Welcome to mirror list, hosted at ThFree Co, Russian Federation.

main.c « Src « TIM_InputCapture_Init « TIM « Examples_LL « P-NUCLEO-WB55.Nucleo « Projects - github.com/Flipper-Zero/STM32CubeWB.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: d1ec481c643413b39fb7dbd522b506ff927fe9d4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file    Examples_LL/TIM/TIM_InputCapture_Init/Src/main.c
  * @author  MCD Application Team
  * @brief   This example describes how to use a timer instance in input 
  *          capture mode using the STM32WBxx TIM LL API.
  *          Peripheral initialization done using LL unitary services functions.
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2019-2021 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */

/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* Number of frequencies */
#define TIM_FREQUENCIES_NB 10
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/

/* USER CODE BEGIN PV */
/* Frequency table */
static uint32_t aFrequency[TIM_FREQUENCIES_NB] = {
  2000,   /*  2 kHz */
  4000,   /*  4 kHz */
  6000,   /*  6 kHz */
  8000,   /*  8 kHz */
  10000,  /* 10 kHz */
  12000,  /* 12 kHz */
  14000,  /* 14 kHz */
  16000,  /* 16 kHz */
  18000,  /* 18 kHz */
  20000,  /* 20 kHz */
};

/* Frequency index */
static uint8_t iFrequency = 0;

/* Measured frequency */
__IO uint32_t uwMeasuredFrequency = 0;

/* TIM2 Clock */
static uint32_t TimOutClock = 1;
static uint32_t tim_period = 0;
static uint32_t tim_pulse_value = 0;

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
void PeriphCommonClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_TIM1_Init(void);
static void MX_TIM2_Init(void);
/* USER CODE BEGIN PFP */
__STATIC_INLINE void Configure_Frequency(uint32_t Frequency);
__STATIC_INLINE void LED_Blinking(uint32_t Period);
/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */

  NVIC_SetPriorityGrouping(NVIC_PRIORITYGROUP_4);

  /* System interrupt init*/

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

/* Configure the peripherals common clocks */
  PeriphCommonClock_Config();

  /* USER CODE BEGIN SysInit */

  /* Set the auto-reload value to have a counter frequency of 2 kHz           */
  /* TIM2CLK = SystemCoreClock / (APB prescaler & multiplier)                 */
  TimOutClock = SystemCoreClock/(2/2);
  /* TIM2 counter frequency = TimOutClock / (ARR + 1)                   */
  tim_period = __LL_TIM_CALC_ARR(TimOutClock, 0, aFrequency[0]);

  /* Set compare value to half of the counter period (50% duty cycle )*/
  tim_pulse_value = tim_period / 2;

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_TIM1_Init();
  MX_TIM2_Init();
  /* USER CODE BEGIN 2 */

  /**************************/
  /* TIM1 interrupts set-up */
  /**************************/
  /* Enable the capture/compare interrupt for channel 1 */
  LL_TIM_EnableIT_CC1(TIM1);
  
  /***********************/
  /* Start input capture */
  /***********************/
  /* Enable input channel 1 */
  LL_TIM_CC_EnableChannel(TIM1, LL_TIM_CHANNEL_CH1);
    
  /* Enable counter */
  LL_TIM_EnableCounter(TIM1);

  /* Enable TIM2_CCR1 register preload. Read/Write operations access the      */
  /* preload register. TIM2_CCR1 preload value is loaded in the active        */
  /* at each update event.                                                    */
  LL_TIM_OC_EnablePreload(TIM2, LL_TIM_CHANNEL_CH1);
  
  /**********************************/
  /* Start output signal generation */
  /**********************************/
  /* Enable output channel 1 */
  LL_TIM_CC_EnableChannel(TIM2, LL_TIM_CHANNEL_CH1);
    
  /* Enable counter */
  LL_TIM_EnableCounter(TIM2);

  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  LL_FLASH_SetLatency(LL_FLASH_LATENCY_3);

  /* MSI configuration and activation */
  LL_RCC_MSI_Enable();
  while(LL_RCC_MSI_IsReady() != 1)
  {
  }

  /* Main PLL configuration and activation */
  LL_RCC_PLL_ConfigDomain_SYS(LL_RCC_PLLSOURCE_MSI, LL_RCC_PLLM_DIV_1, 32, LL_RCC_PLLR_DIV_2);
  LL_RCC_PLL_Enable();
  LL_RCC_PLL_EnableDomain_SYS();
  while(LL_RCC_PLL_IsReady() != 1)
  {
  }

  /* Sysclk activation on the main PLL */
  /* Set CPU1 prescaler*/
  LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_1);

  /* Set CPU2 prescaler*/
  LL_C2_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_2);

  LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_PLL);
  while(LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_PLL)
  {
  }

  /* Set AHB SHARED prescaler*/
  LL_RCC_SetAHB4Prescaler(LL_RCC_SYSCLK_DIV_1);

  /* Set APB1 prescaler*/
  LL_RCC_SetAPB1Prescaler(LL_RCC_APB1_DIV_1);

  /* Set APB2 prescaler*/
  LL_RCC_SetAPB2Prescaler(LL_RCC_APB2_DIV_1);

  LL_Init1msTick(64000000);

  /* Update CMSIS variable (which can be updated also through SystemCoreClockUpdate function) */
  LL_SetSystemCoreClock(64000000);
}

/**
  * @brief Peripherals Common Clock Configuration
  * @retval None
  */
void PeriphCommonClock_Config(void)
{
  /* USER CODE BEGIN Smps */

  /* USER CODE END Smps */
}

/**
  * @brief TIM1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_TIM1_Init(void)
{

  /* USER CODE BEGIN TIM1_Init 0 */

  /* USER CODE END TIM1_Init 0 */

  LL_TIM_InitTypeDef TIM_InitStruct = {0};

  LL_GPIO_InitTypeDef GPIO_InitStruct = {0};

  /* Peripheral clock enable */
  LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_TIM1);

  LL_AHB2_GRP1_EnableClock(LL_AHB2_GRP1_PERIPH_GPIOA);
  /**TIM1 GPIO Configuration
  PA8   ------> TIM1_CH1
  */
  GPIO_InitStruct.Pin = LL_GPIO_PIN_8;
  GPIO_InitStruct.Mode = LL_GPIO_MODE_ALTERNATE;
  GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_LOW;
  GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
  GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
  GPIO_InitStruct.Alternate = LL_GPIO_AF_1;
  LL_GPIO_Init(GPIOA, &GPIO_InitStruct);

  /* TIM1 interrupt Init */
  NVIC_SetPriority(TIM1_CC_IRQn, NVIC_EncodePriority(NVIC_GetPriorityGrouping(),0, 0));
  NVIC_EnableIRQ(TIM1_CC_IRQn);

  /* USER CODE BEGIN TIM1_Init 1 */

  /* USER CODE END TIM1_Init 1 */
  TIM_InitStruct.Prescaler = 0;
  TIM_InitStruct.CounterMode = LL_TIM_COUNTERMODE_UP;
  TIM_InitStruct.Autoreload = 0xFFFF;
  TIM_InitStruct.ClockDivision = LL_TIM_CLOCKDIVISION_DIV1;
  TIM_InitStruct.RepetitionCounter = 0;
  LL_TIM_Init(TIM1, &TIM_InitStruct);
  LL_TIM_DisableARRPreload(TIM1);
  LL_TIM_SetTriggerOutput(TIM1, LL_TIM_TRGO_RESET);
  LL_TIM_SetTriggerOutput2(TIM1, LL_TIM_TRGO2_RESET);
  LL_TIM_DisableMasterSlaveMode(TIM1);
  LL_TIM_IC_SetActiveInput(TIM1, LL_TIM_CHANNEL_CH1, LL_TIM_ACTIVEINPUT_DIRECTTI);
  LL_TIM_IC_SetPrescaler(TIM1, LL_TIM_CHANNEL_CH1, LL_TIM_ICPSC_DIV1);
  LL_TIM_IC_SetFilter(TIM1, LL_TIM_CHANNEL_CH1, LL_TIM_IC_FILTER_FDIV1);
  LL_TIM_IC_SetPolarity(TIM1, LL_TIM_CHANNEL_CH1, LL_TIM_IC_POLARITY_RISING);
  /* USER CODE BEGIN TIM1_Init 2 */

  /* USER CODE END TIM1_Init 2 */

}

/**
  * @brief TIM2 Initialization Function
  * @param None
  * @retval None
  */
static void MX_TIM2_Init(void)
{

  /* USER CODE BEGIN TIM2_Init 0 */

  /* USER CODE END TIM2_Init 0 */

  LL_TIM_InitTypeDef TIM_InitStruct = {0};
  LL_TIM_OC_InitTypeDef TIM_OC_InitStruct = {0};

  LL_GPIO_InitTypeDef GPIO_InitStruct = {0};

  /* Peripheral clock enable */
  LL_APB1_GRP1_EnableClock(LL_APB1_GRP1_PERIPH_TIM2);

  /* USER CODE BEGIN TIM2_Init 1 */

  /* USER CODE END TIM2_Init 1 */
  TIM_InitStruct.Prescaler = 0;
  TIM_InitStruct.CounterMode = LL_TIM_COUNTERMODE_UP;
  TIM_InitStruct.Autoreload = tim_period;
  TIM_InitStruct.ClockDivision = LL_TIM_CLOCKDIVISION_DIV1;
  LL_TIM_Init(TIM2, &TIM_InitStruct);
  LL_TIM_EnableARRPreload(TIM2);
  LL_TIM_OC_EnablePreload(TIM2, LL_TIM_CHANNEL_CH1);
  TIM_OC_InitStruct.OCMode = LL_TIM_OCMODE_PWM1;
  TIM_OC_InitStruct.OCState = LL_TIM_OCSTATE_DISABLE;
  TIM_OC_InitStruct.OCNState = LL_TIM_OCSTATE_DISABLE;
  TIM_OC_InitStruct.CompareValue = tim_pulse_value;
  TIM_OC_InitStruct.OCPolarity = LL_TIM_OCPOLARITY_HIGH;
  LL_TIM_OC_Init(TIM2, LL_TIM_CHANNEL_CH1, &TIM_OC_InitStruct);
  LL_TIM_OC_DisableFast(TIM2, LL_TIM_CHANNEL_CH1);
  LL_TIM_SetTriggerOutput(TIM2, LL_TIM_TRGO_RESET);
  LL_TIM_DisableMasterSlaveMode(TIM2);
  /* USER CODE BEGIN TIM2_Init 2 */

  /* USER CODE END TIM2_Init 2 */
  LL_AHB2_GRP1_EnableClock(LL_AHB2_GRP1_PERIPH_GPIOA);
  /**TIM2 GPIO Configuration
  PA5   ------> TIM2_CH1
  */
  GPIO_InitStruct.Pin = TIM2_CH1_Pin;
  GPIO_InitStruct.Mode = LL_GPIO_MODE_ALTERNATE;
  GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_LOW;
  GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
  GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
  GPIO_InitStruct.Alternate = LL_GPIO_AF_1;
  LL_GPIO_Init(TIM2_CH1_GPIO_Port, &GPIO_InitStruct);

}

/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
  LL_EXTI_InitTypeDef EXTI_InitStruct = {0};
  LL_GPIO_InitTypeDef GPIO_InitStruct = {0};

  /* GPIO Ports Clock Enable */
  LL_AHB2_GRP1_EnableClock(LL_AHB2_GRP1_PERIPH_GPIOA);
  LL_AHB2_GRP1_EnableClock(LL_AHB2_GRP1_PERIPH_GPIOC);
  LL_AHB2_GRP1_EnableClock(LL_AHB2_GRP1_PERIPH_GPIOB);

  /**/
  LL_GPIO_ResetOutputPin(LED2_GPIO_Port, LED2_Pin);

  /**/
  LL_SYSCFG_SetEXTISource(LL_SYSCFG_EXTI_PORTC, LL_SYSCFG_EXTI_LINE4);

  /**/
  EXTI_InitStruct.Line_0_31 = LL_EXTI_LINE_4;
  EXTI_InitStruct.Line_32_63 = LL_EXTI_LINE_NONE;
  EXTI_InitStruct.LineCommand = ENABLE;
  EXTI_InitStruct.Mode = LL_EXTI_MODE_IT;
  EXTI_InitStruct.Trigger = LL_EXTI_TRIGGER_FALLING;
  LL_EXTI_Init(&EXTI_InitStruct);

  /**/
  LL_GPIO_SetPinPull(USER_BUTTON_GPIO_Port, USER_BUTTON_Pin, LL_GPIO_PULL_UP);

  /**/
  LL_GPIO_SetPinMode(USER_BUTTON_GPIO_Port, USER_BUTTON_Pin, LL_GPIO_MODE_INPUT);

  /**/
  GPIO_InitStruct.Pin = LED2_Pin;
  GPIO_InitStruct.Mode = LL_GPIO_MODE_OUTPUT;
  GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_LOW;
  GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
  GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
  LL_GPIO_Init(LED2_GPIO_Port, &GPIO_InitStruct);

  /* EXTI interrupt init*/
  NVIC_SetPriority(EXTI4_IRQn, NVIC_EncodePriority(NVIC_GetPriorityGrouping(),3, 0));
  NVIC_EnableIRQ(EXTI4_IRQn);

}

/* USER CODE BEGIN 4 */

/**
  * @brief  Changes the frequency of the PWM signal.
  * @note this function is executed within the CC1 interrupt service
  *       routine context.
  * @param  Requested frequency
  * @retval None
  */
__STATIC_INLINE void Configure_Frequency(uint32_t Frequency)
{
  /* Set the auto-reload value to have the requested frequency */
  /* Frequency = TIM2CLK / (ARR + 1)                   */
  LL_TIM_SetAutoReload(TIM2, __LL_TIM_CALC_ARR(TimOutClock, LL_TIM_GetPrescaler(TIM2), Frequency));
 
  /* Set compare value to half of the counter period (50% duty cycle )*/
  LL_TIM_OC_SetCompareCH1(TIM2, (LL_TIM_GetAutoReload(TIM2) / 2));
}

/**
  * @brief  Set LED2 to Blinking mode for an infinite loop (toggle period based on value provided as input parameter).
  * @param  Period : Period of time (in ms) between each toggling of LED
  *   This parameter can be user defined values. Pre-defined values used in that example are :
  *     @arg LED_BLINK_FAST : Fast Blinking
  *     @arg LED_BLINK_SLOW : Slow Blinking
  *     @arg LED_BLINK_ERROR : Error specific Blinking
  * @retval None
  */
__STATIC_INLINE void LED_Blinking(uint32_t Period)
{
  /* Toggle IO in an infinite loop */
  while (1)
  {
    LL_GPIO_TogglePin(LED2_GPIO_Port, LED2_Pin);  
    LL_mDelay(Period);
  }
}

/******************************************************************************/
/*   USER IRQ HANDLER TREATMENT                                               */
/******************************************************************************/
/**
  * @brief  User button interrupt processing
  * @note   When the user key button is pressed the frequency of the  
  *         PWM signal generated by TIM2 is updated. 
  * @param  None
  * @retval None
  */
void UserButton_Callback(void)
{
  /* Set new PWM signal frequency */
  iFrequency = (iFrequency + 1) % TIM_FREQUENCIES_NB;

  /* Change PWM signal frequency */
  Configure_Frequency(aFrequency[iFrequency]);
}

/**
  * @brief  Timer capture/compare interrupt processing
  * @note TIM1 input capture module is used to capture the value of the counter
  *       after a transition is detected by the corresponding input channel.
  * @param  None
  * @retval None
  */
void TimerCaptureCompare_Callback(void)
{
  /* Capture index */
  static uint16_t uhCaptureIndex = 0;
  
  /* Captured Values */
  static uint32_t uwICValue1 = 0;
  static uint32_t uwICValue2 = 0;
  static uint32_t uwDiffCapture = 0;
  
  uint32_t TIM1CLK;
  uint32_t PSC;
  uint32_t IC1PSC;
  uint32_t IC1Polarity;
  
  if(uhCaptureIndex == 0)
  {
    /* Get the 1st Input Capture value */
    uwICValue1 = LL_TIM_IC_GetCaptureCH1(TIM1);
    uhCaptureIndex = 1;
  }
  else if(uhCaptureIndex == 1)
  {
    /* Get the 2nd Input Capture value */
    uwICValue2 = LL_TIM_IC_GetCaptureCH1(TIM1); 
    
    /* Capture computation */
    if (uwICValue2 > uwICValue1)
    {
      uwDiffCapture = (uwICValue2 - uwICValue1); 
    }
    else if (uwICValue2 < uwICValue1)
    {
      uwDiffCapture = ((TIM1_ARR_MAX - uwICValue1) + uwICValue2) + 1; 
    }
    else
    {
      /* If capture values are equal, we have reached the limit of frequency  */
      /* measures.                                                            */
      LED_Blinking(LED_BLINK_ERROR);
    }
    
    /* The signal frequency is calculated as follows:                         */      
    /* Frequency = (TIM1*IC1PSC) / (Capture*(PSC+1)*IC1Polarity)           */
    /* where:                                                                 */                                                          
    /*  Capture is the difference between two consecutive captures            */
    /*  TIM1CLK is the timer counter clock frequency                           */
    /*  PSC is the timer prescaler value                                      */
    /*  IC1PSC is the input capture prescaler value                           */
    /*  IC1Polarity value depends on the capture sensitivity:                 */
    /*    1 if the input is sensitive to rising or falling edges              */
    /*    2 if the input is sensitive to both rising and falling edges        */
    
    /* Retrieve actual TIM1 counter clock frequency */
    TIM1CLK = SystemCoreClock;
    
    /* Retrieve actual TIM1 prescaler value */
    PSC = LL_TIM_GetPrescaler(TIM1);
    
    /* Retrieve actual IC1 prescaler ratio */
    IC1PSC = __LL_TIM_GET_ICPSC_RATIO(LL_TIM_IC_GetPrescaler(TIM1, LL_TIM_CHANNEL_CH1));
   
    /* Retrieve actual IC1 polarity setting */
    if (LL_TIM_IC_GetPolarity(TIM1, LL_TIM_CHANNEL_CH1) == LL_TIM_IC_POLARITY_BOTHEDGE)
      IC1Polarity = 2;
    else
      IC1Polarity = 1;
    
    /* Calculate input signal frequency */
    uwMeasuredFrequency = (TIM1CLK *IC1PSC) / (uwDiffCapture*(PSC+1)*IC1Polarity);
    
    /* reset capture index */
    uhCaptureIndex = 0;    
  }
}

/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
 
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */