GroupToCheck & (1 << (p_chSrc->IdxSrc))) == (1 << (p_chSrc->IdxSrc))))
      {
        tab_MeasurementCounter[p_chSrc->IdxSrc] = TSLPRM_ACQ_MAX + 1;
        GroupToCheck &= (uint32_t)(~(1 << (p_chSrc->IdxSrc)));

        // Reset CMR register to restart the timer
        TSL_RI_CMR_Config_Clear(p_chSrc->t_sample);
      }
    }
    p_chDest++;
    p_chSrc++;
    idx_ch++;
  }
  while (idx_ch < NumberOfChannels);

  if (NumberOfChannelChecked >= NumberOfChannelOn)
  {
    NumberOfChannelOn = 0;
    NumberOfChannelChecked = 0;

    // Disable master counter
    TIM9->CR1 &= (uint16_t)(~0x01);

    //====================
    // All GPIOs in PP Low
    //====================
    for (BankIndex = 0; BankIndex < NumberOfBanks; BankIndex++)
    {
      LocalBank = &(TSL_Globals.Bank_Array[BankIndex]);
      p_chSrc = LocalBank->p_chSrc;

#if (TSLPRM_USE_SHIELD > 0)
      TSL_GPIO_BR_Config(LocalBank->shield_sample);
      TSL_GPIO_BR_Config(LocalBank->shield_channel);
      TSL_GPIO_MODER_OUT_Config(LocalBank->shield_sample);
      TSL_GPIO_MODER_OUT_Config(LocalBank->shield_channel);
#endif

      LocalNumberOfChannels = LocalBank->NbChannels;

      for (idx_ch = 0;
           idx_ch < LocalNumberOfChannels;
           idx_ch++)
      {
        TSL_GPIO_BR_Config(p_chSrc->t_sample);
        TSL_GPIO_BR_Config(p_chSrc->t_channel);
        TSL_GPIO_MODER_OUT_Config(p_chSrc->t_sample);
        TSL_GPIO_MODER_OUT_Config(p_chSrc->t_channel);

        p_chSrc++;
      }
    }
    TSL_Acq_Status = TSL_STATUS_OK;
  }
}


/**
  * @brief Check if a filter must be used on the current channel (not used)
  * @param[in] pCh Pointer on the channel data information
  * @retval Result TRUE if a filter can be applied
  */
TSL_Bool_enum_T TSL_acq_UseFilter(TSL_ChannelData_T *pCh)
{
  return TSL_TRUE;
}


/**
  * @brief Compute the Delta value
  * @param[in] ref Reference value
  * @param[in] meas Last Measurement value
  * @retval Delta value
  */
TSL_tDelta_T TSL_acq_ComputeDelta(TSL_tRef_T ref, TSL_tMeas_T meas)
{
  return((TSL_tDelta_T)(ref - meas));
}


/**
  * @brief Compute the Measurement value
  * @param[in] ref Reference value
  * @param[in] delta Delta value
  * @retval Measurement value
  */
TSL_tMeas_T TSL_acq_ComputeMeas(TSL_tRef_T ref, TSL_tDelta_T delta)
{
  return((TSL_tMeas_T)(ref - delta));
}


/**
  * @brief Test if the Reference is incorrect (not used)
  * @param[in] pCh Pointer on the channel data information
  * @retval Result TRUE if the Reference is out of range
  */
TSL_Bool_enum_T TSL_acq_TestReferenceOutOfRange(TSL_ChannelData_T *pCh)
{
  return TSL_FALSE;
}


/**
  * @brief Test if the measure has crossed the reference target (not used)
  * @param[in] pCh Pointer on the channel data information
  * @param[in] new_meas Measure of the last acquisition on this channel
  * @retval Result TRUE if the Reference is valid
  */
TSL_Bool_enum_T TSL_acq_TestFirstReferenceIsValid(TSL_ChannelData_T *pCh, TSL_tMeas_T new_meas)
{
  return TSL_TRUE;
}


#if defined(__IAR_SYSTEMS_ICC__) // IAR/EWARM
#pragma optimize=low
#elif defined(__CC_ARM) // Keil/MDK-ARM
#pragma O1
#pragma Ospace
#elif defined(__GNUC__) // Atollic/True Studio + AC6/SW4STM32
#pragma GCC push_options
#pragma GCC optimize ("O0")
#endif
/**
  * @brief  Software delay (private routine)
  * @param  val Wait delay
  * With fHCLK = 32MHz: 1 = ~1µs, 50 = ~14µs, 100 = ~25µs, 200 = ~50µs
  * @retval None
  */
void SoftDelay(uint16_t val)
{
  __IO uint16_t idx;
  for (idx = val; idx > 0; idx--)
  {}
}

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/