Welcome to mirror list, hosted at ThFree Co, Russian Federation.

main.c « Src « ADC_SingleConversion_TriggerSW_IT « ADC « Examples_MIX « P-NUCLEO-WB55.Nucleo « Projects - github.com/Flipper-Zero/STM32CubeWB.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: c091e4154dbb65a2a660086b7b2e030115c4abb5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file    Examples_MIX/ADC/ADC_SingleConversion_TriggerSW_IT/Src/main.c
  * @author  MCD Application Team
  * @brief   This example describes how to use a ADC peripheral to perform
  *          a single  ADC conversion of a channel, at each software start.
  *          Example using programming model: interrupt 
  *          (for programming models polling or DMA transfer, refer to
  *          other examples).
  *          This example is based on the STM32WBxx ADC HAL & LL API
  *          (LL API is used for performance improvement).
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; Copyright (c) 2019 STMicroelectronics. 
  * All rights reserved.</center></h2>
  *
  * This software component is licensed by ST under BSD 3-Clause license,
  * the "License"; You may not use this file except in compliance with the 
  * License. You may obtain a copy of the License at:
  *                        opensource.org/licenses/BSD-3-Clause
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */

/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */


/* Definitions of environment analog values */
  /* Value of analog reference voltage (Vref+), connected to analog voltage   */
  /* supply Vdda (unit: mV).                                                  */
  #define VDDA_APPLI                       (3300UL)

/* Definitions of data related to this example */
  /* Full-scale digital value with a resolution of 12 bits (voltage range     */
  /* determined by analog voltage references Vref+ and Vref-,                 */
  /* refer to reference manual).                                              */
  #define DIGITAL_SCALE_12BITS             (__LL_ADC_DIGITAL_SCALE(LL_ADC_RESOLUTION_12B))

  /* Init variable out of ADC expected conversion data range */
  #define VAR_CONVERTED_DATA_INIT_VALUE    (__LL_ADC_DIGITAL_SCALE(LL_ADC_RESOLUTION_12B) + 1)


/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc1;

/* USER CODE BEGIN PV */

/* Peripherals handlers declaration */
/* ADC handler declaration */
ADC_HandleTypeDef    hadc1;


/* Variables for ADC conversion data */
__IO uint16_t uhADCxConvertedData = VAR_CONVERTED_DATA_INIT_VALUE; /* ADC group regular conversion data */

/* Variables for ADC conversion data computation to physical values */
__IO uint16_t uhADCxConvertedData_Voltage_mVolt = 0UL;  /* Value of voltage calculated from ADC conversion data (unit: mV) */

/* Variable to report status of ADC group regular unitary conversion          */
/*  0: ADC group regular unitary conversion is not completed                  */
/*  1: ADC group regular unitary conversion is completed                      */
/*  2: ADC group regular unitary conversion has not been started yet          */
/*     (initial state)                                                        */
__IO uint8_t ubAdcGrpRegularUnitaryConvStatus = 2; /* Variable set into ADC interruption callback */

/* Variable to manage push button on board: interface between ExtLine interruption and main program */
__IO   uint8_t ubUserButtonClickEvent = RESET;  /* Event detection: Set after User Button interrupt */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_ADC1_Init(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */

  /* STM32WBxx HAL library initialization:
       - Configure the Flash prefetch
       - Systick timer is configured by default as source of time base, but user 
         can eventually implement his proper time base source (a general purpose 
         timer for example or other time source), keeping in mind that Time base 
         duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and 
         handled in milliseconds basis.
       - Set NVIC Group Priority to 4
       - Low Level Initialization
     */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */
  /*## Configure peripherals #################################################*/
  
  /* Initialize LEDs on board */
  BSP_LED_Init(LED3);
  BSP_LED_Init(LED2);
  
  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_ADC1_Init();
  /* USER CODE BEGIN 2 */
  
  /* Configure User push-button (SW1) in Interrupt mode */
  BSP_PB_Init(BUTTON_SW1, BUTTON_MODE_EXTI); 
  
  
  /*## Enable peripherals ####################################################*/
  
  /* Note: ADC is enabled afterwards when starting ADC conversion using       */
  /*       function "HAL_ADC_Start_xxx()".                                    */
 
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    /* Note: At this step, a voltage can be supplied to ADC channel input     */
    /*       (by connecting an external signal voltage generator to the       */
    /*       analog input pin) to perform a ADC conversion on a determined    */
    /*       voltage level.                                                   */
    /*       Otherwise, ADC channel input can be let floating, in this case   */
    /*       ADC conversion data will be undetermined.                        */
    
    /* Wait for event on push button to perform following actions */
    while ((ubUserButtonClickEvent) == RESET)
    {
    }
    /* Reset variable for next loop iteration */
    ubUserButtonClickEvent = RESET;
    
    /* Turn LED off before performing a new ADC conversion start */
    BSP_LED_Off(LED2);
    
    /* Reset status variable of ADC group regular unitary conversion before   */
    /* performing a new ADC group regular conversion start.                   */
    if (ubAdcGrpRegularUnitaryConvStatus != 0)
    {
      ubAdcGrpRegularUnitaryConvStatus = 0;
    }
    
    /* Init variable containing ADC conversion data */
    uhADCxConvertedData = VAR_CONVERTED_DATA_INIT_VALUE;
    
    /*## Start ADC conversions ###############################################*/
    
    /* Start ADC group regular conversion with IT */
    /* Note: Perform initial ADC conversion start using driver HAL,           */
    /*       then following ADC conversion start using driver LL.             */
    /*       (mandatory to use driver LL after the first call of              */
    /*       ADC IRQ handler, implemented with driver LL).                    */
    if (LL_ADC_IsEnabled(ADCx) == 0)
    {
      if (HAL_ADC_Start_IT(&hadc1) != HAL_OK)
      {
        /* ADC conversion start error */
        Error_Handler();
      }
    }
    /* ########## Starting from this point HAL API must not be used ########## */
    else
    {
      /* Start ADC group regular conversion */
      /* Note: Hardware constraint (refer to description of the function          */
      /*       below):                                                            */
      /*       On this STM32 serie, setting of this feature is conditioned to     */
      /*       ADC state:                                                         */
      /*       ADC must be enabled without conversion on going on group regular,  */
      /*       without conversion stop command on going on group regular.         */
      /* Note: In this example, all these checks are not necessary but are        */
      /*       implemented anyway to show the best practice usages                */
      /*       corresponding to reference manual procedure.                       */
      /*       Software can be optimized by removing some of these checks, if     */
      /*       they are not relevant considering previous settings and actions    */
      /*       in user application.                                               */
      if ((LL_ADC_IsEnabled(ADCx) == 1)               &&
          (LL_ADC_IsDisableOngoing(ADCx) == 0)        &&
          (LL_ADC_REG_IsConversionOngoing(ADCx) == 0)   )
      {
        LL_ADC_REG_StartConversion(ADCx);
      }
      else
      {
        /* Error: ADC conversion start could not be performed */
        Error_Handler();
      }
    }
    
    /* Note: Variable "ubUserButtonClickEvent" is set into push button        */
    /*       IRQ handler, refer to function "HAL_GPIO_EXTI_Callback()".       */
    
    /* Note: ADC conversions data are stored into variable                    */
    /*       "uhADCxConvertedData".                                           */
    /*       (for debug: see variable content into watch window).             */
    

    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_MSI;
  RCC_OscInitStruct.MSIState = RCC_MSI_ON;
  RCC_OscInitStruct.MSICalibrationValue = RCC_MSICALIBRATION_DEFAULT;
  RCC_OscInitStruct.MSIClockRange = RCC_MSIRANGE_6;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_MSI;
  RCC_OscInitStruct.PLL.PLLM = RCC_PLLM_DIV1;
  RCC_OscInitStruct.PLL.PLLN = 32;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
  /** Configure the SYSCLKSource, HCLK, PCLK1 and PCLK2 clocks dividers
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK4|RCC_CLOCKTYPE_HCLK2
                              |RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
  RCC_ClkInitStruct.AHBCLK2Divider = RCC_SYSCLK_DIV2;
  RCC_ClkInitStruct.AHBCLK4Divider = RCC_SYSCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_3) != HAL_OK)
  {
    Error_Handler();
  }
  /** Initializes the peripherals clocks
  */
  /* USER CODE BEGIN Smps */

  /* USER CODE END Smps */
}

/**
  * @brief ADC1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_ADC1_Init(void)
{

  /* USER CODE BEGIN ADC1_Init 0 */

  /* USER CODE END ADC1_Init 0 */

  ADC_ChannelConfTypeDef sConfig = {0};

  /* USER CODE BEGIN ADC1_Init 1 */

  /* USER CODE END ADC1_Init 1 */
  /** Common config
  */
  hadc1.Instance = ADC1;
  hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
  hadc1.Init.Resolution = ADC_RESOLUTION_12B;
  hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
  hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE;
  hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
  hadc1.Init.LowPowerAutoWait = DISABLE;
  hadc1.Init.ContinuousConvMode = DISABLE;
  hadc1.Init.NbrOfConversion = 1;
  hadc1.Init.DiscontinuousConvMode = DISABLE;
  hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
  hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
  hadc1.Init.DMAContinuousRequests = DISABLE;
  hadc1.Init.Overrun = ADC_OVR_DATA_OVERWRITTEN;
  hadc1.Init.OversamplingMode = DISABLE;
  if (HAL_ADC_Init(&hadc1) != HAL_OK)
  {
    Error_Handler();
  }
  /** Configure Regular Channel
  */
  sConfig.Channel = ADC_CHANNEL_6;
  sConfig.Rank = ADC_REGULAR_RANK_1;
  sConfig.SamplingTime = ADC_SAMPLETIME_92CYCLES_5;
  sConfig.SingleDiff = ADC_SINGLE_ENDED;
  sConfig.OffsetNumber = ADC_OFFSET_NONE;
  sConfig.Offset = 0;
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN ADC1_Init 2 */

  /* USER CODE END ADC1_Init 2 */

}

/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPIO_Init(void)
{

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOA_CLK_ENABLE();

}

/* USER CODE BEGIN 4 */





/******************************************************************************/
/*   USER IRQ HANDLER TREATMENT                                               */
/******************************************************************************/

/**
  * @brief EXTI line detection callbacks
  * @param  GPIO_Pin Specifies the port pin connected to corresponding EXTI line.
  * @retval None
  */
void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
{
 if (GPIO_Pin == BUTTON_SW1_PIN)
 {
   /* Set variable to report push button event to main program */
   ubUserButtonClickEvent = SET;
 }
}

/* Note: Lines of code commented below correspond to the example using        */
/*       HAL driver only.                                                     */
/*       This example demonstrating a mix of HAL and LL drivers has replaced  */
/*       these lines using LL driver.                                         */
// /**
//   * @brief  Conversion complete callback in non blocking mode
//   * @param  AdcHandle : ADC handle
//   * @note   This function is executed when the ADC group regular 
//   *         sequencer has converted one rank of the sequence.
//   *         Therefore, this function is executed as many times as number
//   *         of ranks in the sequence.
//   * @note   This example shows a simple way to report end of conversion
//   *         and get conversion result. You can add your own implementation.
//   * @retval None
//   */
// void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *AdcHandle)
// {
//   /* Retrieve ADC conversion data */
//   uhADCxConvertedData = HAL_ADC_GetValue(AdcHandle);
//
//   /* Computation of ADC conversions raw data to physical values               */
//   /* using LL ADC driver helper macro.                                        */
//   uhADCxConvertedData_Voltage_mVolt = __LL_ADC_CALC_DATA_TO_VOLTAGE(VDDA_APPLI, uhADCxConvertedData, LL_ADC_RESOLUTION_12B);
//
//   /* Update status variable of ADC unitary conversion */
//   ubAdcGrpRegularUnitaryConvStatus = 1;
//
//   /* Set LED depending on ADC unitary conversion status */
//   /* - Turn-on if ADC group regular unitary conversion is completed */
//   /* - Turn-off if ADC group regular unitary conversion is not completed */
//   BSP_LED_On(LED2);
// }
//
// /**
//   * @brief  ADC error callback in non blocking mode
//   *        (ADC conversion with interruption or transfer by DMA)
//   * @param  hadc: ADC handle
//   * @retval None
//   */
// void HAL_ADC_ErrorCallback(ADC_HandleTypeDef *hadc)
// {
//   /* In case of ADC error, call main error handler */
//   Error_Handler();
// }

/**
  * @brief  ADC group regular end of unitary conversion interruption callback
  * @note   This function is executed when the ADC group regular 
  *         sequencer has converted one rank of the sequence.
  *         Therefore, this function is executed as many times as number
  *         of ranks in the sequence.
  * @retval None
  */
void AdcGrpRegularUnitaryConvComplete_Callback()
{
  /* Retrieve ADC conversion data */
  /* (data maximum amplitude corresponds to ADC resolution: 12 bits) */
  uhADCxConvertedData = LL_ADC_REG_ReadConversionData12(ADCx);
  
  /* Computation of ADC conversions raw data to physical values               */
  /* using LL ADC driver helper macro.                                        */
  uhADCxConvertedData_Voltage_mVolt = __LL_ADC_CALC_DATA_TO_VOLTAGE(VDDA_APPLI, uhADCxConvertedData, LL_ADC_RESOLUTION_12B);
  
  /* Update status variable of ADC unitary conversion */
  ubAdcGrpRegularUnitaryConvStatus = 1;
  
  /* Set LED depending on ADC unitary conversion status */
  /* - Turn-on if ADC group regular unitary conversion is completed */
  /* - Turn-off if ADC group regular unitary conversion is not completed */
  BSP_LED_On(LED2);
  
}

/**
  * @brief  ADC group regular overrun interruption callback
  * @note   This function is executed when ADC group regular
  *         overrun error occurs.
  * @retval None
  */
void AdcGrpRegularOverrunError_Callback(void)
{
  /* Note: Disable ADC interruption that caused this error before entering in */
  /*       infinite loop below.                                               */
  
  /* Disable ADC group regular overrun interruption */
  LL_ADC_DisableIT_OVR(ADCx);
  
  /* In case of ADC error, call main error handler */
  Error_Handler();
}


/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  
  /* In case of error, LED3 is toggling at a frequency of 1Hz */
  while(1)
  {
    /* Toggle LED3 */
    BSP_LED_Toggle(LED3);
    HAL_Delay(500);
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */

  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */

  /* Infinite loop */
  while (1)
  {
  }
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/