Welcome to mirror list, hosted at ThFree Co, Russian Federation.

main.c « Src « I2C_TwoBoards_AdvComIT « I2C « Examples « P-NUCLEO-WB55.Nucleo « Projects - github.com/Flipper-Zero/STM32CubeWB.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 17648edc5342c6f4c3bd436cea6238e47003eea6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file    I2C/I2C_TwoBoards_AdvComIT/Src/main.c
  * @author  MCD Application Team
  * @brief   This sample code shows how to use STM32WBxx I2C HAL API to transmit
  *          and receive a data buffer with a communication process based on
  *          IT transfer.
  *          The communication is done using 2 Boards.
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; Copyright (c) 2019 STMicroelectronics. 
  * All rights reserved.</center></h2>
  *
  * This software component is licensed by ST under BSD 3-Clause license,
  * the "License"; You may not use this file except in compliance with the 
  * License. You may obtain a copy of the License at:
  *                        opensource.org/licenses/BSD-3-Clause
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* Uncomment this line to use the board as master, if not it is used as slave */
#define MASTER_BOARD
#define MASTER_REQ_READ    0x12
#define MASTER_REQ_WRITE   0x34
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/
I2C_HandleTypeDef hi2c1;

/* USER CODE BEGIN PV */
/* Buffer used for transmission */
uint8_t aTxBuffer[] = " ****I2C_TwoBoards communication based on IT****  ****I2C_TwoBoards communication based on IT****  ****I2C_TwoBoards communication based on IT**** ";

/* Buffer used for reception */
uint8_t aRxBuffer[RXBUFFERSIZE];
__IO uint16_t hTxNumData = 0;
__IO uint16_t hRxNumData = 0;
uint8_t bTransferRequest = 0;

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_I2C1_Init(void);
/* USER CODE BEGIN PFP */
/* Private function prototypes -----------------------------------------------*/
static uint16_t Buffercmp(uint8_t *pBuffer1, uint8_t *pBuffer2, uint16_t BufferLength);
static void Flush_Buffer(uint8_t* pBuffer, uint16_t BufferLength);
/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */
  /* STM32WBxx HAL library initialization:
       - Configure the Flash prefetch
       - Systick timer is configured by default as source of time base, but user 
         can eventually implement his proper time base source (a general purpose 
         timer for example or other time source), keeping in mind that Time base 
         duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and 
         handled in milliseconds basis.
       - Set NVIC Group Priority to 4
       - Low Level Initialization
     */
  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_I2C1_Init();
  /* USER CODE BEGIN 2 */
  /* Configure LED2 and LED3 */
  BSP_LED_Init(LED2);
  BSP_LED_Init(LED3);

/* ****************************************************************************
                    MASTER SECTION
*/

#ifdef MASTER_BOARD
  /* Configure User push-button (SW1) */
  BSP_PB_Init(BUTTON_SW1, BUTTON_MODE_GPIO);

  /* Wait for User push-button (SW1) press before starting the Communication */
  while (BSP_PB_GetState(BUTTON_SW1) != GPIO_PIN_RESET)
  {
  }

  /* Wait for User push-button (SW1) release before starting the Communication */
  while (BSP_PB_GetState(BUTTON_SW1) != GPIO_PIN_SET)
  {
  }
#endif /* MASTER_BOARD */
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
#ifdef MASTER_BOARD
    /* Initialize number of data variables */
    hTxNumData = TXBUFFERSIZE;
    hRxNumData = RXBUFFERSIZE;

    /* Update bTransferRequest to send buffer write request for Slave */
    bTransferRequest = MASTER_REQ_WRITE;

    /*##-2- Master sends write request for slave #############################*/
    do
    {
      if(HAL_I2C_Master_Transmit_IT(&hi2c1, (uint16_t)(I2C_ADDRESS), (uint8_t*)&bTransferRequest, 1)!= HAL_OK)
      {
        /* Error_Handler() function is called when error occurs. */
        Error_Handler();
      }

      /*  Before starting a new communication transfer, you need to check the current   
          state of the peripheral; if it’s busy you need to wait for the end of current
          transfer before starting a new one.
          For simplicity reasons, this example is just waiting till the end of the 
          transfer, but application may perform other tasks while transfer operation
          is ongoing. */  
      while (HAL_I2C_GetState(&hi2c1) != HAL_I2C_STATE_READY)
      {
      } 

      /* When Acknowledge failure occurs (Slave don't acknowledge it's address)
         Master restarts communication */
    }
    while(HAL_I2C_GetError(&hi2c1) == HAL_I2C_ERROR_AF);

    /*##-3- Master sends number of data to be written ########################*/
    do
    {
      if(HAL_I2C_Master_Transmit_IT(&hi2c1, (uint16_t)(I2C_ADDRESS),(uint8_t*)&hTxNumData, 2)!= HAL_OK)
      {
        /* Error_Handler() function is called when error occurs. */
        Error_Handler();
      }

      /*  Before starting a new communication transfer, you need to check the current   
          state of the peripheral; if it’s busy you need to wait for the end of current
          transfer before starting a new one.
          For simplicity reasons, this example is just waiting till the end of the 
          transfer, but application may perform other tasks while transfer operation
          is ongoing. */  
      while (HAL_I2C_GetState(&hi2c1) != HAL_I2C_STATE_READY)
      {
      } 

      /* When Acknowledge failure occurs (Slave don't acknowledge it's address)
         Master restarts communication */
    }
    while(HAL_I2C_GetError(&hi2c1) == HAL_I2C_ERROR_AF);

    /*##-4- Master sends aTxBuffer to slave ##################################*/
    do
    {
      if(HAL_I2C_Master_Transmit_IT(&hi2c1, (uint16_t)(I2C_ADDRESS), (uint8_t*)aTxBuffer, TXBUFFERSIZE)!= HAL_OK)
      {
        /* Error_Handler() function is called when error occurs. */
        Error_Handler();
      }

      /*  Before starting a new communication transfer, you need to check the current   
          state of the peripheral; if it’s busy you need to wait for the end of current
          transfer before starting a new one.
          For simplicity reasons, this example is just waiting till the end of the 
          transfer, but application may perform other tasks while transfer operation
          is ongoing. */  
      while (HAL_I2C_GetState(&hi2c1) != HAL_I2C_STATE_READY)
      {
      } 

      /* When Acknowledge failure occurs (Slave don't acknowledge it's address)
         Master restarts communication */
    }
    while(HAL_I2C_GetError(&hi2c1) == HAL_I2C_ERROR_AF);

    /* Update bTransferRequest to send buffer read request for Slave */
    bTransferRequest = MASTER_REQ_READ;

    /*##-5- Master sends read request for slave ##############################*/
    do
    {
      if(HAL_I2C_Master_Transmit_IT(&hi2c1, (uint16_t)(I2C_ADDRESS), (uint8_t*)&bTransferRequest, 1)!= HAL_OK)
      {
        /* Error_Handler() function is called when error occurs. */
        Error_Handler();
      }

      /*  Before starting a new communication transfer, you need to check the current   
          state of the peripheral; if it’s busy you need to wait for the end of current
          transfer before starting a new one.
          For simplicity reasons, this example is just waiting till the end of the 
          transfer, but application may perform other tasks while transfer operation
          is ongoing. */  
      while (HAL_I2C_GetState(&hi2c1) != HAL_I2C_STATE_READY)
      {
      } 

      /* When Acknowledge failure occurs (Slave don't acknowledge it's address)
         Master restarts communication */
    }
    while(HAL_I2C_GetError(&hi2c1) == HAL_I2C_ERROR_AF);

    /*##-6- Master sends number of data to be read ###########################*/
    do
    {
      if(HAL_I2C_Master_Transmit_IT(&hi2c1, (uint16_t)(I2C_ADDRESS), (uint8_t*)&hRxNumData, 2)!= HAL_OK)
      {
        /* Error_Handler() function is called when error occurs. */
        Error_Handler();
      }

      /*  Before starting a new communication transfer, you need to check the current   
          state of the peripheral; if it’s busy you need to wait for the end of current
          transfer before starting a new one.
          For simplicity reasons, this example is just waiting till the end of the 
          transfer, but application may perform other tasks while transfer operation
          is ongoing. */  
      while (HAL_I2C_GetState(&hi2c1) != HAL_I2C_STATE_READY)
      {
      } 

      /* When Acknowledge failure occurs (Slave don't acknowledge it's address)
         Master restarts communication */
    }
    while(HAL_I2C_GetError(&hi2c1) == HAL_I2C_ERROR_AF);

    /*##-7- Master receives aRxBuffer from slave #############################*/
    do
    {
      if(HAL_I2C_Master_Receive_IT(&hi2c1, (uint16_t)(I2C_ADDRESS),(uint8_t*)aRxBuffer, RXBUFFERSIZE)!= HAL_OK)
      {
        /* Error_Handler() function is called when error occurs. */
        Error_Handler();
      }

      /*  Before starting a new communication transfer, you need to check the current   
          state of the peripheral; if it’s busy you need to wait for the end of current
          transfer before starting a new one.
          For simplicity reasons, this example is just waiting till the end of the 
          transfer, but application may perform other tasks while transfer operation
          is ongoing. */  
      while (HAL_I2C_GetState(&hi2c1) != HAL_I2C_STATE_READY)
      {
      } 

      /* When Acknowledge failure occurs (Slave don't acknowledge it's address)
         Master restarts communication */
    }
    while(HAL_I2C_GetError(&hi2c1) == HAL_I2C_ERROR_AF);

    /* Check correctness of received buffer ##################################*/
    if(Buffercmp((uint8_t*)aTxBuffer,(uint8_t*)aRxBuffer,hRxNumData))
    {
      /* Processing Error */
      Error_Handler();
    }

    /* Flush Rx buffers */
    Flush_Buffer((uint8_t*)aRxBuffer,RXBUFFERSIZE);

    /* Toggle LED2 */
    BSP_LED_Toggle(LED2);

    /* This delay permits to see LED2 toggling */
    HAL_Delay(25);
#else /* MASTER_BOARD */
/* ****************************************************************************
                    SLAVE SECTION
*/
    /* Initialize number of data variables */
    hTxNumData = 0;
    hRxNumData = 0;

    /*##-2- Slave receive request from master ################################*/
    while(HAL_I2C_Slave_Receive_IT(&hi2c1, (uint8_t*)&bTransferRequest, 1)!= HAL_OK)
    {
    }

    /*  Before starting a new communication transfer, you need to check the current
    state of the peripheral; if it’s busy you need to wait for the end of current
    transfer before starting a new one.
    For simplicity reasons, this example is just waiting till the end of the
    transfer, but application may perform other tasks while transfer operation
    is ongoing. */
    while (HAL_I2C_GetState(&hi2c1) != HAL_I2C_STATE_READY)
    {
    }

    /* If master request write operation #####################################*/
    if (bTransferRequest == MASTER_REQ_WRITE)
    {
      /*##-3- Slave receive number of data to be read ########################*/
      while(HAL_I2C_Slave_Receive_IT(&hi2c1, (uint8_t*)&hRxNumData, 2)!= HAL_OK);

      /*  Before starting a new communication transfer, you need to check the current
      state of the peripheral; if it’s busy you need to wait for the end of current
      transfer before starting a new one.
      For simplicity reasons, this example is just waiting till the end of the
      transfer, but application may perform other tasks while transfer operation
      is ongoing. */
      while (HAL_I2C_GetState(&hi2c1) != HAL_I2C_STATE_READY)
      {
      }

      /*##-4- Slave receives aRxBuffer from master ###########################*/
      while(HAL_I2C_Slave_Receive_IT(&hi2c1, (uint8_t*)aRxBuffer, hRxNumData)!= HAL_OK);

      /*  Before starting a new communication transfer, you need to check the current
      state of the peripheral; if it’s busy you need to wait for the end of current
      transfer before starting a new one.
      For simplicity reasons, this example is just waiting till the end of the
      transfer, but application may perform other tasks while transfer operation
      is ongoing. */
      while (HAL_I2C_GetState(&hi2c1) != HAL_I2C_STATE_READY)
      {
      }

      /* Check correctness of received buffer ################################*/
      if(Buffercmp((uint8_t*)aTxBuffer,(uint8_t*)aRxBuffer,hRxNumData))
      {
        /* Processing Error */
        Error_Handler();
      }

      /* Flush Rx buffers */
      Flush_Buffer((uint8_t*)aRxBuffer,RXBUFFERSIZE);

      /* Toggle LED2 */
      BSP_LED_Toggle(LED2);
    }
    /* If master request write operation #####################################*/
    else
    {
      /*##-3- Slave receive number of data to be written #####################*/
      while(HAL_I2C_Slave_Receive_IT(&hi2c1, (uint8_t*)&hTxNumData, 2)!= HAL_OK);

      /*  Before starting a new communication transfer, you need to check the current
      state of the peripheral; if it’s busy you need to wait for the end of current
      transfer before starting a new one.
      For simplicity reasons, this example is just waiting till the end of the
      transfer, but application may perform other tasks while transfer operation
      is ongoing. */
      while (HAL_I2C_GetState(&hi2c1) != HAL_I2C_STATE_READY)
      {
      }

      /*##-4- Slave transmit aTxBuffer to master #############################*/
      while(HAL_I2C_Slave_Transmit_IT(&hi2c1, (uint8_t*)aTxBuffer, RXBUFFERSIZE)!= HAL_OK);

      /*  Before starting a new communication transfer, you need to check the current
      state of the peripheral; if it’s busy you need to wait for the end of current
      transfer before starting a new one.
      For simplicity reasons, this example is just waiting till the end of the
      transfer, but application may perform other tasks while transfer operation
      is ongoing. */
      while (HAL_I2C_GetState(&hi2c1) != HAL_I2C_STATE_READY)
      {
      }
    }

#endif /* MASTER_BOARD */
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_MSI;
  RCC_OscInitStruct.MSIState = RCC_MSI_ON;
  RCC_OscInitStruct.MSICalibrationValue = RCC_MSICALIBRATION_DEFAULT;
  RCC_OscInitStruct.MSIClockRange = RCC_MSIRANGE_6;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_MSI;
  RCC_OscInitStruct.PLL.PLLM = RCC_PLLM_DIV1;
  RCC_OscInitStruct.PLL.PLLN = 32;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV5;
  RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = 4;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
  /** Configure the SYSCLKSource, HCLK, PCLK1 and PCLK2 clocks dividers
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK4|RCC_CLOCKTYPE_HCLK2
                              |RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
  RCC_ClkInitStruct.AHBCLK2Divider = RCC_SYSCLK_DIV2;
  RCC_ClkInitStruct.AHBCLK4Divider = RCC_SYSCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_3) != HAL_OK)
  {
    Error_Handler();
  }
  /** Initializes the peripherals clocks
  */
  /* USER CODE BEGIN Smps */

  /* USER CODE END Smps */
}

/**
  * @brief I2C1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_I2C1_Init(void)
{

  /* USER CODE BEGIN I2C1_Init 0 */

  /* USER CODE END I2C1_Init 0 */

  /* USER CODE BEGIN I2C1_Init 1 */

  /* USER CODE END I2C1_Init 1 */
  hi2c1.Instance = I2C1;
  hi2c1.Init.Timing = 0x00000E14;
  hi2c1.Init.OwnAddress1 = I2C_ADDRESS;
  hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
  hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
  hi2c1.Init.OwnAddress2 = 0;
  hi2c1.Init.OwnAddress2Masks = I2C_OA2_NOMASK;
  hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
  hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
  if (HAL_I2C_Init(&hi2c1) != HAL_OK)
  {
    Error_Handler();
  }
  /** Configure Analogue filter
  */
  if (HAL_I2CEx_ConfigAnalogFilter(&hi2c1, I2C_ANALOGFILTER_ENABLE) != HAL_OK)
  {
    Error_Handler();
  }
  /** Configure Digital filter
  */
  if (HAL_I2CEx_ConfigDigitalFilter(&hi2c1, 0) != HAL_OK)
  {
    Error_Handler();
  }
  /** I2C Enable Fast Mode Plus
  */
  HAL_I2CEx_EnableFastModePlus(I2C_FASTMODEPLUS_I2C1);
  /* USER CODE BEGIN I2C1_Init 2 */

  /* USER CODE END I2C1_Init 2 */

}

/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPIO_Init(void)
{

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOB_CLK_ENABLE();

}

/* USER CODE BEGIN 4 */
/**
  * @brief  Compares two buffers.
  * @param  pBuffer1, pBuffer2: buffers to be compared.
  * @param  BufferLength: buffer's length
  * @retval 0  : pBuffer1 identical to pBuffer2
  *         >0 : pBuffer1 differs from pBuffer2
  */
static uint16_t Buffercmp(uint8_t* pBuffer1, uint8_t* pBuffer2, uint16_t BufferLength)
{
  while (BufferLength--)
  {
    if ((*pBuffer1) != *pBuffer2)
    {
      return BufferLength;
    }
    pBuffer1++;
    pBuffer2++;
  }

  return 0;
}

/**
  * @brief  Flushes the buffer
  * @param  pBuffer: buffers to be flushed.
  * @param  BufferLength: buffer's length
  * @retval None
  */
static void Flush_Buffer(uint8_t* pBuffer, uint16_t BufferLength)
{
  while (BufferLength--)
  {
    *pBuffer = 0;

    pBuffer++;
  }
}

/**
  * @brief  I2C error callbacks.
  * @param  I2cHandle: I2C handle
  * @note   This example shows a simple way to report transfer error, and you can
  *         add your own implementation.
  * @retval None
  */
void HAL_I2C_ErrorCallback(I2C_HandleTypeDef *I2cHandle)
{
  /** Error_Handler() function is called when error occurs.
    * 1- When Slave don't acknowledge it's address, Master restarts communication.
    * 2- When Master don't acknowledge the last data transferred, Slave don't care in this example.
    */
  if (HAL_I2C_GetError(I2cHandle) != HAL_I2C_ERROR_AF)
  {
    Error_Handler();
  }
}


/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  /* Turn LED3 on */
  BSP_LED_On(LED3);
  while(1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
    ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/