Welcome to mirror list, hosted at ThFree Co, Russian Federation.

segmented_shape.cpp « ArcWelder - github.com/FormerLurker/ArcWelderLib.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 65995b4bf9f1b05a81b3ef3a254677cddb0942d7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Arc Welder: Anti-Stutter Library
//
// Compresses many G0/G1 commands into G2/G3(arc) commands where possible, ensuring the tool paths stay within the specified resolution.
// This reduces file size and the number of gcodes per second.
//
// Uses the 'Gcode Processor Library' for gcode parsing, position processing, logging, and other various functionality.
//
// Copyright(C) 2020 - Brad Hochgesang
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// This program is free software : you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as published
// by the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.See the
// GNU Affero General Public License for more details.
//
//
// You can contact the author at the following email address: 
// FormerLurker@pm.me
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

#include "segmented_shape.h"
#include <stdio.h>
#include "utilities.h"
#include <cmath>
#include <iostream>
#pragma region Operators for Vector and Point
point operator +(point lhs, const vector rhs) {
  point p(
    lhs.x + rhs.x,
    lhs.y + rhs.y,
    lhs.z + rhs.z,
    lhs.e_relative + rhs.e_relative
  );
  return p;
}

point operator -(point lhs, const vector rhs) {
  return point(
    lhs.x - rhs.x,
    lhs.y - rhs.y,
    lhs.z - rhs.z,
    lhs.e_relative - rhs.e_relative
  );
}

vector operator -(point& lhs, point& rhs) {
  return vector(
    lhs.x - rhs.x,
    lhs.y - rhs.y,
    lhs.z - rhs.z
  );
}

vector operator -(const point& lhs, const point& rhs) {
  return vector(
    lhs.x - rhs.x,
    lhs.y - rhs.y,
    lhs.z - rhs.z
  );
}

vector operator *(vector lhs, const double& rhs) {
  return vector(
    lhs.x * rhs,
    lhs.y * rhs,
    lhs.z * rhs
  );
}
#pragma endregion Operators for Vector and Point

#pragma region Point Functions
point point::get_midpoint(point p1, point p2)
{
  double x = (p1.x + p2.x) / 2.0;
  double y = (p1.y + p2.y) / 2.0;
  double z = (p1.z + p2.z) / 2.0;

  return point(x, y, z, 0);
}
#pragma endregion Point Functions

#pragma region Segment Functions
bool segment::get_closest_perpendicular_point(point c, point& d)
{
  return segment::get_closest_perpendicular_point(p1, p2, c, d);
}

bool segment::get_closest_perpendicular_point(const point& p1, const point& p2, const point& c, point& d)
{
  // [(Cx - Ax)(Bx - Ax) + (Cy - Ay)(By - Ay)] / [(Bx - Ax) ^ 2 + (By - Ay) ^ 2]
  double num = (c.x - p1.x) * (p2.x - p1.x) + (c.y - p1.y) * (p2.y - p1.y);
  double denom = (std::pow((p2.x - p1.x), 2) + std::pow((p2.y - p1.y), 2));
  double t = num / denom;

  // We're considering this a failure if t == 0 or t==1 within our tolerance.  In that case we hit the endpoint, which is OK.
  // Why are we using the CIRCLE_GENERATION_A_ZERO_TOLERANCE tolerance here??
  if (utilities::less_than_or_equal(t, 0) || utilities::greater_than_or_equal(t, 1))
    return false;

  d.x = p1.x + t * (p2.x - p1.x);
  d.y = p1.y + t * (p2.y - p1.y);

  return true;
}

#pragma endregion

#pragma region Vector Functions
double vector::get_magnitude()
{
  return sqrt(x * x + y * y + z * z);
}

double vector::cross_product_magnitude(vector v1, vector v2)
{
  return (v1.x * v2.y - v1.y * v2.x);
}
#pragma endregion Vector Functions

#pragma region Distance Calculation Source
// Distance Calculation code taken from the following source:
// Copyright for distance calculations:
// Copyright 2001 softSurfer, 2012 Dan Sunday
// This code may be freely used, distributed and modified for any purpose
// providing that this copyright notice is included with it.
// SoftSurfer makes no warranty for this code, and cannot be held
// liable for any real or imagined damage resulting from its use.
// Users of this code must verify correctness for their application.
// dot product (3D) which allows vector operations in arguments
#define dot(u,v)   ((u).x * (v).x + (u).y * (v).y + (u).z * (v).z)
#define norm(v)     sqrt(dot(v,v))     // norm = length of  vector
#define d(u,v)      norm(u-v)          // distance = norm of difference

double distance_from_segment(segment s, point p)
{
  vector v = s.p2 - s.p1;
  vector w = p - s.p1;

  double c1 = dot(w, v);
  if (c1 <= 0)
    return d(p, s.p1);

  double c2 = dot(v, v);
  if (c2 <= c1)
    return d(p, s.p2);

  double b = c1 / c2;
  point pb = s.p1 + (v * b);
  return d(p, pb);
}

#pragma endregion Distance Calculation Source


#pragma region Circle Functions

bool circle::try_create_circle(const point& p1, const point& p2, const point& p3, const double max_radius, circle& new_circle)
{
  double x1 = p1.x;
  double y1 = p1.y;
  double x2 = p2.x;
  double y2 = p2.y;
  double x3 = p3.x;
  double y3 = p3.y;

  double a = x1 * (y2 - y3) - y1 * (x2 - x3) + x2 * y3 - x3 * y2;
  //  Take out to figure out how we handle very small values for a
  if (utilities::is_zero(a, 0.000000001))
  {
    return false;
  }


  double b = (x1 * x1 + y1 * y1) * (y3 - y2)
    + (x2 * x2 + y2 * y2) * (y1 - y3)
    + (x3 * x3 + y3 * y3) * (y2 - y1);

  double c = (x1 * x1 + y1 * y1) * (x2 - x3)
    + (x2 * x2 + y2 * y2) * (x3 - x1)
    + (x3 * x3 + y3 * y3) * (x1 - x2);

  double x = -b / (2.0 * a);
  double y = -c / (2.0 * a);

  double radius = utilities::get_cartesian_distance(x, y, x1, y1);
  if (radius > max_radius)
    return false;
  new_circle.center.x = x;
  new_circle.center.y = y;
  new_circle.center.z = p1.z;
  new_circle.radius = radius;

  return true;
}

bool circle::try_create_circle(const array_list<point>& points, const double max_radius, const double resolution_mm, const int xyz_precision, bool allow_3d_arcs, bool check_middle_only, circle& new_circle)
{
  int middle_index = points.count() / 2;
  int check_index;
  int step = 0;
  bool is_right = true;
  while (true) {

    check_index = middle_index + (is_right ? step : -1 * step);
    // Check the index
    if (circle::try_create_circle(points[0], points[check_index], points[points.count() - 1], max_radius, new_circle))
    {
      if (!new_circle.is_over_deviation(points, resolution_mm, xyz_precision, allow_3d_arcs))
      {
        return true;
      }
    }
    if (is_right)
    {
      if (check_index == points.count() - 1)
      {
        return false;
      }
      if (check_index == middle_index)
      {
        if (check_middle_only)
        {
          return false;
        }
        step++;
        continue;
      }
    }
    else
    {
      if (check_index == 0)
      {
        return false;
      }
      step++;
    }
    is_right = !is_right;
  }
  return false;
}

double circle::get_radians(const point& p1, const point& p2) const
{
  double distance_sq = std::pow(utilities::get_cartesian_distance(p1.x, p1.y, p2.x, p2.y), 2.0);
  double two_r_sq = 2.0 * radius * radius;
  return acos((two_r_sq - distance_sq) / two_r_sq);
}

double circle::get_polar_radians(const point& p1) const
{
  double polar_radians = atan2(p1.y - center.y, p1.x - center.x);
  if (polar_radians < 0)
    polar_radians = (2.0 * PI_DOUBLE) + polar_radians;
  return polar_radians;
}

point circle::get_closest_point(const point& p) const
{
  vector v = p - center;
  double mag = v.get_magnitude();
  double px = center.x + v.x / mag * radius;
  double py = center.y + v.y / mag * radius;
  double pz = center.z + v.z / mag * radius;
  return point(px, py, pz, 0);
}

bool circle::is_over_deviation(const array_list<point>& points, const double resolution_mm, const int xyz_precision, const bool allow_3d_arcs)
{
  // We need to ensure that the Z steps are constand per linear travel unit
  double z_step_per_distance = 0;
  // Skip the first and last points since they will fit perfectly.
  // UNLESS allow z changes is set to true, then we need to do some different stuff
  int final_index = points.count() - 1 + (allow_3d_arcs ? 1 : 0);
  for (int index = 1; index < points.count() - 1; index++)
  {
    // Make sure the length from the center of our circle to the test point is 
    // at or below our max distance.
    double distance = distance = utilities::get_cartesian_distance(points[index].x, points[index].y, center.x, center.y);
    if (allow_3d_arcs) {
      double z1 = points[index - 1].z;
      double z2 = points[index].z;

      double current_z_stepper_distance = (z2 - z1) / distance;
      if (z_step_per_distance == 0) {
        z_step_per_distance = current_z_stepper_distance;
      }
      if (!utilities::is_equal(z_step_per_distance, current_z_stepper_distance, std::pow(10.0, -1.0 * xyz_precision)))
      {
        // The z step is uneven, can't create arc				
        return true;
      }

    }

    if (std::abs(distance - radius) > resolution_mm)
    {
      return true;
    }
  }

  // Check the point perpendicular from the segment to the circle's center, if any such point exists
  for (int index = 0; index < points.count() - 1; index++)
  {
    point point_to_test;
    if (segment::get_closest_perpendicular_point(points[index], points[index + 1], center, point_to_test))
    {
      double distance = utilities::get_cartesian_distance(point_to_test.x, point_to_test.y, center.x, center.y);
      if (std::abs(distance - radius) > resolution_mm)
      {
        return true;
      }
    }

  }
  return false;
}
#pragma endregion Circle Functions

#pragma region Arc Functions

bool arc::try_create_arc(
  const circle& c,
  const point& start_point,
  const point& mid_point,
  const point& end_point,
  arc& target_arc,
  double approximate_length,
  double resolution,
  double path_tolerance_percent,
  bool allow_3d_arcs)
{
  double polar_start_theta = c.get_polar_radians(start_point);
  double polar_mid_theta = c.get_polar_radians(mid_point);
  double polar_end_theta = c.get_polar_radians(end_point);

  // variable to hold radians
  double angle_radians = 0;
  int direction = 0;  // 1 = counter clockwise, 2 = clockwise, 3 = unknown.
  // Determine the direction of the arc
  if (polar_end_theta > polar_start_theta)
  {
    if (polar_start_theta < polar_mid_theta && polar_mid_theta < polar_end_theta) {
      direction = 1;
      angle_radians = polar_end_theta - polar_start_theta;
    }
    else if (
      (0.0 <= polar_mid_theta && polar_mid_theta < polar_start_theta) ||
      (polar_end_theta < polar_mid_theta && polar_mid_theta < (2.0 * PI_DOUBLE))
      )
    {
      direction = 2;
      angle_radians = polar_start_theta + ((2.0 * PI_DOUBLE) - polar_end_theta);
    }
  }
  else if (polar_start_theta > polar_end_theta)
  {
    if (
      (polar_start_theta < polar_mid_theta && polar_mid_theta < (2.0 * PI_DOUBLE)) ||
      (0.0 < polar_mid_theta && polar_mid_theta < polar_end_theta)
      )
    {
      direction = 1;
      angle_radians = polar_end_theta + ((2.0 * PI_DOUBLE) - polar_start_theta);
    }
    else if (polar_end_theta < polar_mid_theta && polar_mid_theta < polar_start_theta)
    {
      direction = 2;
      angle_radians = polar_start_theta - polar_end_theta;
    }
  }

  // this doesn't always work..  in rare situations, the angle may be backward
  if (direction == 0 || utilities::is_zero(angle_radians)) return false;

  // Let's check the length against the original length
  // This can trigger simply due to the differing path lengths
  // but also could indicate that our vector calculation above
  // got the direction wrong
  double arc_length = c.radius * angle_radians;

  if (allow_3d_arcs)
  {
    // We may be traveling in 3 space, calculate the arc_length of the spiral
    if (start_point.z != end_point.z)
    {
      arc_length = utilities::hypot(arc_length, end_point.z - start_point.z);
    }
  }
  // Calculate the percent difference of the original path
  double difference = (arc_length - approximate_length) / approximate_length;
  if (!utilities::is_zero(difference, path_tolerance_percent))
  {
    // So it's possible our vector calculation above got the direction wrong.
    // This can happen if there is a crazy arrangement of points
    // extremely close to eachother.  They have to be close enough to 
    // break our other checks.  However, we may be able to salvage this.
    // see if an arc moving in the opposite direction had the correct length.

    // Find the rest of the angle across the circle
    double test_radians = std::abs(angle_radians - 2 * PI_DOUBLE);
    // Calculate the length of that arc
    double test_arc_length = c.radius * test_radians;
    if (allow_3d_arcs)
    {
      // We may be traveling in 3 space, calculate the arc_length of the spiral
      if (start_point.z != end_point.z)
      {
        test_arc_length = utilities::hypot(test_arc_length, end_point.z - start_point.z);
      }
    }
    difference = (test_arc_length - approximate_length) / approximate_length;
    if (!utilities::is_zero(difference, path_tolerance_percent))
    {
      return false;
    }
    // So, let's set the new length and flip the direction (but not the angle)!
    arc_length = test_arc_length;
    direction = direction == 1 ? 2 : 1;
  }

  if (allow_3d_arcs)
  {
    // Ensure the perimeter of the arc is less than that of a full circle
    double perimeter = utilities::hypot(c.radius * 2.0 * PI_DOUBLE, end_point.z - start_point.z);
    if (perimeter <= approximate_length) {
      return false;
    }

  }

  if (direction == 2) {
    angle_radians *= -1.0;
  }

  target_arc.center.x = c.center.x;
  target_arc.center.y = c.center.y;
  target_arc.center.z = c.center.z;
  target_arc.radius = c.radius;
  target_arc.start_point = start_point;
  target_arc.end_point = end_point;
  target_arc.length = arc_length;
  target_arc.angle_radians = angle_radians;
  target_arc.polar_start_theta = polar_start_theta;
  target_arc.polar_end_theta = polar_end_theta;

  return true;

}

bool arc::try_create_arc(
  const array_list<point>& points,
  arc& target_arc,
  double approximate_length,
  double max_radius_mm,
  double resolution_mm,
  double path_tolerance_percent,
  int min_arc_segments,
  double mm_per_arc_segment,
  int xyz_precision,
  bool allow_3d_arcs)
{
  circle test_circle;
  if (circle::try_create_circle(points, max_radius_mm, resolution_mm, xyz_precision, allow_3d_arcs, false, test_circle))
  {
    // We could save a bit of processing power and do our firmware compensation here, but we won't be able to track statistics for this easily.
    // moved check to segmented_arc.cpp
    int mid_point_index = ((points.count() - 2) / 2) + 1;
    return arc::try_create_arc(test_circle, points[0], points[mid_point_index], points[points.count() - 1], target_arc, approximate_length, resolution_mm, path_tolerance_percent, allow_3d_arcs);
  }
  return false;
}

#pragma endregion

segmented_shape::segmented_shape(int min_segments, int max_segments, double resolution_mm, double path_tolerance_percnet) : points_(max_segments)
{

  xyz_precision_ = DEFAULT_XYZ_PRECISION;
  e_precision_ = DEFAULT_E_PRECISION;
  max_segments_ = max_segments;
  path_tolerance_percent_ = path_tolerance_percnet;
  resolution_mm_ = resolution_mm / 2.0; // divide by 2 because it is + or - 1/2 of the desired resolution.
  e_relative_ = 0;
  is_shape_ = false;
  // min segments can never be lower than 3 (the default) else there could be no compression.
  if (min_segments < DEFAULT_MIN_SEGMENTS) min_segments_ = DEFAULT_MIN_SEGMENTS;
  else min_segments_ = min_segments;

  original_shape_length_ = 0;
  is_extruding_ = true;
}

segmented_shape::~segmented_shape()
{

}

void segmented_shape::reset_precision()
{
  xyz_precision_ = DEFAULT_XYZ_PRECISION;
  e_precision_ = DEFAULT_E_PRECISION;
}

void segmented_shape::update_xyz_precision(int precision)
{
  if (xyz_precision_ < precision)
  {
    xyz_precision_ = precision;
  }
}

void segmented_shape::update_e_precision(int precision)
{
  if (e_precision_ < precision)
  {
    e_precision_ = precision;
  }

}

bool segmented_shape::is_extruding()
{
  return is_extruding_;
}

segmented_shape& segmented_shape::operator=(const segmented_shape& obj)
{
  points_.clear();
  if (obj.max_segments_ != max_segments_)
  {
    max_segments_ = obj.max_segments_;

    points_.resize(max_segments_);
  }
  points_.copy(obj.points_);

  original_shape_length_ = obj.original_shape_length_;
  e_relative_ = obj.e_relative_;
  is_shape_ = obj.is_shape_;
  max_segments_ = obj.max_segments_;
  resolution_mm_ = obj.resolution_mm_;
  return *this;
}

int segmented_shape::get_num_segments()
{
  return points_.count();
}

double segmented_shape::get_shape_length()
{
  return original_shape_length_;
}

double segmented_shape::get_shape_e_relative()
{
  return e_relative_;
}

void segmented_shape::clear()
{
  points_.clear();
  is_shape_ = false;
  e_relative_ = 0;
  original_shape_length_ = 0;
}
bool segmented_shape::is_shape() const
{
  // return the pre-calculated value.  This should be updated by the plugin
  return is_shape_;
}
void segmented_shape::set_is_shape(bool value)
{
  is_shape_ = value;
}

int segmented_shape::get_min_segments()
{
  return min_segments_;
}
int segmented_shape::get_max_segments()
{
  return max_segments_;
}

double segmented_shape::get_resolution_mm()
{
  return resolution_mm_;
}

double segmented_shape::get_path_tolerance_percent()
{
  return path_tolerance_percent_;
}

void segmented_shape::set_resolution_mm(double resolution_mm)
{
  resolution_mm_ = resolution_mm;

}
point segmented_shape::pop_front()
{
  return points_.pop_front();
}
point segmented_shape::pop_back()
{
  return points_.pop_back();
}

bool segmented_shape::try_add_point(point p, double e_relative)
{
  throw std::exception();
}

std::string segmented_shape::get_shape_gcode_absolute(double e_abs_start)
{
  throw std::exception();
}

std::string segmented_shape::get_shape_gcode_relative()
{
  throw std::exception();
}