Welcome to mirror list, hosted at ThFree Co, Russian Federation.

main.c « Src « ADC_MultiChannelSingleConversion « ADC « Examples « NUCLEO-WB15CC « Projects - github.com/Flipper-Zero/STM32CubeWB.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: e5e2cb4c4be89e10700a6967ec7b37b9ceaaaee3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file    Examples/ADC/ADC_MultiChannelSingleConversion/Src/main.c
  * @author  MCD Application Team
  * @brief   This example describes how to use a ADC peripheral to convert
  *          several channels, ADC conversions performed successively
  *          in a scan sequence.
  *          This example is based on the STM32WBxx ADC HAL API.
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2019-2021 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */

/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */

/* Definitions of environment analog values */
  /* Value of analog reference voltage (Vref+), connected to analog voltage   */
  /* supply Vdda (unit: mV).                                                  */
  #define VDDA_APPLI                       (3300UL)

/* Definitions of data related to this example */
  /* Definition of ADCx conversions data table size */
  /* Size of array set to ADC sequencer number of ranks converted,            */
  /* to have a rank in each array address.                                    */
  #define ADC_CONVERTED_DATA_BUFFER_SIZE   (   3UL)

  /* Init variable out of expected ADC conversion data range */
  #define VAR_CONVERTED_DATA_INIT_VALUE    (__LL_ADC_DIGITAL_SCALE(LL_ADC_RESOLUTION_12B) + 1)

/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc1;
DMA_HandleTypeDef hdma_adc1;

/* USER CODE BEGIN PV */

/* Variables for ADC conversion data */
__IO uint16_t uhADCxConvertedData[ADC_CONVERTED_DATA_BUFFER_SIZE]; /* ADC group regular conversion data (array of data) */

/* Variables for ADC conversion data computation to physical values */
uint16_t uhADCxConvertedData_VoltageGPIO_mVolt = 0UL;        /* Value of voltage calculated from ADC conversion data (unit: mV) */
uint16_t uhADCxConvertedData_VrefInt_mVolt = 0UL;            /* Value of internal voltage reference VrefInt calculated from ADC conversion data (unit: mV) */
 int16_t hADCxConvertedData_Temperature_DegreeCelsius = 0UL; /* Value of temperature calculated from ADC conversion data (unit: degree Celsius) */
uint16_t uhADCxConvertedData_VrefAnalog_mVolt = 0UL;         /* Value of analog reference voltage (Vref+), connected to analog voltage supply Vdda, calculated from ADC conversion data (unit: mV) */

/* Variable to report status of DMA transfer of ADC group regular conversions */
/*  0: DMA transfer is not completed                                          */
/*  1: DMA transfer is completed                                              */
/*  2: DMA transfer has not yet been started yet (initial state)              */
__IO uint8_t ubDmaTransferStatus = 2U; /* Variable set into DMA interruption callback */

/* Variable to report number of ADC group regular sequence completed          */
uint32_t ubAdcGrpRegularSequenceConvCount = 0UL; /* Variable set into ADC interruption callback */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
void PeriphCommonClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_ADC1_Init(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */
  uint32_t tmp_index;

  /* Initialize ADC group regular data buffer values */
  for (tmp_index = 0; tmp_index < ADC_CONVERTED_DATA_BUFFER_SIZE; tmp_index++)
  {
    uhADCxConvertedData[tmp_index] = VAR_CONVERTED_DATA_INIT_VALUE;
  }

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

/* Configure the peripherals common clocks */
  PeriphCommonClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_DMA_Init();
  MX_ADC1_Init();
  /* USER CODE BEGIN 2 */

  /* Initialize LED on board */
  BSP_LED_Init(LED2);

  /* Perform ADC calibration */
  if (HAL_ADCEx_Calibration_Start(&hadc1, ADC_SINGLE_ENDED) != HAL_OK)
  {
    /* Calibration Error */
    Error_Handler();
  }

  /* Start ADC group regular conversion */
  /* Note: First start with DMA transfer initialization, following ones
           with basic ADC start. */
  if (HAL_ADC_Start_DMA(&hadc1,
                        (uint32_t *)uhADCxConvertedData,
                        ADC_CONVERTED_DATA_BUFFER_SIZE
                       ) != HAL_OK)
  {
    /* Error: ADC conversion start could not be performed */
    Error_Handler();
  }

  /* Toggle LED at each ADC conversion */
  BSP_LED_On(LED2);
  HAL_Delay(LED_BLINK_SLOW);
  BSP_LED_Off(LED2);
  HAL_Delay(LED_BLINK_SLOW);

  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    /* Start ADC group regular conversion */
    if (HAL_ADC_Start(&hadc1) != HAL_OK)
    {
      /* Error: ADC conversion start could not be performed */
      Error_Handler();
    }

    /* Toggle LED at each ADC conversion */
    BSP_LED_On(LED2);
    HAL_Delay(LED_BLINK_SLOW);
    BSP_LED_Off(LED2);
    HAL_Delay(LED_BLINK_SLOW);
    
    /* Note: ADC group regular conversions data are stored into array         */
    /*       "uhADCxConvertedData"                                            */
    /*       (for debug: see variable content into watch window).             */
    /*       - uhADCxConvertedData[0]: ADC channel set on sequence rank 1     */
    /*                                 (ADC1 channel 6)                       */
    /*       - uhADCxConvertedData[1]: ADC channel set on sequence rank 2     */
    /*                                 (ADC1 internal channel VrefInt)        */
    /*       - uhADCxConvertedData[2]: ADC channel set on sequence rank 3     */
    /*                                 (ADC1 internal channel temper. sensor) */

    /* If ADC conversions and DMA transfer are completed, then process data */
    if(ubDmaTransferStatus == 1)
    {
      /* For this example purpose, calculate analog reference voltage (Vref+) */
      /* from ADC conversion of internal voltage reference VrefInt.           */
      /* This voltage should correspond to value of literal "VDDA_APPLI".     */
      /* Note: This calculation can be performed when value of voltage Vref+  */
      /*       is unknown in the application                                  */
      /*       (This is not the case in this example due to target board      */
      /*       supplied by a LDO regulator providing a known constant voltage */
      /*       of value "VDDA_APPLI").                                        */
      /*       In typical case of Vref+ connected to Vdd, it allows to        */
      /*       deduce Vdd value.                                              */
      uhADCxConvertedData_VrefAnalog_mVolt = __LL_ADC_CALC_VREFANALOG_VOLTAGE(uhADCxConvertedData[1], LL_ADC_RESOLUTION_12B);

      /* Computation of ADC conversions raw data to physical values           */
      /* using LL ADC driver helper macro.                                    */
      uhADCxConvertedData_VoltageGPIO_mVolt        = __LL_ADC_CALC_DATA_TO_VOLTAGE(uhADCxConvertedData_VrefAnalog_mVolt, uhADCxConvertedData[0], LL_ADC_RESOLUTION_12B);
      uhADCxConvertedData_VrefInt_mVolt            = __LL_ADC_CALC_DATA_TO_VOLTAGE(uhADCxConvertedData_VrefAnalog_mVolt, uhADCxConvertedData[1], LL_ADC_RESOLUTION_12B);
      hADCxConvertedData_Temperature_DegreeCelsius = __LL_ADC_CALC_TEMPERATURE(uhADCxConvertedData_VrefAnalog_mVolt, uhADCxConvertedData[2], LL_ADC_RESOLUTION_12B);

      /* Update status variable of DMA transfer */
      ubDmaTransferStatus = 0;

      /* Toggle LED 4 times */
      tmp_index = 4*2;
      while(tmp_index != 0)
      {
        BSP_LED_Toggle(LED2);
        HAL_Delay(LED_BLINK_FAST);
        tmp_index--;
      }
      HAL_Delay(500); /* Delay to highlight toggle sequence */
    }

    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI|RCC_OSCILLATORTYPE_MSI;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.MSIState = RCC_MSI_ON;
  RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
  RCC_OscInitStruct.MSICalibrationValue = RCC_MSICALIBRATION_DEFAULT;
  RCC_OscInitStruct.MSIClockRange = RCC_MSIRANGE_6;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_MSI;
  RCC_OscInitStruct.PLL.PLLM = RCC_PLLM_DIV1;
  RCC_OscInitStruct.PLL.PLLN = 32;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
  /** Configure the SYSCLKSource, HCLK, PCLK1 and PCLK2 clocks dividers
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK4|RCC_CLOCKTYPE_HCLK2
                              |RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
  RCC_ClkInitStruct.AHBCLK2Divider = RCC_SYSCLK_DIV2;
  RCC_ClkInitStruct.AHBCLK4Divider = RCC_SYSCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_3) != HAL_OK)
  {
    Error_Handler();
  }
}

/**
  * @brief Peripherals Common Clock Configuration
  * @retval None
  */
void PeriphCommonClock_Config(void)
{
  RCC_PeriphCLKInitTypeDef PeriphClkInitStruct = {0};

  /** Initializes the peripherals clock
  */
  PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_SMPS;
  PeriphClkInitStruct.SmpsClockSelection = RCC_SMPSCLKSOURCE_HSI;
  PeriphClkInitStruct.SmpsDivSelection = RCC_SMPSCLKDIV_RANGE1;

  if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN Smps */

  /* USER CODE END Smps */
}

/**
  * @brief ADC1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_ADC1_Init(void)
{

  /* USER CODE BEGIN ADC1_Init 0 */

  /* USER CODE END ADC1_Init 0 */

  ADC_ChannelConfTypeDef sConfig = {0};

  /* USER CODE BEGIN ADC1_Init 1 */

  /* USER CODE END ADC1_Init 1 */
  /** Common config
  */
  hadc1.Instance = ADC1;
  hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
  hadc1.Init.Resolution = ADC_RESOLUTION_12B;
  hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
  hadc1.Init.ScanConvMode = ADC_SCAN_ENABLE;
  hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
  hadc1.Init.SamplingTimeCommon1 = ADC_SAMPLETIME_79CYCLES_5;
  hadc1.Init.SamplingTimeCommon2 = ADC_SAMPLETIME_160CYCLES_5;
  hadc1.Init.LowPowerAutoWait = DISABLE;
  hadc1.Init.ContinuousConvMode = DISABLE;
  hadc1.Init.NbrOfConversion = 3;
  hadc1.Init.DiscontinuousConvMode = ENABLE;
  hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
  hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
  hadc1.Init.DMAContinuousRequests = DISABLE;
  hadc1.Init.Overrun = ADC_OVR_DATA_OVERWRITTEN;
  if (HAL_ADC_Init(&hadc1) != HAL_OK)
  {
    Error_Handler();
  }
  /** Configure Regular Channel
  */
  sConfig.Channel = ADC_CHANNEL_6;
  sConfig.Rank = ADC_REGULAR_RANK_1;
  sConfig.SamplingTime = ADC_SAMPLINGTIME_COMMON_1;
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /** Configure Regular Channel
  */
  sConfig.Channel = ADC_CHANNEL_VREFINT;
  sConfig.Rank = ADC_REGULAR_RANK_2;
  sConfig.SamplingTime = ADC_SAMPLINGTIME_COMMON_2;
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /** Configure Regular Channel
  */
  sConfig.Channel = ADC_CHANNEL_TEMPSENSOR;
  sConfig.Rank = ADC_REGULAR_RANK_3;
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN ADC1_Init 2 */

  /* USER CODE END ADC1_Init 2 */

}

/**
  * Enable DMA controller clock
  */
static void MX_DMA_Init(void)
{

  /* DMA controller clock enable */
  __HAL_RCC_DMAMUX1_CLK_ENABLE();
  __HAL_RCC_DMA1_CLK_ENABLE();

  /* DMA interrupt init */
  /* DMA1_Channel1_IRQn interrupt configuration */
  HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 2, 0);
  HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);

}

/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
  GPIO_InitTypeDef GPIO_InitStruct = {0};

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOA_CLK_ENABLE();
  __HAL_RCC_GPIOB_CLK_ENABLE();

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(LED2_GPIO_Port, LED2_Pin, GPIO_PIN_RESET);

  /*Configure GPIO pin : LED2_Pin */
  GPIO_InitStruct.Pin = LED2_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(LED2_GPIO_Port, &GPIO_InitStruct);

}

/* USER CODE BEGIN 4 */

/******************************************************************************/
/*   USER IRQ HANDLER TREATMENT                                               */
/******************************************************************************/

/**
  * @brief  DMA transfer complete callback
  * @note   This function is executed when the transfer complete interrupt
  *         is generated
  * @retval None
  */
void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc)
{
  /* Update status variable of DMA transfer */
  ubDmaTransferStatus = 1;
}

/**
  * @brief  ADC error interruption callback
  * @retval None
  */
void HAL_ADC_ErrorCallback(ADC_HandleTypeDef *hadc)
{
  /* Note: Disable ADC interruption that caused this error before entering in
           infinite loop below. */

  /* In case of error due to overrun: Disable ADC group regular overrun interruption */
  LL_ADC_DisableIT_OVR(ADC1);

  /* Error reporting */
  Error_Handler();
}

/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */

  /* Turn on LED and remain in infinite loop */
  while (1)
  {
    BSP_LED_On(LED2);
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */

  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d", file, line) */

  /* Infinite loop */
  while (1)
  {
  }
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */