Welcome to mirror list, hosted at ThFree Co, Russian Federation.

main.c « Src « PKA_ECDSA_Sign « PKA « Examples_LL « NUCLEO-WB15CC « Projects - github.com/Flipper-Zero/STM32CubeWB.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: da7bcfd96232f8c7d30bcdf36f64220efe4b51c7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file    Examples_LL/PKA/PKA_ECDSA_Sign/Src/main.c
  * @author  MCD Application Team
  * @brief   This example describes how to use PKA peripheral to generate an
  *          ECDSA signature using the STM32WBxx PKA LL API.
  *          Peripheral initialization done using LL unitary services functions.
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2019-2021 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */

/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */

/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/

/* USER CODE BEGIN PV */

__IO uint32_t endOfProcess = 0;
uint8_t RBuffer[32] = {0};
uint8_t SBuffer[32] = {0};

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
void PeriphCommonClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_PKA_Init(void);
/* USER CODE BEGIN PFP */

void     LED_On(void);
void     LED_Blinking(uint32_t Period);
static uint32_t Buffercmp(const uint8_t* pBuffer1,const uint8_t* pBuffer2, uint32_t BufferLength);
__IO uint32_t *PKA_Memcpy_u8_to_u32(__IO uint32_t dst[], const uint8_t src[], uint32_t n);
uint8_t *PKA_Memcpy_u32_to_u8(uint8_t dst[], __IO const uint32_t src[], uint32_t n);

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */

  uint32_t result = 0;

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */

  NVIC_SetPriorityGrouping(NVIC_PRIORITYGROUP_4);

  /* System interrupt init*/

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

/* Configure the peripherals common clocks */
  PeriphCommonClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_PKA_Init();
  /* USER CODE BEGIN 2 */
  
  /* Set mode to ECDSA signature generation in interrupt mode */
  LL_PKA_SetMode(PKA, LL_PKA_MODE_ECDSA_SIGNATURE);
  LL_PKA_EnableIT_ADDRERR(PKA);
  LL_PKA_EnableIT_RAMERR(PKA);
  LL_PKA_EnableIT_PROCEND(PKA);
  
  /* Loads the input buffers to PKA RAM */
  PKA->RAM[PKA_ECDSA_SIGN_IN_ORDER_NB_BITS] = prime256v1_Order_len * 8;
  PKA->RAM[PKA_ECDSA_SIGN_IN_MOD_NB_BITS] = prime256v1_Prime_len * 8;
  PKA->RAM[PKA_ECDSA_SIGN_IN_A_COEFF_SIGN] =  prime256v1_A_sign;

  /* Move the input parameters coefficient |a| to PKA RAM */
  PKA_Memcpy_u8_to_u32(&PKA->RAM[PKA_ECDSA_SIGN_IN_A_COEFF], prime256v1_absA, prime256v1_Prime_len);
  PKA->RAM[PKA_ECDSA_SIGN_IN_A_COEFF + prime256v1_Prime_len / 4] = 0;

  /* Move the input parameters modulus value p to PKA RAM */
  PKA_Memcpy_u8_to_u32(&PKA->RAM[PKA_ECDSA_SIGN_IN_MOD_GF], prime256v1_Prime, prime256v1_Prime_len);
  PKA->RAM[PKA_ECDSA_SIGN_IN_MOD_GF + prime256v1_Prime_len / 4] = 0;

  /* Move the input parameters integer k to PKA RAM */
  PKA_Memcpy_u8_to_u32(&PKA->RAM[PKA_ECDSA_SIGN_IN_K], SigGen_k, prime256v1_Prime_len);
  PKA->RAM[PKA_ECDSA_SIGN_IN_K + prime256v1_Prime_len / 4] = 0;

  /* Move the input parameters base point G coordinate x to PKA RAM */
  PKA_Memcpy_u8_to_u32(&PKA->RAM[PKA_ECDSA_SIGN_IN_INITIAL_POINT_X], prime256v1_GeneratorX, prime256v1_Prime_len);
  PKA->RAM[PKA_ECDSA_SIGN_IN_INITIAL_POINT_X + prime256v1_Prime_len / 4] = 0;

  /* Move the input parameters base point G coordinate y to PKA RAM */
  PKA_Memcpy_u8_to_u32(&PKA->RAM[PKA_ECDSA_SIGN_IN_INITIAL_POINT_Y], prime256v1_GeneratorY, prime256v1_Prime_len);
  PKA->RAM[PKA_ECDSA_SIGN_IN_INITIAL_POINT_Y + prime256v1_Prime_len / 4] = 0;

  /* Move the input parameters hash of message z to PKA RAM */
  PKA_Memcpy_u8_to_u32(&PKA->RAM[PKA_ECDSA_SIGN_IN_HASH_E], SigGen_Hash_Msg, prime256v1_Prime_len);
  PKA->RAM[PKA_ECDSA_SIGN_IN_HASH_E + prime256v1_Prime_len / 4] = 0;

  /* Move the input parameters private key d to PKA RAM */
  PKA_Memcpy_u8_to_u32(&PKA->RAM[PKA_ECDSA_SIGN_IN_PRIVATE_KEY_D], SigGen_d, prime256v1_Prime_len);
  PKA->RAM[PKA_ECDSA_SIGN_IN_PRIVATE_KEY_D + prime256v1_Prime_len / 4] = 0;

  /* Move the input parameters prime order n to PKA RAM */
  PKA_Memcpy_u8_to_u32(&PKA->RAM[PKA_ECDSA_SIGN_IN_ORDER_N], prime256v1_Order, prime256v1_Prime_len);
  PKA->RAM[PKA_ECDSA_SIGN_IN_ORDER_N + prime256v1_Prime_len / 4] = 0;
  
  /* Launch the computation in interrupt mode */
  LL_PKA_Start(PKA);
  
  /* Wait for the interrupt callback */
  while(endOfProcess != 1);
  
  /* Retrieve the result and output buffer */
  result = PKA->RAM[PKA_ECDSA_SIGN_OUT_ERROR];
  PKA_Memcpy_u32_to_u8(RBuffer, &PKA->RAM[PKA_ECDSA_SIGN_OUT_SIGNATURE_R], prime256v1_Prime_len / 4);
  PKA_Memcpy_u32_to_u8(SBuffer, &PKA->RAM[PKA_ECDSA_SIGN_OUT_SIGNATURE_S], prime256v1_Prime_len / 4);
  
  /* Compare to expected results */
  if (result != 0)
  {
    LED_Blinking(LED_BLINK_ERROR);
  } 
  
  result = Buffercmp(RBuffer, SigGen_R, SigGen_R_len);
  if (result != 0)
  {
    LED_Blinking(LED_BLINK_ERROR);
  }  
  
  result = Buffercmp(SBuffer, SigGen_S, SigGen_S_len);
  if (result != 0)
  {
    LED_Blinking(LED_BLINK_ERROR);
  }  
  
  LED_On();

  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  LL_FLASH_SetLatency(LL_FLASH_LATENCY_3);
  while(LL_FLASH_GetLatency() != LL_FLASH_LATENCY_3)
  {
  }

  /* HSI configuration and activation */
  LL_RCC_HSI_Enable();
  while(LL_RCC_HSI_IsReady() != 1)
  {
  }

  /* MSI configuration and activation */
  LL_RCC_MSI_Enable();
  while(LL_RCC_MSI_IsReady() != 1)
  {
  }

  /* Main PLL configuration and activation */
  LL_RCC_PLL_ConfigDomain_SYS(LL_RCC_PLLSOURCE_MSI, LL_RCC_PLLM_DIV_1, 32, LL_RCC_PLLR_DIV_2);
  LL_RCC_PLL_Enable();
  LL_RCC_PLL_EnableDomain_SYS();
  while(LL_RCC_PLL_IsReady() != 1)
  {
  }

  /* Sysclk activation on the main PLL */
  /* Set CPU1 prescaler*/
  LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_1);

  /* Set CPU2 prescaler*/
  LL_C2_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_2);

  LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_PLL);
  while(LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_PLL)
  {
  }

  /* Set AHB SHARED prescaler*/
  LL_RCC_SetAHB4Prescaler(LL_RCC_SYSCLK_DIV_1);

  /* Set APB1 prescaler*/
  LL_RCC_SetAPB1Prescaler(LL_RCC_APB1_DIV_1);

  /* Set APB2 prescaler*/
  LL_RCC_SetAPB2Prescaler(LL_RCC_APB2_DIV_1);

  LL_Init1msTick(64000000);

  /* Update CMSIS variable (which can be updated also through SystemCoreClockUpdate function) */
  LL_SetSystemCoreClock(64000000);
}

/**
  * @brief Peripherals Common Clock Configuration
  * @retval None
  */
void PeriphCommonClock_Config(void)
{
  LL_RCC_SetSMPSClockSource(LL_RCC_SMPS_CLKSOURCE_HSI);
  LL_RCC_SetSMPSPrescaler(LL_RCC_SMPS_DIV_1);
  LL_RCC_SetRFWKPClockSource(LL_RCC_RFWKP_CLKSOURCE_NONE);
  /* USER CODE BEGIN Smps */

  /* USER CODE END Smps */
}

/**
  * @brief PKA Initialization Function
  * @param None
  * @retval None
  */
static void MX_PKA_Init(void)
{

  /* USER CODE BEGIN PKA_Init 0 */

  /* USER CODE END PKA_Init 0 */

  /* Peripheral clock enable */
  LL_AHB3_GRP1_EnableClock(LL_AHB3_GRP1_PERIPH_PKA);

  /* USER CODE BEGIN PKA_Init 1 */

  /* USER CODE END PKA_Init 1 */
  LL_PKA_Enable(PKA);
  /* USER CODE BEGIN PKA_Init 2 */

    /* Configure NVIC for PKA interrupts */
    /*   Set priority for PKA_IRQn */
    /*   Enable PKA_IRQn */
    NVIC_SetPriority(PKA_IRQn, 0);  
    NVIC_EnableIRQ(PKA_IRQn);  

  /* USER CODE END PKA_Init 2 */

}

/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
  LL_GPIO_InitTypeDef GPIO_InitStruct = {0};

  /* GPIO Ports Clock Enable */
  LL_AHB2_GRP1_EnableClock(LL_AHB2_GRP1_PERIPH_GPIOB);

  /**/
  LL_GPIO_ResetOutputPin(LED2_GPIO_Port, LED2_Pin);

  /**/
  GPIO_InitStruct.Pin = LED2_Pin;
  GPIO_InitStruct.Mode = LL_GPIO_MODE_OUTPUT;
  GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_LOW;
  GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
  GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
  LL_GPIO_Init(LED2_GPIO_Port, &GPIO_InitStruct);

}

/* USER CODE BEGIN 4 */

void PKA_ERROR_callback(void)
{
  LED_Blinking(LED_BLINK_ERROR);
}

void PKA_PROCEND_callback(void)
{
  endOfProcess = 1;
}
/**
  * @brief  Compares two buffers.
  * @param  pBuffer1, pBuffer2: buffers to be compared.
  * @param  BufferLength: buffer's length
  * @retval 0  : pBuffer1 identical to pBuffer2
  *         >0 : pBuffer1 differs from pBuffer2
  */
static uint32_t Buffercmp(const uint8_t* pBuffer1,const uint8_t* pBuffer2, uint32_t BufferLength)
{
  while (BufferLength--)
  {
    if ((*pBuffer1) != *pBuffer2)
    {
      return BufferLength;
    }
    pBuffer1++;
    pBuffer2++;
  }

  return 0;
}

/**
  * @brief  Copy uint8_t array to uint32_t array to fit PKA number representation.
  * @param  dst Pointer to destination
  * @param  src Pointer to source
  * @param  n Number of u32 to be handled
  * @retval dst
  */
__IO uint32_t *PKA_Memcpy_u8_to_u32(__IO uint32_t dst[], const uint8_t src[], uint32_t n)
{
  const uint32_t *ptrSrc = (const uint32_t *) src;

  if (dst != 0)
  {
    for (uint32_t index = 0; index < n / 4; index++)
    {
      dst[index] = __REV(ptrSrc[n / 4 - index - 1]);
    }
  }
  return dst;
}

/**
  * @brief  Copy uint32_t array to uint8_t array to fit PKA number representation.
  * @param  dst Pointer to destination
  * @param  src Pointer to source
  * @param  n Number of u8 to be handled (must be multiple of 4)
  * @retval dst
  */
uint8_t *PKA_Memcpy_u32_to_u8(uint8_t dst[], __IO const uint32_t src[], uint32_t n)
{
  uint32_t *ptrDst = (uint32_t *) dst;
  if (dst != 0)
  {
    for (uint32_t index = 0; index < n; index++)
    {
      ptrDst[n - index - 1] = __REV(src[index]);
    }
  }
  return dst;
}

/**
  * @brief  Turn-on LED2.
  * @param  None
  * @retval None
  */
void LED_On(void)
{
  /* Turn LED2 on */
  LL_GPIO_SetOutputPin(LED2_GPIO_Port, LED2_Pin); 
}

/**
  * @brief  Set LED2 to Blinking mode for an infinite loop (toggle period based on value provided as input parameter).
  * @param  Period : Period of time (in ms) between each toggling of LED
  *   This parameter can be user defined values. Pre-defined values used in that example are :
  *     @arg LED_BLINK_FAST : Fast Blinking
  *     @arg LED_BLINK_SLOW : Slow Blinking
  *     @arg LED_BLINK_ERROR : Error specific Blinking
  * @retval None
  */
void LED_Blinking(uint32_t Period)
{
  /* Toggle LED2 in an infinite loop */
  while (1)
  {
    LL_GPIO_TogglePin(LED2_GPIO_Port, LED2_Pin); 
    LL_mDelay(Period);
  }
}


/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
 
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d", file, line) */

  /* Infinite loop */
  while (1)
  {
  }
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */