Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/FormerLurker/ArcWelderLib.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'ArcWelderInverseProcessor/inverse_processor.cpp')
-rw-r--r--ArcWelderInverseProcessor/inverse_processor.cpp267
1 files changed, 218 insertions, 49 deletions
diff --git a/ArcWelderInverseProcessor/inverse_processor.cpp b/ArcWelderInverseProcessor/inverse_processor.cpp
index 4b287d7..70adb8d 100644
--- a/ArcWelderInverseProcessor/inverse_processor.cpp
+++ b/ArcWelderInverseProcessor/inverse_processor.cpp
@@ -200,7 +200,15 @@ void inverse_processor::process()
float radius = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
uint8_t isclockwise = cmd.command == "G2" ? 1 : 0;
output_relative_ = p_cur_pos->is_extruder_relative;
- mc_arc(position, target, offset, static_cast<float>(p_cur_pos->f), radius, isclockwise, 0);
+ switch (cs.interpolation_function)
+ {
+ case InterpolationFunction::INT_SEGMENTS:
+ mc_arc_int_segments(position, target, offset, static_cast<float>(p_cur_pos->f), radius, isclockwise, 0);
+ break;
+ case InterpolationFunction::FLOAT_SEGMENTS:
+ mc_arc_float_segments(position, target, offset, static_cast<float>(p_cur_pos->f), radius, isclockwise, 0);
+ }
+
}
else
{
@@ -237,59 +245,53 @@ void inverse_processor::process()
// The arc is approximated by generating a huge number of tiny, linear segments. The length of each
// segment is configured in settings.mm_per_arc_segment.
-void inverse_processor::mc_arc(float* position, float* target, float* offset, float feed_rate, float radius, uint8_t isclockwise, uint8_t extruder)
+void inverse_processor::mc_arc_int_segments(float* position, float* target, float* offset, float feed_rate, float radius, uint8_t isclockwise, uint8_t extruder)
{
float r_axis_x = -offset[X_AXIS]; // Radius vector from center to current location
float r_axis_y = -offset[Y_AXIS];
float center_axis_x = position[X_AXIS] - r_axis_x;
float center_axis_y = position[Y_AXIS] - r_axis_y;
float travel_z = target[Z_AXIS] - position[Z_AXIS];
- float extruder_travel_total = target[E_AXIS] - position[E_AXIS];
-
float rt_x = target[X_AXIS] - center_axis_x;
float rt_y = target[Y_AXIS] - center_axis_y;
// 20200419 - Add a variable that will be used to hold the arc segment length
float mm_per_arc_segment = cs.mm_per_arc_segment;
// 20210109 - Add a variable to hold the n_arc_correction value
- bool correction_enabled = cs.n_arc_correction > 1;
uint8_t n_arc_correction = cs.n_arc_correction;
// CCW angle between position and target from circle center. Only one atan2() trig computation required.
float angular_travel_total = atan2(r_axis_x * rt_y - r_axis_y * rt_x, r_axis_x * rt_x + r_axis_y * rt_y);
if (angular_travel_total < 0) { angular_travel_total += 2 * M_PI; }
- bool check_mm_per_arc_segment_max = false;
if (cs.min_arc_segments > 0)
{
// 20200417 - FormerLurker - Implement MIN_ARC_SEGMENTS if it is defined - from Marlin 2.0 implementation
// Do this before converting the angular travel for clockwise rotation
mm_per_arc_segment = radius * ((2.0f * M_PI) / cs.min_arc_segments);
- check_mm_per_arc_segment_max = true;
}
-
if (cs.arc_segments_per_sec > 0)
{
// 20200417 - FormerLurker - Implement MIN_ARC_SEGMENTS if it is defined - from Marlin 2.0 implementation
float mm_per_arc_segment_sec = (feed_rate / 60.0f) * (1.0f / cs.arc_segments_per_sec);
if (mm_per_arc_segment_sec < mm_per_arc_segment)
mm_per_arc_segment = mm_per_arc_segment_sec;
- check_mm_per_arc_segment_max = true;
}
- if (cs.min_mm_per_arc_segment > 0)
+ // Note: no need to check to see if min_mm_per_arc_segment is enabled or not (i.e. = 0), since mm_per_arc_segment can never be below 0.
+ if (mm_per_arc_segment < cs.min_mm_per_arc_segment)
{
- check_mm_per_arc_segment_max = true;
// 20200417 - FormerLurker - Implement MIN_MM_PER_ARC_SEGMENT if it is defined
// This prevents a very high number of segments from being generated for curves of a short radius
- if (mm_per_arc_segment < cs.min_mm_per_arc_segment) mm_per_arc_segment = cs.min_mm_per_arc_segment;
+ mm_per_arc_segment = cs.min_mm_per_arc_segment;
+ }
+ else if (mm_per_arc_segment > cs.mm_per_arc_segment) {
+ // 20210113 - This can be implemented in an else if since we can't be below the min AND above the max at the same time.
+ // 20200417 - FormerLurker - Implement MIN_MM_PER_ARC_SEGMENT if it is defined
+ mm_per_arc_segment = cs.mm_per_arc_segment;
}
-
- if (check_mm_per_arc_segment_max && mm_per_arc_segment > cs.mm_per_arc_segment) mm_per_arc_segment = cs.mm_per_arc_segment;
-
-
// Adjust the angular travel if the direction is clockwise
- if (isclockwise) { angular_travel_total -= 2 * M_PI; }
+ if (isclockwise) { angular_travel_total -= 2.0f * M_PI; }
//20141002:full circle for G03 did not work, e.g. G03 X80 Y80 I20 J0 F2000 is giving an Angle of zero so head is not moving
//to compensate when start pos = target pos && angle is zero -> angle = 2Pi
@@ -301,18 +303,13 @@ void inverse_processor::mc_arc(float* position, float* target, float* offset, fl
// 20200417 - FormerLurker - rename millimeters_of_travel to millimeters_of_travel_arc to better describe what we are
// calculating here
- float millimeters_of_travel_arc = hypot(angular_travel_total * radius, fabs(travel_z));
- if (millimeters_of_travel_arc < 0.001) { return; }
+ const float millimeters_of_travel_arc = hypot(angular_travel_total * radius, fabs(travel_z));
+ if (millimeters_of_travel_arc < 0.001f) { return; }
// Calculate the total travel per segment
- // Calculate the number of arc segments
+ // Calculate the number of arc segments as a float. This is important so that the extrusion
+ // and z travel is consistant throughout the arc. Otherwise we will see artifacts and gaps
uint16_t segments = static_cast<uint16_t>(ceil(millimeters_of_travel_arc / mm_per_arc_segment));
-
- // Calculate theta per segments and linear (z) travel per segment
- float theta_per_segment = angular_travel_total / segments;
- float linear_per_segment = travel_z / (segments);
- // Calculate the extrusion amount per segment
- float segment_extruder_travel = extruder_travel_total / (segments);
/* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
r_T = [cos(phi) -sin(phi);
@@ -334,44 +331,201 @@ void inverse_processor::mc_arc(float* position, float* target, float* offset, fl
Finding a faster way to approximate sin, knowing that there can be substantial deviations from the true
arc when using the previous approximation, would be beneficial.
*/
-
- // Don't bother calculating cot_T or sin_T if there is only 1 segment.
+ //std::cout << "Generating arc with " << segments << " segments. Extruding " << target[E_AXIS] - position[E_AXIS] << "mm.\n";
+ // There must be more than 1 segment, else this is just a linear move
+ float interpolatedExtrusion = 0;
+ float interpolatedTravel = 0;
+ float totalExtrusion = target[E_AXIS] - position[E_AXIS];
if (segments > 1)
{
- // Initialize the extruder axis
-
- float cos_T;
- float sin_T;
-
- if (correction_enabled > 1) {
- float sq_theta_per_segment = theta_per_segment * theta_per_segment;
- // Small angle approximation
+
+ // Calculate theta per segments and linear (z) travel per segment
+ const float theta_per_segment = angular_travel_total / segments,
+ linear_per_segment = travel_z / (segments),
+ segment_extruder_travel = (target[E_AXIS] - position[E_AXIS]) / (segments),
+ sq_theta_per_segment = theta_per_segment * theta_per_segment,
sin_T = theta_per_segment - sq_theta_per_segment * theta_per_segment / 6,
- cos_T = 1 - 0.5f * sq_theta_per_segment;
+ cos_T = 1 - 0.5f * sq_theta_per_segment;
+ // Calculate the number of interpolations we will do, but use the ceil
+ // function so that we can start our index with I=1. This is important
+ // so that the arc correction starts out with segment 1, and not 0, without
+ // doing extra calculations
+
+ for (uint16_t i = 1; i < segments; i++) { // Increment (segments-1)
+ if (n_arc_correction-- == 0) {
+ // Calculate the actual position for r_axis_x and r_axis_y
+ const float cos_Ti = cos((i) * theta_per_segment), sin_Ti = sin((i) * theta_per_segment);
+ r_axis_x = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
+ r_axis_y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
+ // reset n_arc_correction
+ n_arc_correction = cs.n_arc_correction;
+ }
+ else {
+ const float r_axisi = r_axis_x * sin_T + r_axis_y * cos_T;
+ r_axis_x = r_axis_x * cos_T - r_axis_y * sin_T;
+ r_axis_y = r_axisi;
+ }
+ interpolatedExtrusion += segment_extruder_travel;
+ interpolatedTravel += hypot(position[X_AXIS] - (center_axis_x + r_axis_x), position[Y_AXIS] - (center_axis_y + r_axis_y));
+ // Update arc_target location
+ position[X_AXIS] = center_axis_x + r_axis_x;
+ position[Y_AXIS] = center_axis_y + r_axis_y;
+ position[Z_AXIS] += linear_per_segment;
+ position[E_AXIS] += segment_extruder_travel;
+ // We can't clamp to the target because we are interpolating! We would need to update a position, clamp to it
+ // after updating from calculated values.
+ clamp_to_software_endstops(position);
+
+ plan_buffer_line(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS], feed_rate, extruder);
}
- else {
- cos_T = cos(theta_per_segment);
- sin_T = sin(theta_per_segment);
+ }
+ // Ensure last segment arrives at target location.
+ // Here we could clamp, but why bother. We would need to update our current position, clamp to it
+ clamp_to_software_endstops(target);
+ if (segments > 1)
+ {
+ float fil_per_mm_interpolated = interpolatedTravel == 0 ? 0 : interpolatedExtrusion / interpolatedTravel;
+ float mm_travel_final = hypot(target[X_AXIS] - position[X_AXIS], target[Y_AXIS] - position[Y_AXIS]);
+ float extrusion_final = target[E_AXIS] - position[E_AXIS];
+ float fil_per_mm_final = mm_travel_final == 0 ? 0 : extrusion_final / mm_travel_final;
+ float fil_per_mm_difference = fabs(fil_per_mm_interpolated - fil_per_mm_final);
+ //if (mm_travel_final > 0.001 && totalExtrusion - (interpolatedExtrusion + extrusion_final) > 0.00001f && max_extrusion_rate_difference < fil_per_mm_difference)
+ if (mm_travel_final > 0.001 && (totalExtrusion - interpolatedExtrusion) > 0.00001f && max_extrusion_rate_difference < fil_per_mm_difference)
+ {
+ max_extrusion_rate_difference = fil_per_mm_difference;
+ std::cout << "New Maximum extrusion rate difference detected:" << max_extrusion_rate_difference << "\n";
}
+ }
+
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, extruder);
+
+}
+
+
+// The arc is approximated by generating a huge number of tiny, linear segments. The length of each
+// segment is configured in settings.mm_per_arc_segment.
+void inverse_processor::mc_arc_float_segments(float* position, float* target, float* offset, float feed_rate, float radius, uint8_t isclockwise, uint8_t extruder)
+{
+ float r_axis_x = -offset[X_AXIS]; // Radius vector from center to current location
+ float r_axis_y = -offset[Y_AXIS];
+ float center_axis_x = position[X_AXIS] - r_axis_x;
+ float center_axis_y = position[Y_AXIS] - r_axis_y;
+ float travel_z = target[Z_AXIS] - position[Z_AXIS];
+ float rt_x = target[X_AXIS] - center_axis_x;
+ float rt_y = target[Y_AXIS] - center_axis_y;
+ // 20200419 - Add a variable that will be used to hold the arc segment length
+ float mm_per_arc_segment = cs.mm_per_arc_segment;
+ // 20210109 - Add a variable to hold the n_arc_correction value
+ uint8_t n_arc_correction = cs.n_arc_correction;
+
+ // CCW angle between position and target from circle center. Only one atan2() trig computation required.
+ float angular_travel_total = atan2(r_axis_x * rt_y - r_axis_y * rt_x, r_axis_x * rt_x + r_axis_y * rt_y);
+ if (angular_travel_total < 0) { angular_travel_total += 2 * M_PI; }
- float r_axisi;
- uint16_t i;
+ if (cs.min_arc_segments > 0)
+ {
+ // 20200417 - FormerLurker - Implement MIN_ARC_SEGMENTS if it is defined - from Marlin 2.0 implementation
+ // Do this before converting the angular travel for clockwise rotation
+ mm_per_arc_segment = radius * ((2.0f * M_PI) / cs.min_arc_segments);
+ }
+ if (cs.arc_segments_per_sec > 0)
+ {
+ // 20200417 - FormerLurker - Implement MIN_ARC_SEGMENTS if it is defined - from Marlin 2.0 implementation
+ float mm_per_arc_segment_sec = (feed_rate / 60.0f) * (1.0f / cs.arc_segments_per_sec);
+ if (mm_per_arc_segment_sec < mm_per_arc_segment)
+ mm_per_arc_segment = mm_per_arc_segment_sec;
+ }
- for (i = 1; i < segments; i++) { // Increment (segments-1)
- if (correction_enabled && --n_arc_correction == 0) {
+ // Note: no need to check to see if min_mm_per_arc_segment is enabled or not (i.e. = 0), since mm_per_arc_segment can never be below 0.
+ if (mm_per_arc_segment < cs.min_mm_per_arc_segment)
+ {
+ // 20200417 - FormerLurker - Implement MIN_MM_PER_ARC_SEGMENT if it is defined
+ // This prevents a very high number of segments from being generated for curves of a short radius
+ mm_per_arc_segment = cs.min_mm_per_arc_segment;
+ }
+ else if (mm_per_arc_segment > cs.mm_per_arc_segment) {
+ // 20210113 - This can be implemented in an else if since we can't be below the min AND above the max at the same time.
+ // 20200417 - FormerLurker - Implement MIN_MM_PER_ARC_SEGMENT if it is defined
+ mm_per_arc_segment = cs.mm_per_arc_segment;
+ }
+
+ // Adjust the angular travel if the direction is clockwise
+ if (isclockwise) { angular_travel_total -= 2 * M_PI; }
+
+ //20141002:full circle for G03 did not work, e.g. G03 X80 Y80 I20 J0 F2000 is giving an Angle of zero so head is not moving
+ //to compensate when start pos = target pos && angle is zero -> angle = 2Pi
+ if (position[X_AXIS] == target[X_AXIS] && position[Y_AXIS] == target[Y_AXIS] && angular_travel_total == 0)
+ {
+ angular_travel_total += 2 * M_PI;
+ }
+ //end fix G03
+
+ // 20200417 - FormerLurker - rename millimeters_of_travel to millimeters_of_travel_arc to better describe what we are
+ // calculating here
+ const float millimeters_of_travel_arc = hypot(angular_travel_total * radius, fabs(travel_z));
+ if (millimeters_of_travel_arc < 0.001) { return; }
+ // Calculate the total travel per segment
+ // Calculate the number of arc segments as a float. This is important so that the extrusion
+ // and z travel is consistant throughout the arc. Otherwise we will see artifacts and gaps
+ float segments = millimeters_of_travel_arc / mm_per_arc_segment;
+
+ /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
+ and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
+ r_T = [cos(phi) -sin(phi);
+ sin(phi) cos(phi] * r ;
+
+ For arc generation, the center of the circle is the axis of rotation and the radius vector is
+ defined from the circle center to the initial position. Each line segment is formed by successive
+ vector rotations. This requires only two cos() and sin() computations to form the rotation
+ matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
+ all double numbers are single precision on the Arduino. (True double precision will not have
+ round off issues for CNC applications.) Single precision error can accumulate to be greater than
+ tool precision in some cases. Therefore, arc path correction is implemented.
+
+ The small angle approximation was removed because of excessive errors for small circles (perhaps unique to
+ 3d printing applications, causing significant path deviation and extrusion issues).
+ Now there will be no corrections applied, but an accurate initial sin and cos will be calculated.
+ This seems to work with a very high degree of accuracy and results in much simpler code.
+
+ Finding a faster way to approximate sin, knowing that there can be substantial deviations from the true
+ arc when using the previous approximation, would be beneficial.
+ */
+ float interpolatedExtrusion = 0;
+ float interpolatedTravel = 0;
+ float totalExtrusion = target[E_AXIS] - position[E_AXIS];
+ // There must be more than 1 segment, else this is just a linear move
+ if (segments > 1)
+ {
+ // Calculate theta per segments and linear (z) travel per segment
+ const float theta_per_segment = angular_travel_total / segments,
+ linear_per_segment = travel_z / (segments),
+ segment_extruder_travel = (target[E_AXIS] - position[E_AXIS]) / (segments),
+ sq_theta_per_segment = theta_per_segment * theta_per_segment,
+ //sin_T = theta_per_segment - sq_theta_per_segment * theta_per_segment / 6,
+ //cos_T = 1 - 0.5f * sq_theta_per_segment;
+ sin_T = sin(theta_per_segment),
+ cos_T = cos(theta_per_segment);
+ // Calculate the number of interpolations we will do, but use the ceil
+ // function so that we can start our index with I=1. This is important
+ // so that the arc correction starts out with segment 1, and not 0, without
+ // doing extra calculations
+ uint16_t num_interpolations = static_cast<uint16_t>(ceil(segments));
+ for (uint16_t i = 1; i < num_interpolations; i++) { // Increment (segments-1)
+ /*if (n_arc_correction-- == 0) {
// Calculate the actual position for r_axis_x and r_axis_y
- const float cos_Ti = cos(i * theta_per_segment), sin_Ti = sin(i * theta_per_segment);
+ const float cos_Ti = cos((i)*theta_per_segment), sin_Ti = sin((i)*theta_per_segment);
r_axis_x = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
r_axis_y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
// reset n_arc_correction
n_arc_correction = cs.n_arc_correction;
}
- else {
- r_axisi = r_axis_x * sin_T + r_axis_y * cos_T;
+ else { */
+ const float r_axisi = r_axis_x * sin_T + r_axis_y * cos_T;
r_axis_x = r_axis_x * cos_T - r_axis_y * sin_T;
r_axis_y = r_axisi;
- }
-
+ //}
+ interpolatedExtrusion += segment_extruder_travel;
+ interpolatedTravel += hypot(position[X_AXIS] - (center_axis_x + r_axis_x), position[Y_AXIS] - (center_axis_y + r_axis_y));
// Update arc_target location
position[X_AXIS] = center_axis_x + r_axis_x;
position[Y_AXIS] = center_axis_y + r_axis_y;
@@ -386,7 +540,22 @@ void inverse_processor::mc_arc(float* position, float* target, float* offset, fl
// Ensure last segment arrives at target location.
// Here we could clamp, but why bother. We would need to update our current position, clamp to it
clamp_to_software_endstops(target);
+ if (segments > 1)
+ {
+ float fil_per_mm_interpolated = interpolatedTravel == 0 ? 0 : interpolatedExtrusion / interpolatedTravel;
+ float mm_travel_final = hypot(target[X_AXIS] - position[X_AXIS], target[Y_AXIS] - position[Y_AXIS]);
+ float extrusion_final = target[E_AXIS] - position[E_AXIS];
+ float fil_per_mm_final = mm_travel_final == 0 ? 0 : extrusion_final / mm_travel_final;
+ float fil_per_mm_difference = fabs(fil_per_mm_interpolated - fil_per_mm_final);
+ if (segments > 1 && mm_travel_final > 0.001 && totalExtrusion - (interpolatedExtrusion + extrusion_final) > 0.00001f && max_extrusion_rate_difference < fil_per_mm_difference)
+ {
+ max_extrusion_rate_difference = fil_per_mm_difference;
+ std::cout << "New Maximum extrusion rate difference detected:" << max_extrusion_rate_difference << "\n";
+ }
+ }
+
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, extruder);
+
}
void inverse_processor::clamp_to_software_endstops(float* target)