Welcome to mirror list, hosted at ThFree Co, Russian Federation.

main.c « Src « Core « LLD_BLE_Proximity « LLD_BLE « Applications « P-NUCLEO-WB55.Nucleo « Projects - github.com/Flipper-Zero/STM32CubeWB.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: a0cf14f24e1a46be1e12b72b923255c2d8692958 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
/* USER CODE BEGIN Header */
/**
 ******************************************************************************
 * @file    main.c
 * @author  MCD Application Team
 * @brief   RF LLD tests application
 *
  @verbatim
  ==============================================================================
                    ##### IMPORTANT NOTE #####
  ==============================================================================

  This application requests having a M0 LLD tests binary
  flashed on the Wireless Coprocessor.
  If it is not the case, you need to use STM32CubeProgrammer to load the appropriate
  binary.

  All available binaries are located under following directory:
  /Projects/STM32_Copro_Wireless_Binaries

  Refer to UM2237 to learn how to use/install STM32CubeProgrammer.
  Refer to /Projects/STM32_Copro_Wireless_Binaries/ReleaseNote.html for the
  detailed procedure to change the Wireless Coprocessor binary.

  @endverbatim
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; Copyright (c) 2019 STMicroelectronics.
  * All rights reserved.</center></h2>
  *
  * This software component is licensed by ST under Ultimate Liberty license
  * SLA0044, the "License"; You may not use this file except in compliance with
  * the License. You may obtain a copy of the License at:
  *                             www.st.com/SLA0044
  *
  ******************************************************************************
 */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "app_common.h"
#include "app_entry.h"
#include "main.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "stm32_lpm.h"
#include "stm32_seq.h"
#include "dbg_trace.h"
#include "hw_conf.h"
#include "otp.h"
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */

/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */
TIM_HandleTypeDef htim2;
/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
static void MX_DMA_Init(void);
static void MX_TIM2_Init(void);

/* USER CODE BEGIN PFP */
static void SystemClock_Config(void);
static void PeriphClock_Config(void);
static void Reset_Device( void );
static void Reset_IPCC( void );
static void Reset_BackupDomain( void );
static void Init_Exti( void );
static void Config_HSE(void);
/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/

/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */
  Reset_Device();
  Config_HSE();
  /* USER CODE END Init */
  
  /* Configure the system clock on HSE without using PLL and the periph clock needed by this application */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */
  PeriphClock_Config();
  Init_Exti();
  
  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_DMA_Init();
  MX_TIM2_Init();
  /* USER CODE BEGIN 2 */
  if (HAL_TIM_Base_Start(&htim2) != HAL_OK)
  {
        Error_Handler();
  }
  /* USER CODE END 2 */
  
  /* Init code for STM32_WPAN */
  APPE_Init();
  
  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    UTIL_SEQ_Run( UTIL_SEQ_DEFAULT );
    /* USER CODE END WHILE */

    /* USER CODE END WHILE */
  }
    /* USER CODE BEGIN 3 */

  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration : API to be called to use HSE (with or without PLL use) as 32Mhz system clock.
           SystemClock_Config_HSE() must be called once just after boot (to go from default MSI to HSE).
           Then application user can call both SystemClock_Config_HSE() and SystemClock_Config_MSI() at any time.
  * @retval None
  */
void SystemClock_Config_HSE(uint32_t usePLL)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
  
  /* First, just set MSI ON (with the 32Mhz range) in case it was OFF, without any update on PLL */
  RCC_OscInitStruct.OscillatorType      = RCC_OSCILLATORTYPE_MSI;
  RCC_OscInitStruct.MSIState            = RCC_MSI_ON;
  RCC_OscInitStruct.MSIClockRange       = RCC_MSIRANGE_10;
  RCC_OscInitStruct.MSICalibrationValue = RCC_MSICALIBRATION_DEFAULT;
  RCC_OscInitStruct.PLL.PLLState        = RCC_PLL_NONE;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    /* Initialization Error */
    Error_Handler();
  }
  /* Select MSI as system clock in order to be able to update HSE and PLL configuration */
  RCC_ClkInitStruct.ClockType    = RCC_CLOCKTYPE_SYSCLK;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_MSI;
  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK)
  {
    /* Initialization Error */
    Error_Handler();
  }
  
  /* Configure HSE and PLL if needed*/
  RCC_OscInitStruct.OscillatorType       = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState             = RCC_HSE_ON;
  RCC_OscInitStruct.PLL.PLLSource        = RCC_PLLSOURCE_HSE;
  if (usePLL == 1)
    RCC_OscInitStruct.PLL.PLLState         = RCC_PLL_ON;
  else
    RCC_OscInitStruct.PLL.PLLState         = RCC_PLL_OFF;
  RCC_OscInitStruct.PLL.PLLM             = RCC_PLLM_DIV2;
  RCC_OscInitStruct.PLL.PLLN             = 8;
  RCC_OscInitStruct.PLL.PLLP             = RCC_PLLP_DIV4;
  RCC_OscInitStruct.PLL.PLLQ             = RCC_PLLQ_DIV4;
  RCC_OscInitStruct.PLL.PLLR             = RCC_PLLR_DIV4;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
  
  /* Configure the system clock source and the dividers according to the fact that system clock source is 32Mhz */
  RCC_ClkInitStruct.ClockType      = RCC_CLOCKTYPE_HCLK4 | RCC_CLOCKTYPE_HCLK2 | RCC_CLOCKTYPE_HCLK | 
                                     RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
  if (usePLL == 1)
    RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  else
    RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSE;
  RCC_ClkInitStruct.AHBCLKDivider  = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
  RCC_ClkInitStruct.AHBCLK2Divider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.AHBCLK4Divider = RCC_SYSCLK_DIV1;
  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK)
  {
    Error_Handler();
  }
  
  // Note that function UTILS_SetFlashLatency() could be used to set the correct Flash latency
  // (with 32Mhz, 2WS are needed if the range is changed to 1V instead of 1.2V)
  
  /* Disable MSI Oscillator as the MSI is no more needed by the application */
  RCC_OscInitStruct.OscillatorType  = RCC_OSCILLATORTYPE_MSI;
  RCC_OscInitStruct.MSIState        = RCC_MSI_OFF;
  RCC_OscInitStruct.PLL.PLLState    = RCC_PLL_NONE;  /* No update on PLL */
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    /* Initialization Error */
    Error_Handler();
  }
}

/**
  * @brief System Clock Configuration : API to be called to use MSI (with or without PLL use) as 32Mhz system clock.
           SystemClock_Config_HSE() must be called once just after boot (to go from default MSI to HSE).
           Then application user can call both SystemClock_Config_HSE() and SystemClock_Config_MSI() at any time.
  * @retval None
  */
void SystemClock_Config_MSI(uint32_t usePLL)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
  
  /* First, just set HSE ON (with the 32Mhz range) in case it was OFF, without any update on PLL */
  RCC_OscInitStruct.OscillatorType  = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState        = RCC_HSE_ON;
  RCC_OscInitStruct.PLL.PLLState    = RCC_PLL_NONE;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    /* Initialization Error */
    Error_Handler();
  }
  /* Select HSE as system clock in order to be able to update MSI and PLL configuration */
  RCC_ClkInitStruct.ClockType    = RCC_CLOCKTYPE_SYSCLK;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSE;
  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK)
  {
    /* Initialization Error */
    Error_Handler();
  }
  
  /* Configure MSI and PLL if needed*/
  RCC_OscInitStruct.OscillatorType      = RCC_OSCILLATORTYPE_MSI;
  RCC_OscInitStruct.MSIState            = RCC_MSI_ON;
  RCC_OscInitStruct.MSIClockRange       = RCC_MSIRANGE_10;
  RCC_OscInitStruct.MSICalibrationValue = RCC_MSICALIBRATION_DEFAULT;
  RCC_OscInitStruct.PLL.PLLSource       = RCC_PLLSOURCE_MSI;
  if (usePLL == 1)
    RCC_OscInitStruct.PLL.PLLState         = RCC_PLL_ON;
  else
    RCC_OscInitStruct.PLL.PLLState         = RCC_PLL_OFF;
  RCC_OscInitStruct.PLL.PLLM            = RCC_PLLM_DIV2;
  RCC_OscInitStruct.PLL.PLLN            = 8;
  RCC_OscInitStruct.PLL.PLLP            = RCC_PLLP_DIV4;
  RCC_OscInitStruct.PLL.PLLQ            = RCC_PLLQ_DIV4;
  RCC_OscInitStruct.PLL.PLLR            = RCC_PLLR_DIV4;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    /* Initialization Error */
    Error_Handler();
  }
  
  /* Configure the system clock source and the dividers according to the fact that system clock source is 32Mhz */
  RCC_ClkInitStruct.ClockType      = RCC_CLOCKTYPE_HCLK4 | RCC_CLOCKTYPE_HCLK2 | RCC_CLOCKTYPE_HCLK | 
                                     RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
  if (usePLL == 1)
    RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  else
    RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_MSI;
  RCC_ClkInitStruct.AHBCLKDivider  = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
  RCC_ClkInitStruct.AHBCLK2Divider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.AHBCLK4Divider = RCC_SYSCLK_DIV1;
  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK)
  {
    Error_Handler();
  }
  
/* HSE cannot be stopped while using RF */
#if 0
  /* Disable HSE Oscillator as the HSE is no more needed by the application */
  RCC_OscInitStruct.OscillatorType  = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState        = RCC_HSE_OFF;
  RCC_OscInitStruct.PLL.PLLState    = RCC_PLL_NONE;  /* No update on PLL */
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    /* Initialization Error */
    Error_Handler();
  }
#endif
}

/*************************************************************
 *
 * LOCAL FUNCTIONS
 *
 *************************************************************/
/**
  * @brief System Clock Configuration : must be called during application start-up 
  * @retval None
  */
static void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  
  /* Configure LSE Drive Capability */
  __HAL_RCC_LSEDRIVE_CONFIG(RCC_LSEDRIVE_LOW);
  
  /* Configure the main internal regulator output voltage */
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
  
  /* Assuming that MSI is enabled by default after boot, lets go to HSE without using PLL */
  SystemClock_Config_HSE(0);
  
  /* Configure Others clock */
  RCC_OscInitStruct.OscillatorType       = RCC_OSCILLATORTYPE_HSI | RCC_OSCILLATORTYPE_HSI48 | 
                                           RCC_OSCILLATORTYPE_LSE | RCC_OSCILLATORTYPE_LSI2;
  RCC_OscInitStruct.LSEState             = RCC_LSE_ON;
  RCC_OscInitStruct.HSIState             = RCC_HSI_OFF;
  RCC_OscInitStruct.HSICalibrationValue  = RCC_HSICALIBRATION_DEFAULT;
  RCC_OscInitStruct.LSIState             = RCC_LSI_OFF;
  RCC_OscInitStruct.LSI2CalibrationValue = 0;
  RCC_OscInitStruct.HSI48State           = RCC_HSI48_OFF;
  RCC_OscInitStruct.PLL.PLLState         = RCC_PLL_NONE;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
}

/** 
  * Enable DMA controller clock
  */
static void MX_DMA_Init(void) 
{
  /* DMA controller clock enable */
  __HAL_RCC_DMAMUX1_CLK_ENABLE();
  __HAL_RCC_DMA1_CLK_ENABLE();
#ifdef STM32WB35xx
  __HAL_RCC_DMA2_CLK_ENABLE();
#endif
  
  /* DMA interrupt init */
#ifdef STM32WB35xx
  /* DMA1_Channel4_IRQn interrupt configuration */
  HAL_NVIC_SetPriority(DMA1_Channel4_IRQn, 0, 0);
  HAL_NVIC_EnableIRQ(DMA1_Channel4_IRQn);
  /* DMA2_Channel4_IRQn interrupt configuration */
  HAL_NVIC_SetPriority(DMA2_Channel4_IRQn, 0, 0);
  HAL_NVIC_EnableIRQ(DMA2_Channel4_IRQn);
#else
  /* DMA1_Channel1_IRQn interrupt configuration */
  HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 0, 0);
  HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);
  /* DMA1_Channel2_IRQn interrupt configuration */
  HAL_NVIC_SetPriority(DMA1_Channel2_IRQn, 0, 0);
  HAL_NVIC_EnableIRQ(DMA1_Channel2_IRQn);
#endif
}

static void PeriphClock_Config(void)
{
  RCC_PeriphCLKInitTypeDef PeriphClkInitStruct = {0};
  
#if USE_SMPS_ENABLED_BY_DEFAULT
  PeriphClkInitStruct.PeriphClockSelection   = RCC_PERIPHCLK_SMPS | RCC_PERIPHCLK_RFWAKEUP | RCC_PERIPHCLK_USART1 | RCC_PERIPHCLK_LPUART1;
  PeriphClkInitStruct.Usart1ClockSelection   = RCC_USART1CLKSOURCE_PCLK2;
  PeriphClkInitStruct.Lpuart1ClockSelection  = RCC_LPUART1CLKSOURCE_PCLK1;
  PeriphClkInitStruct.RFWakeUpClockSelection = RCC_RFWKPCLKSOURCE_LSE;
  PeriphClkInitStruct.SmpsClockSelection     = RCC_SMPSCLKSOURCE_HSE;
  PeriphClkInitStruct.SmpsDivSelection       = RCC_SMPSCLKDIV_RANGE1;
  if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
  
  /* Initialize SMPS here like in BLE applis */
  LL_PWR_SMPS_SetStartupCurrent(LL_PWR_SMPS_STARTUP_CURRENT_80MA);
  LL_PWR_SMPS_SetOutputVoltageLevel(LL_PWR_SMPS_OUTPUT_VOLTAGE_1V40);
  LL_PWR_SMPS_Enable();
#else
  PeriphClkInitStruct.PeriphClockSelection   = RCC_PERIPHCLK_RFWAKEUP | RCC_PERIPHCLK_USART1 | RCC_PERIPHCLK_LPUART1;
  PeriphClkInitStruct.Usart1ClockSelection   = RCC_USART1CLKSOURCE_PCLK2;
  PeriphClkInitStruct.Lpuart1ClockSelection  = RCC_LPUART1CLKSOURCE_PCLK1;
  PeriphClkInitStruct.RFWakeUpClockSelection = RCC_RFWKPCLKSOURCE_LSE;
  if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
#endif
  
  return;
}

static void Config_HSE(void)
{
    OTP_ID0_t * p_otp;

  /**
   * Read HSE_Tuning from OTP
   */
  p_otp = (OTP_ID0_t *) OTP_Read(0);
  if (p_otp)
  {
    LL_RCC_HSE_SetCapacitorTuning(p_otp->hse_tuning);
  }

  return;
}


static void Reset_Device( void )
{
#if ( CFG_HW_RESET_BY_FW == 1 )
  Reset_BackupDomain();
  
  Reset_IPCC();
#endif
  
  return;
}

static void Reset_IPCC( void )
{
  LL_AHB3_GRP1_EnableClock(LL_AHB3_GRP1_PERIPH_IPCC);

  LL_C1_IPCC_ClearFlag_CHx(
      IPCC,
      LL_IPCC_CHANNEL_1 | LL_IPCC_CHANNEL_2 | LL_IPCC_CHANNEL_3 | LL_IPCC_CHANNEL_4
      | LL_IPCC_CHANNEL_5 | LL_IPCC_CHANNEL_6);

  LL_C2_IPCC_ClearFlag_CHx(
      IPCC,
      LL_IPCC_CHANNEL_1 | LL_IPCC_CHANNEL_2 | LL_IPCC_CHANNEL_3 | LL_IPCC_CHANNEL_4
      | LL_IPCC_CHANNEL_5 | LL_IPCC_CHANNEL_6);

  LL_C1_IPCC_DisableTransmitChannel(
      IPCC,
      LL_IPCC_CHANNEL_1 | LL_IPCC_CHANNEL_2 | LL_IPCC_CHANNEL_3 | LL_IPCC_CHANNEL_4
      | LL_IPCC_CHANNEL_5 | LL_IPCC_CHANNEL_6);

  LL_C2_IPCC_DisableTransmitChannel(
      IPCC,
      LL_IPCC_CHANNEL_1 | LL_IPCC_CHANNEL_2 | LL_IPCC_CHANNEL_3 | LL_IPCC_CHANNEL_4
      | LL_IPCC_CHANNEL_5 | LL_IPCC_CHANNEL_6);

  LL_C1_IPCC_DisableReceiveChannel(
      IPCC,
      LL_IPCC_CHANNEL_1 | LL_IPCC_CHANNEL_2 | LL_IPCC_CHANNEL_3 | LL_IPCC_CHANNEL_4
      | LL_IPCC_CHANNEL_5 | LL_IPCC_CHANNEL_6);

  LL_C2_IPCC_DisableReceiveChannel(
      IPCC,
      LL_IPCC_CHANNEL_1 | LL_IPCC_CHANNEL_2 | LL_IPCC_CHANNEL_3 | LL_IPCC_CHANNEL_4
      | LL_IPCC_CHANNEL_5 | LL_IPCC_CHANNEL_6);

  return;
}

static void Reset_BackupDomain( void )
{
  if ((LL_RCC_IsActiveFlag_PINRST() != FALSE) && (LL_RCC_IsActiveFlag_SFTRST() == FALSE))
  {
    HAL_PWR_EnableBkUpAccess(); /**< Enable access to the RTC registers */
    
    /**
     *  Write twice the value to flush the APB-AHB bridge
     *  This bit shall be written in the register before writing the next one
     */
    HAL_PWR_EnableBkUpAccess();
    
    __HAL_RCC_BACKUPRESET_FORCE();
    __HAL_RCC_BACKUPRESET_RELEASE();
  }
  
  return;
}

static void Init_Exti( void )
{
  /**< Disable all wakeup interrupt on CPU1  except LPUART(25), IPCC(36), HSEM(38) */
  LL_EXTI_DisableIT_0_31( (~0) & (~(LL_EXTI_LINE_25)) );
  LL_EXTI_DisableIT_32_63( (~0) & (~(LL_EXTI_LINE_36 | LL_EXTI_LINE_38)) );
  
  return;
}

/**
  * @brief TIM2 Initialization Function
  * @param None
  * @retval None
  */
static void MX_TIM2_Init(void)
{

  /* USER CODE BEGIN TIM2_Init 0 */

  /* USER CODE END TIM2_Init 0 */

  TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  TIM_MasterConfigTypeDef sMasterConfig = {0};

  /* USER CODE BEGIN TIM2_Init 1 */

  /* USER CODE END TIM2_Init 1 */
  htim2.Instance = TIM2;
  htim2.Init.Prescaler = PRESCALER_VALUE;
  htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim2.Init.Period = PERIOD_VALUE;
  htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
  {
    Error_Handler();
  }
  sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
  {
    Error_Handler();
  }
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN TIM2_Init 2 */

  /* USER CODE END TIM2_Init 2 */

}

/*************************************************************
 *
 * WRAP FUNCTIONS
 *
 *************************************************************/

/**
 * @brief Declare here empty functions to over-write the default one as it declared as WEAK in HAL.
 * This is the way to avoid systick use which is initialized by default in HAL_Init() and suspended or resumed in LPM.
 *
 * @param None
 */
HAL_StatusTypeDef HAL_InitTick( uint32_t TickPriority )
{
  return (HAL_OK);
}

void HAL_SuspendTick(void)
{
}

void HAL_ResumeTick(void)
{
}

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  BSP_LED_On(LED_BLUE);
  /* USER CODE BEGIN Error_Handler */
  /* User can add his own implementation to report the HAL error return state */
  /* USER CODE END Error_Handler */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{ 
  /* USER CODE BEGIN assert_failed */
  /* User can add his own implementation to report the file name and line number,
     tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END assert_failed */
}
#endif /* USE_FULL_ASSERT */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/