Welcome to mirror list, hosted at ThFree Co, Russian Federation.

port.c « ARM_CM3_MPU « GCC « portable - github.com/FreeRTOS/FreeRTOS-Kernel.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: d8c18325c4dd1e84dcf94c1df83740850c624399 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
/*
 * FreeRTOS Kernel <DEVELOPMENT BRANCH>
 * Copyright (C) 2021 Amazon.com, Inc. or its affiliates.  All Rights Reserved.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy of
 * this software and associated documentation files (the "Software"), to deal in
 * the Software without restriction, including without limitation the rights to
 * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
 * the Software, and to permit persons to whom the Software is furnished to do so,
 * subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
 * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
 * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
 * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 * https://www.FreeRTOS.org
 * https://github.com/FreeRTOS
 *
 */

/*-----------------------------------------------------------
* Implementation of functions defined in portable.h for the ARM CM3 MPU port.
*----------------------------------------------------------*/

/* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
 * all the API functions to use the MPU wrappers.  That should only be done when
 * task.h is included from an application file. */
#define MPU_WRAPPERS_INCLUDED_FROM_API_FILE

/* Scheduler includes. */
#include "FreeRTOS.h"
#include "task.h"
#include "mpu_syscall_numbers.h"

#undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE

#ifndef configSYSTICK_CLOCK_HZ
    #define configSYSTICK_CLOCK_HZ    configCPU_CLOCK_HZ
    /* Ensure the SysTick is clocked at the same frequency as the core. */
    #define portNVIC_SYSTICK_CLK      ( 1UL << 2UL )
#else

/* The way the SysTick is clocked is not modified in case it is not the same
 * as the core. */
    #define portNVIC_SYSTICK_CLK    ( 0 )
#endif

#ifndef configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS
    #warning "configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS is not defined. We recommend defining it to 0 in FreeRTOSConfig.h for better security."
    #define configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS    1
#endif

/* Prototype of all Interrupt Service Routines (ISRs). */
typedef void ( * portISR_t )( void );

/* Constants required to access and manipulate the NVIC. */
#define portNVIC_SYSTICK_CTRL_REG                 ( *( ( volatile uint32_t * ) 0xe000e010 ) )
#define portNVIC_SYSTICK_LOAD_REG                 ( *( ( volatile uint32_t * ) 0xe000e014 ) )
#define portNVIC_SYSTICK_CURRENT_VALUE_REG        ( *( ( volatile uint32_t * ) 0xe000e018 ) )
#define portNVIC_SHPR3_REG                        ( *( ( volatile uint32_t * ) 0xe000ed20 ) )
#define portNVIC_SHPR2_REG                        ( *( ( volatile uint32_t * ) 0xe000ed1c ) )
#define portNVIC_SYS_CTRL_STATE_REG               ( *( ( volatile uint32_t * ) 0xe000ed24 ) )
#define portNVIC_MEM_FAULT_ENABLE                 ( 1UL << 16UL )

/* Constants required to access and manipulate the MPU. */
#define portMPU_TYPE_REG                          ( *( ( volatile uint32_t * ) 0xe000ed90 ) )
#define portMPU_REGION_BASE_ADDRESS_REG           ( *( ( volatile uint32_t * ) 0xe000ed9C ) )
#define portMPU_REGION_ATTRIBUTE_REG              ( *( ( volatile uint32_t * ) 0xe000edA0 ) )
#define portMPU_CTRL_REG                          ( *( ( volatile uint32_t * ) 0xe000ed94 ) )
#define portEXPECTED_MPU_TYPE_VALUE               ( 8UL << 8UL ) /* 8 regions, unified. */
#define portMPU_ENABLE                            ( 0x01UL )
#define portMPU_BACKGROUND_ENABLE                 ( 1UL << 2UL )
#define portPRIVILEGED_EXECUTION_START_ADDRESS    ( 0UL )
#define portMPU_REGION_VALID                      ( 0x10UL )
#define portMPU_REGION_ENABLE                     ( 0x01UL )
#define portPERIPHERALS_START_ADDRESS             0x40000000UL
#define portPERIPHERALS_END_ADDRESS               0x5FFFFFFFUL

/* Constants required to access and manipulate the SysTick. */
#define portNVIC_SYSTICK_INT                      ( 0x00000002UL )
#define portNVIC_SYSTICK_ENABLE                   ( 0x00000001UL )
#define portMIN_INTERRUPT_PRIORITY                ( 255UL )
#define portNVIC_PENDSV_PRI                       ( ( ( uint32_t ) portMIN_INTERRUPT_PRIORITY ) << 16UL )
#define portNVIC_SYSTICK_PRI                      ( ( ( uint32_t ) portMIN_INTERRUPT_PRIORITY ) << 24UL )

/* Constants required to set up the initial stack. */
#define portINITIAL_XPSR                          ( 0x01000000 )
#define portINITIAL_EXC_RETURN                    ( 0xfffffffdUL )
#define portINITIAL_CONTROL_IF_UNPRIVILEGED       ( 0x03 )
#define portINITIAL_CONTROL_IF_PRIVILEGED         ( 0x02 )

/* Constants used to check the installation of the FreeRTOS interrupt handlers. */
#define portSCB_VTOR_REG                          ( *( ( portISR_t ** ) 0xE000ED08 ) )
#define portVECTOR_INDEX_SVC                      ( 11 )
#define portVECTOR_INDEX_PENDSV                   ( 14 )

/* Constants required to check the validity of an interrupt priority. */
#define portFIRST_USER_INTERRUPT_NUMBER           ( 16 )
#define portNVIC_IP_REGISTERS_OFFSET_16           ( 0xE000E3F0 )
#define portAIRCR_REG                             ( *( ( volatile uint32_t * ) 0xE000ED0C ) )
#define portMAX_8_BIT_VALUE                       ( ( uint8_t ) 0xff )
#define portTOP_BIT_OF_BYTE                       ( ( uint8_t ) 0x80 )
#define portMAX_PRIGROUP_BITS                     ( ( uint8_t ) 7 )
#define portPRIORITY_GROUP_MASK                   ( 0x07UL << 8UL )
#define portPRIGROUP_SHIFT                        ( 8UL )

/* Constants used during system call enter and exit. */
#define portPSR_STACK_PADDING_MASK                ( 1UL << 9UL )

/* Offsets in the stack to the parameters when inside the SVC handler. */
#define portOFFSET_TO_LR                          ( 5 )
#define portOFFSET_TO_PC                          ( 6 )
#define portOFFSET_TO_PSR                         ( 7 )

/* For strict compliance with the Cortex-M spec the task start address should
 * have bit-0 clear, as it is loaded into the PC on exit from an ISR. */
#define portSTART_ADDRESS_MASK                    ( ( StackType_t ) 0xfffffffeUL )

/* Does addr lie within [start, end] address range? */
#define portIS_ADDRESS_WITHIN_RANGE( addr, start, end ) \
    ( ( ( addr ) >= ( start ) ) && ( ( addr ) <= ( end ) ) )

/* Is the access request satisfied by the available permissions? */
#define portIS_AUTHORIZED( accessRequest, permissions ) \
    ( ( ( permissions ) & ( accessRequest ) ) == accessRequest )

/* Max value that fits in a uint32_t type. */
#define portUINT32_MAX    ( ~( ( uint32_t ) 0 ) )

/* Check if adding a and b will result in overflow. */
#define portADD_UINT32_WILL_OVERFLOW( a, b )    ( ( a ) > ( portUINT32_MAX - ( b ) ) )
/*-----------------------------------------------------------*/

/*
 * Configure a number of standard MPU regions that are used by all tasks.
 */
static void prvSetupMPU( void ) PRIVILEGED_FUNCTION;

/*
 * Return the smallest MPU region size that a given number of bytes will fit
 * into.  The region size is returned as the value that should be programmed
 * into the region attribute register for that region.
 */
static uint32_t prvGetMPURegionSizeSetting( uint32_t ulActualSizeInBytes ) PRIVILEGED_FUNCTION;

/*
 * Setup the timer to generate the tick interrupts.  The implementation in this
 * file is weak to allow application writers to change the timer used to
 * generate the tick interrupt.
 */
void vPortSetupTimerInterrupt( void );

/*
 * Standard FreeRTOS exception handlers.
 */
void xPortPendSVHandler( void ) __attribute__( ( naked ) ) PRIVILEGED_FUNCTION;
void xPortSysTickHandler( void )  __attribute__( ( optimize( "3" ) ) ) PRIVILEGED_FUNCTION;
void vPortSVCHandler( void ) __attribute__( ( naked ) ) PRIVILEGED_FUNCTION;

/*
 * Starts the scheduler by restoring the context of the first task to run.
 */
static void prvRestoreContextOfFirstTask( void ) __attribute__( ( naked ) ) PRIVILEGED_FUNCTION;

/*
 * C portion of the SVC handler.  The SVC handler is split between an asm entry
 * and a C wrapper for simplicity of coding and maintenance.
 */
void vSVCHandler_C( uint32_t * pulRegisters ) __attribute__( ( noinline ) ) PRIVILEGED_FUNCTION;

/**
 * @brief Checks whether or not the processor is privileged.
 *
 * @return 1 if the processor is already privileged, 0 otherwise.
 */
BaseType_t xIsPrivileged( void ) __attribute__( ( naked ) );

/**
 * @brief Lowers the privilege level by setting the bit 0 of the CONTROL
 * register.
 *
 * Bit 0 of the CONTROL register defines the privilege level of Thread Mode.
 *  Bit[0] = 0 --> The processor is running privileged
 *  Bit[0] = 1 --> The processor is running unprivileged.
 */
void vResetPrivilege( void ) __attribute__( ( naked ) );

/**
 * @brief Make a task unprivileged.
 */
void vPortSwitchToUserMode( void );

/**
 * @brief Enter critical section.
 */
#if ( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 )
    void vPortEnterCritical( void ) FREERTOS_SYSTEM_CALL;
#else
    void vPortEnterCritical( void ) PRIVILEGED_FUNCTION;
#endif

/**
 * @brief Exit from critical section.
 */
#if ( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 )
    void vPortExitCritical( void ) FREERTOS_SYSTEM_CALL;
#else
    void vPortExitCritical( void ) PRIVILEGED_FUNCTION;
#endif

#if ( configUSE_MPU_WRAPPERS_V1 == 0 )

/**
 * @brief Sets up the system call stack so that upon returning from
 * SVC, the system call stack is used.
 *
 * @param pulTaskStack The current SP when the SVC was raised.
 * @param ucSystemCallNumber The system call number of the system call.
 */
    void vSystemCallEnter( uint32_t * pulTaskStack,
                           uint8_t ucSystemCallNumber ) PRIVILEGED_FUNCTION;

#endif /* #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) */

#if ( configUSE_MPU_WRAPPERS_V1 == 0 )

/**
 * @brief Raise SVC for exiting from a system call.
 */
    void vRequestSystemCallExit( void ) __attribute__( ( naked ) ) PRIVILEGED_FUNCTION;

#endif /* #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) */

#if ( configUSE_MPU_WRAPPERS_V1 == 0 )

/**
 * @brief Sets up the task stack so that upon returning from
 * SVC, the task stack is used again.
 *
 * @param pulSystemCallStack The current SP when the SVC was raised.
 */
    void vSystemCallExit( uint32_t * pulSystemCallStack ) PRIVILEGED_FUNCTION;

#endif /* #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) */

/**
 * @brief Checks whether or not the calling task is privileged.
 *
 * @return pdTRUE if the calling task is privileged, pdFALSE otherwise.
 */
BaseType_t xPortIsTaskPrivileged( void ) PRIVILEGED_FUNCTION;
/*-----------------------------------------------------------*/

/* Each task maintains its own interrupt status in the critical nesting
 * variable.  Note this is not saved as part of the task context as context
 * switches can only occur when uxCriticalNesting is zero. */
static UBaseType_t uxCriticalNesting = 0xaaaaaaaa;

#if ( ( configUSE_MPU_WRAPPERS_V1 == 0 ) && ( configENABLE_ACCESS_CONTROL_LIST == 1 ) )

/*
 * This variable is set to pdTRUE when the scheduler is started.
 */
    PRIVILEGED_DATA static BaseType_t xSchedulerRunning = pdFALSE;

#endif

/*
 * Used by the portASSERT_IF_INTERRUPT_PRIORITY_INVALID() macro to ensure
 * FreeRTOS API functions are not called from interrupts that have been assigned
 * a priority above configMAX_SYSCALL_INTERRUPT_PRIORITY.
 */
#if ( configASSERT_DEFINED == 1 )
    static uint8_t ucMaxSysCallPriority = 0;
    static uint32_t ulMaxPRIGROUPValue = 0;
    static const volatile uint8_t * const pcInterruptPriorityRegisters = ( const volatile uint8_t * const ) portNVIC_IP_REGISTERS_OFFSET_16;
#endif /* configASSERT_DEFINED */
/*-----------------------------------------------------------*/

/*
 * See header file for description.
 */
StackType_t * pxPortInitialiseStack( StackType_t * pxTopOfStack,
                                     TaskFunction_t pxCode,
                                     void * pvParameters,
                                     BaseType_t xRunPrivileged,
                                     xMPU_SETTINGS * xMPUSettings )
{
    if( xRunPrivileged == pdTRUE )
    {
        xMPUSettings->ulTaskFlags |= portTASK_IS_PRIVILEGED_FLAG;
        xMPUSettings->ulContext[ 0 ] = portINITIAL_CONTROL_IF_PRIVILEGED;
    }
    else
    {
        xMPUSettings->ulTaskFlags &= ( ~( portTASK_IS_PRIVILEGED_FLAG ) );
        xMPUSettings->ulContext[ 0 ] = portINITIAL_CONTROL_IF_UNPRIVILEGED;
    }

    xMPUSettings->ulContext[ 1 ] = 0x04040404;                                        /* r4. */
    xMPUSettings->ulContext[ 2 ] = 0x05050505;                                        /* r5. */
    xMPUSettings->ulContext[ 3 ] = 0x06060606;                                        /* r6. */
    xMPUSettings->ulContext[ 4 ] = 0x07070707;                                        /* r7. */
    xMPUSettings->ulContext[ 5 ] = 0x08080808;                                        /* r8. */
    xMPUSettings->ulContext[ 6 ] = 0x09090909;                                        /* r9. */
    xMPUSettings->ulContext[ 7 ] = 0x10101010;                                        /* r10. */
    xMPUSettings->ulContext[ 8 ] = 0x11111111;                                        /* r11. */
    xMPUSettings->ulContext[ 9 ] = portINITIAL_EXC_RETURN;                            /* EXC_RETURN. */

    xMPUSettings->ulContext[ 10 ] = ( uint32_t ) ( pxTopOfStack - 8 );                /* PSP with the hardware saved stack. */
    xMPUSettings->ulContext[ 11 ] = ( uint32_t ) pvParameters;                        /* r0. */
    xMPUSettings->ulContext[ 12 ] = 0x01010101;                                       /* r1. */
    xMPUSettings->ulContext[ 13 ] = 0x02020202;                                       /* r2. */
    xMPUSettings->ulContext[ 14 ] = 0x03030303;                                       /* r3. */
    xMPUSettings->ulContext[ 15 ] = 0x12121212;                                       /* r12. */
    xMPUSettings->ulContext[ 16 ] = 0;                                                /* LR. */
    xMPUSettings->ulContext[ 17 ] = ( ( uint32_t ) pxCode ) & portSTART_ADDRESS_MASK; /* PC. */
    xMPUSettings->ulContext[ 18 ] = portINITIAL_XPSR;                                 /* xPSR. */

    #if ( configUSE_MPU_WRAPPERS_V1 == 0 )
    {
        /* Ensure that the system call stack is double word aligned. */
        xMPUSettings->xSystemCallStackInfo.pulSystemCallStack = &( xMPUSettings->xSystemCallStackInfo.ulSystemCallStackBuffer[ configSYSTEM_CALL_STACK_SIZE - 1 ] );
        xMPUSettings->xSystemCallStackInfo.pulSystemCallStack = ( uint32_t * ) ( ( uint32_t ) ( xMPUSettings->xSystemCallStackInfo.pulSystemCallStack ) &
                                                                                 ( uint32_t ) ( ~( portBYTE_ALIGNMENT_MASK ) ) );

        /* This is not NULL only for the duration of a system call. */
        xMPUSettings->xSystemCallStackInfo.pulTaskStack = NULL;
    }
    #endif /* #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) */

    return &( xMPUSettings->ulContext[ 19 ] );
}
/*-----------------------------------------------------------*/

#if ( configUSE_MPU_WRAPPERS_V1 == 0 )

    void vPortSVCHandler( void ) /* __attribute__( ( naked ) ) PRIVILEGED_FUNCTION */
    {
        __asm volatile
        (
            ".syntax unified                \n"
            ".extern vSVCHandler_C          \n"
            ".extern vSystemCallEnter       \n"
            ".extern vSystemCallExit        \n"
            "                               \n"
            "tst lr, #4                     \n"
            "ite eq                         \n"
            "mrseq r0, msp                  \n"
            "mrsne r0, psp                  \n"
            "                               \n"
            "ldr r2, [r0, #24]              \n"
            "ldrb r1, [r2, #-2]             \n"
            "cmp r1, %0                     \n"
            "blt vSystemCallEnter           \n"
            "cmp r1, %1                     \n"
            "beq vSystemCallExit            \n"
            "b vSVCHandler_C                \n"
            "                               \n"
            : /* No outputs. */
            : "i" ( NUM_SYSTEM_CALLS ), "i" ( portSVC_SYSTEM_CALL_EXIT )
            : "r0", "r1", "r2", "memory"
        );
    }

#else /* #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) */

    void vPortSVCHandler( void ) /* __attribute__( ( naked ) ) PRIVILEGED_FUNCTION */
    {
        /* Assumes psp was in use. */
        __asm volatile
        (
            #ifndef USE_PROCESS_STACK /* Code should not be required if a main() is using the process stack. */
                "   tst lr, #4                      \n"
                "   ite eq                          \n"
                "   mrseq r0, msp                   \n"
                "   mrsne r0, psp                   \n"
            #else
                "   mrs r0, psp                     \n"
            #endif
            "   b %0                            \n"
            ::"i" ( vSVCHandler_C ) : "r0", "memory"
        );
    }

#endif /* #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) */
/*-----------------------------------------------------------*/

void vSVCHandler_C( uint32_t * pulParam ) /* PRIVILEGED_FUNCTION */
{
    uint8_t ucSVCNumber;
    uint32_t ulPC;

    #if ( ( configUSE_MPU_WRAPPERS_V1 == 1 ) && ( configENFORCE_SYSTEM_CALLS_FROM_KERNEL_ONLY == 1 ) )
        #if defined( __ARMCC_VERSION )

            /* Declaration when these variable are defined in code instead of being
             * exported from linker scripts. */
            extern uint32_t * __syscalls_flash_start__;
            extern uint32_t * __syscalls_flash_end__;
        #else
            /* Declaration when these variable are exported from linker scripts. */
            extern uint32_t __syscalls_flash_start__[];
            extern uint32_t __syscalls_flash_end__[];
        #endif /* #if defined( __ARMCC_VERSION ) */
    #endif /* #if ( ( configUSE_MPU_WRAPPERS_V1 == 1 ) && ( configENFORCE_SYSTEM_CALLS_FROM_KERNEL_ONLY == 1 ) ) */

    /* The stack contains: r0, r1, r2, r3, r12, LR, PC and xPSR.  The first
     * argument (r0) is pulParam[ 0 ]. */
    ulPC = pulParam[ portOFFSET_TO_PC ];
    ucSVCNumber = ( ( uint8_t * ) ulPC )[ -2 ];

    switch( ucSVCNumber )
    {
        case portSVC_START_SCHEDULER:
            prvRestoreContextOfFirstTask();
            break;

        case portSVC_YIELD:
            portNVIC_INT_CTRL_REG = portNVIC_PENDSVSET_BIT;

            /* Barriers are normally not required
             * but do ensure the code is completely
             * within the specified behaviour for the
             * architecture. */
            __asm volatile ( "dsb" ::: "memory" );
            __asm volatile ( "isb" );

            break;

    #if ( configUSE_MPU_WRAPPERS_V1 == 1 )
        #if ( configENFORCE_SYSTEM_CALLS_FROM_KERNEL_ONLY == 1 )
            case portSVC_RAISE_PRIVILEGE: /* Only raise the privilege, if the
                                           * svc was raised from any of the
                                           * system calls. */

                if( ( ulPC >= ( uint32_t ) __syscalls_flash_start__ ) &&
                    ( ulPC <= ( uint32_t ) __syscalls_flash_end__ ) )
                {
                    __asm volatile
                    (
                        "   mrs r1, control     \n" /* Obtain current control value. */
                        "   bic r1, #1          \n" /* Set privilege bit. */
                        "   msr control, r1     \n" /* Write back new control value. */
                        ::: "r1", "memory"
                    );
                }

                break;
        #else /* if ( configENFORCE_SYSTEM_CALLS_FROM_KERNEL_ONLY == 1 ) */
            case portSVC_RAISE_PRIVILEGE:
                __asm volatile
                (
                    "   mrs r1, control     \n" /* Obtain current control value. */
                    "   bic r1, #1          \n" /* Set privilege bit. */
                    "   msr control, r1     \n" /* Write back new control value. */
                    ::: "r1", "memory"
                );
                break;
        #endif /* #if( configENFORCE_SYSTEM_CALLS_FROM_KERNEL_ONLY == 1 ) */
    #endif /* #if ( configUSE_MPU_WRAPPERS_V1 == 1 ) */

        default: /* Unknown SVC call. */
            break;
    }
}
/*-----------------------------------------------------------*/

#if ( configUSE_MPU_WRAPPERS_V1 == 0 )

    void vSystemCallEnter( uint32_t * pulTaskStack,
                           uint8_t ucSystemCallNumber ) /* PRIVILEGED_FUNCTION */
    {
        extern TaskHandle_t pxCurrentTCB;
        extern UBaseType_t uxSystemCallImplementations[ NUM_SYSTEM_CALLS ];
        xMPU_SETTINGS * pxMpuSettings;
        uint32_t * pulSystemCallStack;
        uint32_t ulSystemCallLocation, i;
        const uint32_t ulStackFrameSize = 8;

        #if defined( __ARMCC_VERSION )
            /* Declaration when these variable are defined in code instead of being
             * exported from linker scripts. */
            extern uint32_t * __syscalls_flash_start__;
            extern uint32_t * __syscalls_flash_end__;
        #else
            /* Declaration when these variable are exported from linker scripts. */
            extern uint32_t __syscalls_flash_start__[];
            extern uint32_t __syscalls_flash_end__[];
        #endif /* #if defined( __ARMCC_VERSION ) */

        ulSystemCallLocation = pulTaskStack[ portOFFSET_TO_PC ];
        pxMpuSettings = xTaskGetMPUSettings( pxCurrentTCB );

        /* Checks:
         * 1. SVC is raised from the system call section (i.e. application is
         *    not raising SVC directly).
         * 2. pxMpuSettings->xSystemCallStackInfo.pulTaskStack must be NULL as
         *    it is non-NULL only during the execution of a system call (i.e.
         *    between system call enter and exit).
         * 3. System call is not for a kernel API disabled by the configuration
         *    in FreeRTOSConfig.h.
         * 4. We do not need to check that ucSystemCallNumber is within range
         *    because the assembly SVC handler checks that before calling
         *    this function.
         */
        if( ( ulSystemCallLocation >= ( uint32_t ) __syscalls_flash_start__ ) &&
            ( ulSystemCallLocation <= ( uint32_t ) __syscalls_flash_end__ ) &&
            ( pxMpuSettings->xSystemCallStackInfo.pulTaskStack == NULL ) &&
            ( uxSystemCallImplementations[ ucSystemCallNumber ] != ( UBaseType_t ) 0 ) )
        {
            pulSystemCallStack = pxMpuSettings->xSystemCallStackInfo.pulSystemCallStack;

            /* Make space on the system call stack for the stack frame. */
            pulSystemCallStack = pulSystemCallStack - ulStackFrameSize;

            /* Copy the stack frame. */
            for( i = 0; i < ulStackFrameSize; i++ )
            {
                pulSystemCallStack[ i ] = pulTaskStack[ i ];
            }

            /* Use the pulSystemCallStack in thread mode. */
            __asm volatile ( "msr psp, %0" : : "r" ( pulSystemCallStack ) );

            /* Raise the privilege for the duration of the system call. */
            __asm volatile (
                " mrs r1, control     \n" /* Obtain current control value. */
                " bic r1, #1          \n" /* Clear nPRIV bit. */
                " msr control, r1     \n" /* Write back new control value. */
                ::: "r1", "memory"
                );

            /* Remember the location where we should copy the stack frame when we exit from
             * the system call. */
            pxMpuSettings->xSystemCallStackInfo.pulTaskStack = pulTaskStack + ulStackFrameSize;

            /* Store the value of the Link Register before the SVC was raised.
             * It contains the address of the caller of the System Call entry
             * point (i.e. the caller of the MPU_<API>). We need to restore it
             * when we exit from the system call. */
            pxMpuSettings->xSystemCallStackInfo.ulLinkRegisterAtSystemCallEntry = pulTaskStack[ portOFFSET_TO_LR ];

            /* Start executing the system call upon returning from this handler. */
            pulSystemCallStack[ portOFFSET_TO_PC ] = uxSystemCallImplementations[ ucSystemCallNumber ];
            /* Raise a request to exit from the system call upon finishing the
             * system call. */
            pulSystemCallStack[ portOFFSET_TO_LR ] = ( uint32_t ) vRequestSystemCallExit;

            /* Record if the hardware used padding to force the stack pointer
             * to be double word aligned. */
            if( ( pulTaskStack[ portOFFSET_TO_PSR ] & portPSR_STACK_PADDING_MASK ) == portPSR_STACK_PADDING_MASK )
            {
                pxMpuSettings->ulTaskFlags |= portSTACK_FRAME_HAS_PADDING_FLAG;
            }
            else
            {
                pxMpuSettings->ulTaskFlags &= ( ~portSTACK_FRAME_HAS_PADDING_FLAG );
            }

            /* We ensure in pxPortInitialiseStack that the system call stack is
             * double word aligned and therefore, there is no need of padding.
             * Clear the bit[9] of stacked xPSR. */
            pulSystemCallStack[ portOFFSET_TO_PSR ] &= ( ~portPSR_STACK_PADDING_MASK );
        }
    }

#endif /* #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) */
/*-----------------------------------------------------------*/

#if ( configUSE_MPU_WRAPPERS_V1 == 0 )

    void vRequestSystemCallExit( void ) /* __attribute__( ( naked ) ) PRIVILEGED_FUNCTION */
    {
        __asm volatile ( "svc %0 \n" ::"i" ( portSVC_SYSTEM_CALL_EXIT ) : "memory" );
    }

#endif /* #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) */
/*-----------------------------------------------------------*/

#if ( configUSE_MPU_WRAPPERS_V1 == 0 )

    void vSystemCallExit( uint32_t * pulSystemCallStack ) /* PRIVILEGED_FUNCTION */
    {
        extern TaskHandle_t pxCurrentTCB;
        xMPU_SETTINGS * pxMpuSettings;
        uint32_t * pulTaskStack;
        uint32_t ulSystemCallLocation, i;
        const uint32_t ulStackFrameSize = 8;

        #if defined( __ARMCC_VERSION )
            /* Declaration when these variable are defined in code instead of being
             * exported from linker scripts. */
            extern uint32_t * __privileged_functions_start__;
            extern uint32_t * __privileged_functions_end__;
        #else
            /* Declaration when these variable are exported from linker scripts. */
            extern uint32_t __privileged_functions_start__[];
            extern uint32_t __privileged_functions_end__[];
        #endif /* #if defined( __ARMCC_VERSION ) */

        ulSystemCallLocation = pulSystemCallStack[ portOFFSET_TO_PC ];
        pxMpuSettings = xTaskGetMPUSettings( pxCurrentTCB );

        /* Checks:
         * 1. SVC is raised from the privileged code (i.e. application is not
         *    raising SVC directly). This SVC is only raised from
         *    vRequestSystemCallExit which is in the privileged code section.
         * 2. pxMpuSettings->xSystemCallStackInfo.pulTaskStack must not be NULL -
         *    this means that we previously entered a system call and the
         *    application is not attempting to exit without entering a system
         *    call.
         */
        if( ( ulSystemCallLocation >= ( uint32_t ) __privileged_functions_start__ ) &&
            ( ulSystemCallLocation <= ( uint32_t ) __privileged_functions_end__ ) &&
            ( pxMpuSettings->xSystemCallStackInfo.pulTaskStack != NULL ) )
        {
            pulTaskStack = pxMpuSettings->xSystemCallStackInfo.pulTaskStack;

            /* Make space on the task stack for the stack frame. */
            pulTaskStack = pulTaskStack - ulStackFrameSize;

            /* Copy the stack frame. */
            for( i = 0; i < ulStackFrameSize; i++ )
            {
                pulTaskStack[ i ] = pulSystemCallStack[ i ];
            }

            /* Use the pulTaskStack in thread mode. */
            __asm volatile ( "msr psp, %0" : : "r" ( pulTaskStack ) );

            /* Drop the privilege before returning to the thread mode. */
            __asm volatile (
                " mrs r1, control     \n" /* Obtain current control value. */
                " orr r1, #1          \n" /* Set nPRIV bit. */
                " msr control, r1     \n" /* Write back new control value. */
                ::: "r1", "memory"
                );

            /* Return to the caller of the System Call entry point (i.e. the
             * caller of the MPU_<API>). */
            pulTaskStack[ portOFFSET_TO_PC ] = pxMpuSettings->xSystemCallStackInfo.ulLinkRegisterAtSystemCallEntry;
            /* Ensure that LR has a valid value.*/
            pulTaskStack[ portOFFSET_TO_LR ] = pxMpuSettings->xSystemCallStackInfo.ulLinkRegisterAtSystemCallEntry;

            /* If the hardware used padding to force the stack pointer
             * to be double word aligned, set the stacked xPSR bit[9],
             * otherwise clear it. */
            if( ( pxMpuSettings->ulTaskFlags & portSTACK_FRAME_HAS_PADDING_FLAG ) == portSTACK_FRAME_HAS_PADDING_FLAG )
            {
                pulTaskStack[ portOFFSET_TO_PSR ] |= portPSR_STACK_PADDING_MASK;
            }
            else
            {
                pulTaskStack[ portOFFSET_TO_PSR ] &= ( ~portPSR_STACK_PADDING_MASK );
            }

            /* This is not NULL only for the duration of the system call. */
            pxMpuSettings->xSystemCallStackInfo.pulTaskStack = NULL;
        }
    }

#endif /* #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) */
/*-----------------------------------------------------------*/

BaseType_t xPortIsTaskPrivileged( void ) /* PRIVILEGED_FUNCTION */
{
    BaseType_t xTaskIsPrivileged = pdFALSE;
    const xMPU_SETTINGS * xTaskMpuSettings = xTaskGetMPUSettings( NULL ); /* Calling task's MPU settings. */

    if( ( xTaskMpuSettings->ulTaskFlags & portTASK_IS_PRIVILEGED_FLAG ) == portTASK_IS_PRIVILEGED_FLAG )
    {
        xTaskIsPrivileged = pdTRUE;
    }

    return xTaskIsPrivileged;
}
/*-----------------------------------------------------------*/

static void prvRestoreContextOfFirstTask( void )
{
    __asm volatile
    (
        " ldr r0, =0xE000ED08                   \n" /* Use the NVIC offset register to locate the stack. */
        " ldr r0, [r0]                          \n"
        " ldr r0, [r0]                          \n"
        " msr msp, r0                           \n" /* Set the msp back to the start of the stack. */
        "                                       \n"
        /*------------ Program MPU. ------------ */
        " ldr r3, pxCurrentTCBConst2            \n" /* r3 = pxCurrentTCBConst2. */
        " ldr r2, [r3]                          \n" /* r2 = pxCurrentTCB. */
        " add r2, r2, #4                        \n" /* r2 = Second item in the TCB which is xMPUSettings. */
        "                                       \n"
        " dmb                                   \n" /* Complete outstanding transfers before disabling MPU. */
        " ldr r0, =0xe000ed94                   \n" /* MPU_CTRL register. */
        " ldr r3, [r0]                          \n" /* Read the value of MPU_CTRL. */
        " bic r3, #1                            \n" /* r3 = r3 & ~1 i.e. Clear the bit 0 in r3. */
        " str r3, [r0]                          \n" /* Disable MPU. */
        "                                       \n"
        " ldr r0, =0xe000ed9c                   \n" /* Region Base Address register. */
        " ldmia r2!, {r4-r11}                   \n" /* Read 4 sets of MPU registers [MPU Region # 0 - 3]. */
        " stmia r0, {r4-r11}                    \n" /* Write 4 sets of MPU registers [MPU Region # 0 - 3]. */
        "                                       \n"
        " ldr r0, =0xe000ed94                   \n" /* MPU_CTRL register. */
        " ldr r3, [r0]                          \n" /* Read the value of MPU_CTRL. */
        " orr r3, #1                            \n" /* r3 = r3 | 1 i.e. Set the bit 0 in r3. */
        " str r3, [r0]                          \n" /* Enable MPU. */
        " dsb                                   \n" /* Force memory writes before continuing. */
        "                                       \n"
        /*---------- Restore Context. ---------- */
        " ldr r3, pxCurrentTCBConst2            \n" /* r3 = pxCurrentTCBConst2. */
        " ldr r2, [r3]                          \n" /* r2 = pxCurrentTCB. */
        " ldr r1, [r2]                          \n" /* r1 = Location of saved context in TCB. */
        "                                       \n"
        " ldmdb r1!, {r0, r4-r11}               \n" /* r0 contains PSP after the hardware had saved context. r4-r11 contain hardware saved context. */
        " msr psp, r0                           \n"
        " stmia r0, {r4-r11}                    \n" /* Copy the hardware saved context on the task stack. */
        " ldmdb r1!, {r3-r11, lr}               \n" /* r3 contains CONTROL register. r4-r11 and LR restored. */
        " msr control, r3                       \n"
        " str r1, [r2]                          \n" /* Save the location where the context should be saved next as the first member of TCB. */
        "                                       \n"
        " mov r0, #0                            \n"
        " msr basepri, r0                       \n"
        " bx lr                                 \n"
        "                                       \n"
        " .ltorg                                \n" /* Assemble current literal pool to avoid offset-out-of-bound errors with lto. */
        " .align 4                              \n"
        "pxCurrentTCBConst2: .word pxCurrentTCB \n"
    );
}
/*-----------------------------------------------------------*/

/*
 * See header file for description.
 */
BaseType_t xPortStartScheduler( void )
{
    /* An application can install FreeRTOS interrupt handlers in one of the
     * folllowing ways:
     * 1. Direct Routing - Install the functions vPortSVCHandler and
     *    xPortPendSVHandler for SVCall and PendSV interrupts respectively.
     * 2. Indirect Routing - Install separate handlers for SVCall and PendSV
     *    interrupts and route program control from those handlers to
     *    vPortSVCHandler and xPortPendSVHandler functions.
     *
     * Applications that use Indirect Routing must set
     * configCHECK_HANDLER_INSTALLATION to 0 in their FreeRTOSConfig.h. Direct
     * routing, which is validated here when configCHECK_HANDLER_INSTALLATION
     * is 1, should be preferred when possible. */
    #if ( configCHECK_HANDLER_INSTALLATION == 1 )
    {
        const portISR_t * const pxVectorTable = portSCB_VTOR_REG;

        /* Validate that the application has correctly installed the FreeRTOS
         * handlers for SVCall and PendSV interrupts. We do not check the
         * installation of the SysTick handler because the application may
         * choose to drive the RTOS tick using a timer other than the SysTick
         * timer by overriding the weak function vPortSetupTimerInterrupt().
         *
         * Assertion failures here indicate incorrect installation of the
         * FreeRTOS handlers. For help installing the FreeRTOS handlers, see
         * https://www.FreeRTOS.org/FAQHelp.html.
         *
         * Systems with a configurable address for the interrupt vector table
         * can also encounter assertion failures or even system faults here if
         * VTOR is not set correctly to point to the application's vector table. */
        configASSERT( pxVectorTable[ portVECTOR_INDEX_SVC ] == vPortSVCHandler );
        configASSERT( pxVectorTable[ portVECTOR_INDEX_PENDSV ] == xPortPendSVHandler );
    }
    #endif /* configCHECK_HANDLER_INSTALLATION */

    #if ( configASSERT_DEFINED == 1 )
    {
        volatile uint8_t ucOriginalPriority;
        volatile uint32_t ulImplementedPrioBits = 0;
        volatile uint8_t * const pucFirstUserPriorityRegister = ( volatile uint8_t * const ) ( portNVIC_IP_REGISTERS_OFFSET_16 + portFIRST_USER_INTERRUPT_NUMBER );
        volatile uint8_t ucMaxPriorityValue;

        /* Determine the maximum priority from which ISR safe FreeRTOS API
         * functions can be called.  ISR safe functions are those that end in
         * "FromISR".  FreeRTOS maintains separate thread and ISR API functions
         * to ensure interrupt entry is as fast and simple as possible.
         *
         * Save the interrupt priority value that is about to be clobbered. */
        ucOriginalPriority = *pucFirstUserPriorityRegister;

        /* Determine the number of priority bits available.  First write to all
         * possible bits. */
        *pucFirstUserPriorityRegister = portMAX_8_BIT_VALUE;

        /* Read the value back to see how many bits stuck. */
        ucMaxPriorityValue = *pucFirstUserPriorityRegister;

        /* Use the same mask on the maximum system call priority. */
        ucMaxSysCallPriority = configMAX_SYSCALL_INTERRUPT_PRIORITY & ucMaxPriorityValue;

        /* Check that the maximum system call priority is nonzero after
         * accounting for the number of priority bits supported by the
         * hardware. A priority of 0 is invalid because setting the BASEPRI
         * register to 0 unmasks all interrupts, and interrupts with priority 0
         * cannot be masked using BASEPRI.
         * See https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
        configASSERT( ucMaxSysCallPriority );

        /* Check that the bits not implemented in hardware are zero in
         * configMAX_SYSCALL_INTERRUPT_PRIORITY. */
        configASSERT( ( configMAX_SYSCALL_INTERRUPT_PRIORITY & ( ~ucMaxPriorityValue ) ) == 0U );

        /* Calculate the maximum acceptable priority group value for the number
         * of bits read back. */

        while( ( ucMaxPriorityValue & portTOP_BIT_OF_BYTE ) == portTOP_BIT_OF_BYTE )
        {
            ulImplementedPrioBits++;
            ucMaxPriorityValue <<= ( uint8_t ) 0x01;
        }

        if( ulImplementedPrioBits == 8 )
        {
            /* When the hardware implements 8 priority bits, there is no way for
             * the software to configure PRIGROUP to not have sub-priorities. As
             * a result, the least significant bit is always used for sub-priority
             * and there are 128 preemption priorities and 2 sub-priorities.
             *
             * This may cause some confusion in some cases - for example, if
             * configMAX_SYSCALL_INTERRUPT_PRIORITY is set to 5, both 5 and 4
             * priority interrupts will be masked in Critical Sections as those
             * are at the same preemption priority. This may appear confusing as
             * 4 is higher (numerically lower) priority than
             * configMAX_SYSCALL_INTERRUPT_PRIORITY and therefore, should not
             * have been masked. Instead, if we set configMAX_SYSCALL_INTERRUPT_PRIORITY
             * to 4, this confusion does not happen and the behaviour remains the same.
             *
             * The following assert ensures that the sub-priority bit in the
             * configMAX_SYSCALL_INTERRUPT_PRIORITY is clear to avoid the above mentioned
             * confusion. */
            configASSERT( ( configMAX_SYSCALL_INTERRUPT_PRIORITY & 0x1U ) == 0U );
            ulMaxPRIGROUPValue = 0;
        }
        else
        {
            ulMaxPRIGROUPValue = portMAX_PRIGROUP_BITS - ulImplementedPrioBits;
        }

        /* Shift the priority group value back to its position within the AIRCR
         * register. */
        ulMaxPRIGROUPValue <<= portPRIGROUP_SHIFT;
        ulMaxPRIGROUPValue &= portPRIORITY_GROUP_MASK;

        /* Restore the clobbered interrupt priority register to its original
         * value. */
        *pucFirstUserPriorityRegister = ucOriginalPriority;
    }
    #endif /* configASSERT_DEFINED */

    /* Make PendSV and SysTick the lowest priority interrupts, and make SVCall
     * the highest priority. */
    portNVIC_SHPR3_REG |= portNVIC_PENDSV_PRI;
    portNVIC_SHPR3_REG |= portNVIC_SYSTICK_PRI;
    portNVIC_SHPR2_REG = 0;


    /* Configure the regions in the MPU that are common to all tasks. */
    prvSetupMPU();

    /* Start the timer that generates the tick ISR.  Interrupts are disabled
     * here already. */
    vPortSetupTimerInterrupt();

    /* Initialise the critical nesting count ready for the first task. */
    uxCriticalNesting = 0;

    #if ( ( configUSE_MPU_WRAPPERS_V1 == 0 ) && ( configENABLE_ACCESS_CONTROL_LIST == 1 ) )
    {
        xSchedulerRunning = pdTRUE;
    }
    #endif

    /* Start the first task. */
    __asm volatile (
        " ldr r0, =0xE000ED08   \n" /* Use the NVIC offset register to locate the stack. */
        " ldr r0, [r0]          \n"
        " ldr r0, [r0]          \n"
        " msr msp, r0           \n" /* Set the msp back to the start of the stack. */
        " cpsie i               \n" /* Globally enable interrupts. */
        " cpsie f               \n"
        " dsb                   \n"
        " isb                   \n"
        " svc %0                \n" /* System call to start first task. */
        " nop                   \n"
        " .ltorg                \n"
        ::"i" ( portSVC_START_SCHEDULER ) : "memory" );

    /* Should not get here! */
    return 0;
}
/*-----------------------------------------------------------*/

void vPortEndScheduler( void )
{
    /* Not implemented in ports where there is nothing to return to.
     * Artificially force an assert. */
    configASSERT( uxCriticalNesting == 1000UL );
}
/*-----------------------------------------------------------*/

void vPortEnterCritical( void )
{
    #if ( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 )
        if( portIS_PRIVILEGED() == pdFALSE )
        {
            portRAISE_PRIVILEGE();
            portMEMORY_BARRIER();

            portDISABLE_INTERRUPTS();
            uxCriticalNesting++;
            portMEMORY_BARRIER();

            portRESET_PRIVILEGE();
            portMEMORY_BARRIER();
        }
        else
        {
            portDISABLE_INTERRUPTS();
            uxCriticalNesting++;
        }
    #else /* if ( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 ) */
        portDISABLE_INTERRUPTS();
        uxCriticalNesting++;
    #endif /* if ( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 ) */
}
/*-----------------------------------------------------------*/

void vPortExitCritical( void )
{
    #if ( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 )
        if( portIS_PRIVILEGED() == pdFALSE )
        {
            portRAISE_PRIVILEGE();
            portMEMORY_BARRIER();

            configASSERT( uxCriticalNesting );
            uxCriticalNesting--;

            if( uxCriticalNesting == 0 )
            {
                portENABLE_INTERRUPTS();
            }

            portMEMORY_BARRIER();

            portRESET_PRIVILEGE();
            portMEMORY_BARRIER();
        }
        else
        {
            configASSERT( uxCriticalNesting );
            uxCriticalNesting--;

            if( uxCriticalNesting == 0 )
            {
                portENABLE_INTERRUPTS();
            }
        }
    #else /* if ( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 ) */
        configASSERT( uxCriticalNesting );
        uxCriticalNesting--;

        if( uxCriticalNesting == 0 )
        {
            portENABLE_INTERRUPTS();
        }
    #endif /* if ( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 ) */
}
/*-----------------------------------------------------------*/

void xPortPendSVHandler( void )
{
    /* This is a naked function. */

    __asm volatile
    (
        " ldr r3, pxCurrentTCBConst             \n" /* r3 = pxCurrentTCBConst. */
        " ldr r2, [r3]                          \n" /* r2 = pxCurrentTCB. */
        " ldr r1, [r2]                          \n" /* r1 = Location where the context should be saved. */
        "                                       \n"
        /*------------ Save Context. ----------- */
        " mrs r3, control                       \n"
        " mrs r0, psp                           \n"
        " isb                                   \n"
        "                                       \n"
        " stmia r1!, {r3-r11, lr}               \n" /* Store CONTROL register, r4-r11 and LR. */
        " ldmia r0, {r4-r11}                    \n" /* Copy hardware saved context into r4-r11. */
        " stmia r1!, {r0, r4-r11}               \n" /* Store original PSP (after hardware has saved context) and the hardware saved context. */
        " str r1, [r2]                          \n" /* Save the location from where the context should be restored as the first member of TCB. */
        "                                       \n"
        /*---------- Select next task. --------- */
        " mov r0, %0                            \n"
        " msr basepri, r0                       \n"
        " dsb                                   \n"
        " isb                                   \n"
        " bl vTaskSwitchContext                 \n"
        " mov r0, #0                            \n"
        " msr basepri, r0                       \n"
        "                                       \n"
        /*------------ Program MPU. ------------ */
        " ldr r3, pxCurrentTCBConst             \n" /* r3 = pxCurrentTCBConst. */
        " ldr r2, [r3]                          \n" /* r2 = pxCurrentTCB. */
        " add r2, r2, #4                        \n" /* r2 = Second item in the TCB which is xMPUSettings. */
        "                                       \n"
        " dmb                                   \n" /* Complete outstanding transfers before disabling MPU. */
        " ldr r0, =0xe000ed94                   \n" /* MPU_CTRL register. */
        " ldr r3, [r0]                          \n" /* Read the value of MPU_CTRL. */
        " bic r3, #1                            \n" /* r3 = r3 & ~1 i.e. Clear the bit 0 in r3. */
        " str r3, [r0]                          \n" /* Disable MPU. */
        "                                       \n"
        " ldr r0, =0xe000ed9c                   \n" /* Region Base Address register. */
        " ldmia r2!, {r4-r11}                   \n" /* Read 4 sets of MPU registers [MPU Region # 0 - 3]. */
        " stmia r0, {r4-r11}                    \n" /* Write 4 sets of MPU registers [MPU Region # 0 - 3]. */
        "                                       \n"
        " ldr r0, =0xe000ed94                   \n" /* MPU_CTRL register. */
        " ldr r3, [r0]                          \n" /* Read the value of MPU_CTRL. */
        " orr r3, #1                            \n" /* r3 = r3 | 1 i.e. Set the bit 0 in r3. */
        " str r3, [r0]                          \n" /* Enable MPU. */
        " dsb                                   \n" /* Force memory writes before continuing. */
        "                                       \n"
        /*---------- Restore Context. ---------- */
        " ldr r3, pxCurrentTCBConst             \n" /* r3 = pxCurrentTCBConst. */
        " ldr r2, [r3]                          \n" /* r2 = pxCurrentTCB. */
        " ldr r1, [r2]                          \n" /* r1 = Location of saved context in TCB. */
        "                                       \n"
        " ldmdb r1!, {r0, r4-r11}               \n" /* r0 contains PSP after the hardware had saved context. r4-r11 contain hardware saved context. */
        " msr psp, r0                           \n"
        " stmia r0, {r4-r11}                    \n" /* Copy the hardware saved context on the task stack. */
        " ldmdb r1!, {r3-r11, lr}               \n" /* r3 contains CONTROL register. r4-r11 and LR restored. */
        " msr control, r3                       \n"
        "                                       \n"
        " str r1, [r2]                          \n" /* Save the location where the context should be saved next as the first member of TCB. */
        " bx lr                                 \n"
        "                                       \n"
        " .ltorg                                \n" /* Assemble current literal pool to avoid offset-out-of-bound errors with lto. */
        " .align 4                              \n"
        "pxCurrentTCBConst: .word pxCurrentTCB  \n"
        ::"i" ( configMAX_SYSCALL_INTERRUPT_PRIORITY )
    );
}
/*-----------------------------------------------------------*/

void xPortSysTickHandler( void )
{
    uint32_t ulDummy;

    ulDummy = portSET_INTERRUPT_MASK_FROM_ISR();
    traceISR_ENTER();
    {
        /* Increment the RTOS tick. */
        if( xTaskIncrementTick() != pdFALSE )
        {
            traceISR_EXIT_TO_SCHEDULER();
            /* Pend a context switch. */
            portNVIC_INT_CTRL_REG = portNVIC_PENDSVSET_BIT;
        }
        else
        {
            traceISR_EXIT();
        }
    }
    portCLEAR_INTERRUPT_MASK_FROM_ISR( ulDummy );
}
/*-----------------------------------------------------------*/

/*
 * Setup the systick timer to generate the tick interrupts at the required
 * frequency.
 */
__attribute__( ( weak ) ) void vPortSetupTimerInterrupt( void )
{
    /* Stop and clear the SysTick. */
    portNVIC_SYSTICK_CTRL_REG = 0UL;
    portNVIC_SYSTICK_CURRENT_VALUE_REG = 0UL;

    /* Configure SysTick to interrupt at the requested rate. */
    portNVIC_SYSTICK_LOAD_REG = ( configSYSTICK_CLOCK_HZ / configTICK_RATE_HZ ) - 1UL;
    portNVIC_SYSTICK_CTRL_REG = ( portNVIC_SYSTICK_CLK | portNVIC_SYSTICK_INT | portNVIC_SYSTICK_ENABLE );
}
/*-----------------------------------------------------------*/

static void prvSetupMPU( void )
{
    extern uint32_t __privileged_functions_start__[];
    extern uint32_t __privileged_functions_end__[];
    extern uint32_t __FLASH_segment_start__[];
    extern uint32_t __FLASH_segment_end__[];
    extern uint32_t __privileged_data_start__[];
    extern uint32_t __privileged_data_end__[];

    /* Check the expected MPU is present. */
    if( portMPU_TYPE_REG == portEXPECTED_MPU_TYPE_VALUE )
    {
        /* First setup the unprivileged flash for unprivileged read only access. */
        portMPU_REGION_BASE_ADDRESS_REG = ( ( uint32_t ) __FLASH_segment_start__ ) | /* Base address. */
                                          ( portMPU_REGION_VALID ) |
                                          ( portUNPRIVILEGED_FLASH_REGION );

        portMPU_REGION_ATTRIBUTE_REG = ( portMPU_REGION_READ_ONLY ) |
                                       ( portMPU_REGION_CACHEABLE_BUFFERABLE ) |
                                       ( prvGetMPURegionSizeSetting( ( uint32_t ) __FLASH_segment_end__ - ( uint32_t ) __FLASH_segment_start__ ) ) |
                                       ( portMPU_REGION_ENABLE );

        /* Setup the privileged flash for privileged only access.  This is where
         * the kernel code is * placed. */
        portMPU_REGION_BASE_ADDRESS_REG = ( ( uint32_t ) __privileged_functions_start__ ) | /* Base address. */
                                          ( portMPU_REGION_VALID ) |
                                          ( portPRIVILEGED_FLASH_REGION );

        portMPU_REGION_ATTRIBUTE_REG = ( portMPU_REGION_PRIVILEGED_READ_ONLY ) |
                                       ( portMPU_REGION_CACHEABLE_BUFFERABLE ) |
                                       ( prvGetMPURegionSizeSetting( ( uint32_t ) __privileged_functions_end__ - ( uint32_t ) __privileged_functions_start__ ) ) |
                                       ( portMPU_REGION_ENABLE );

        /* Setup the privileged data RAM region.  This is where the kernel data
         * is placed. */
        portMPU_REGION_BASE_ADDRESS_REG = ( ( uint32_t ) __privileged_data_start__ ) | /* Base address. */
                                          ( portMPU_REGION_VALID ) |
                                          ( portPRIVILEGED_RAM_REGION );

        portMPU_REGION_ATTRIBUTE_REG = ( portMPU_REGION_PRIVILEGED_READ_WRITE ) |
                                       ( portMPU_REGION_CACHEABLE_BUFFERABLE ) |
                                       ( portMPU_REGION_EXECUTE_NEVER ) |
                                       prvGetMPURegionSizeSetting( ( uint32_t ) __privileged_data_end__ - ( uint32_t ) __privileged_data_start__ ) |
                                       ( portMPU_REGION_ENABLE );

        /* By default allow everything to access the general peripherals.  The
         * system peripherals and registers are protected. */
        portMPU_REGION_BASE_ADDRESS_REG = ( portPERIPHERALS_START_ADDRESS ) |
                                          ( portMPU_REGION_VALID ) |
                                          ( portGENERAL_PERIPHERALS_REGION );

        portMPU_REGION_ATTRIBUTE_REG = ( portMPU_REGION_READ_WRITE | portMPU_REGION_EXECUTE_NEVER ) |
                                       ( prvGetMPURegionSizeSetting( portPERIPHERALS_END_ADDRESS - portPERIPHERALS_START_ADDRESS ) ) |
                                       ( portMPU_REGION_ENABLE );

        /* Enable the memory fault exception. */
        portNVIC_SYS_CTRL_STATE_REG |= portNVIC_MEM_FAULT_ENABLE;

        /* Enable the MPU with the background region configured. */
        portMPU_CTRL_REG |= ( portMPU_ENABLE | portMPU_BACKGROUND_ENABLE );
    }
}
/*-----------------------------------------------------------*/

static uint32_t prvGetMPURegionSizeSetting( uint32_t ulActualSizeInBytes )
{
    uint32_t ulRegionSize, ulReturnValue = 4;

    /* 32 is the smallest region size, 31 is the largest valid value for
     * ulReturnValue. */
    for( ulRegionSize = 32UL; ulReturnValue < 31UL; ( ulRegionSize <<= 1UL ) )
    {
        if( ulActualSizeInBytes <= ulRegionSize )
        {
            break;
        }
        else
        {
            ulReturnValue++;
        }
    }

    /* Shift the code by one before returning so it can be written directly
     * into the the correct bit position of the attribute register. */
    return( ulReturnValue << 1UL );
}
/*-----------------------------------------------------------*/

BaseType_t xIsPrivileged( void ) /* __attribute__ (( naked )) */
{
    __asm volatile
    (
        "   mrs r0, control                         \n" /* r0 = CONTROL. */
        "   tst r0, #1                              \n" /* Perform r0 & 1 (bitwise AND) and update the conditions flag. */
        "   ite ne                                  \n"
        "   movne r0, #0                            \n" /* CONTROL[0]!=0. Return false to indicate that the processor is not privileged. */
        "   moveq r0, #1                            \n" /* CONTROL[0]==0. Return true to indicate that the processor is privileged. */
        "   bx lr                                   \n" /* Return. */
        "                                           \n"
        "   .align 4                                \n"
        ::: "r0", "memory"
    );
}
/*-----------------------------------------------------------*/

void vResetPrivilege( void ) /* __attribute__ (( naked )) */
{
    __asm volatile
    (
        "   mrs r0, control                         \n" /* r0 = CONTROL. */
        "   orr r0, #1                              \n" /* r0 = r0 | 1. */
        "   msr control, r0                         \n" /* CONTROL = r0. */
        "   bx lr                                   \n" /* Return to the caller. */
        ::: "r0", "memory"
    );
}
/*-----------------------------------------------------------*/

void vPortSwitchToUserMode( void )
{
    /* Load the current task's MPU settings from its TCB. */
    xMPU_SETTINGS * xTaskMpuSettings = xTaskGetMPUSettings( NULL );

    /* Mark the task as unprivileged. */
    xTaskMpuSettings->ulTaskFlags &= ( ~( portTASK_IS_PRIVILEGED_FLAG ) );

    /* Lower the processor's privilege level. */
    vResetPrivilege();
}
/*-----------------------------------------------------------*/

void vPortStoreTaskMPUSettings( xMPU_SETTINGS * xMPUSettings,
                                const struct xMEMORY_REGION * const xRegions,
                                StackType_t * pxBottomOfStack,
                                uint32_t ulStackDepth )
{
    extern uint32_t __SRAM_segment_start__[];
    extern uint32_t __SRAM_segment_end__[];
    extern uint32_t __privileged_data_start__[];
    extern uint32_t __privileged_data_end__[];
    int32_t lIndex;
    uint32_t ul;

    if( xRegions == NULL )
    {
        /* No MPU regions are specified so allow access to all RAM. */
        xMPUSettings->xRegion[ 0 ].ulRegionBaseAddress =
            ( ( uint32_t ) __SRAM_segment_start__ ) | /* Base address. */
            ( portMPU_REGION_VALID ) |
            ( portSTACK_REGION );                     /* Region number. */

        xMPUSettings->xRegion[ 0 ].ulRegionAttribute =
            ( portMPU_REGION_READ_WRITE ) |
            ( portMPU_REGION_CACHEABLE_BUFFERABLE ) |
            ( portMPU_REGION_EXECUTE_NEVER ) |
            ( prvGetMPURegionSizeSetting( ( uint32_t ) __SRAM_segment_end__ - ( uint32_t ) __SRAM_segment_start__ ) ) |
            ( portMPU_REGION_ENABLE );

        xMPUSettings->xRegionSettings[ 0 ].ulRegionStartAddress = ( uint32_t ) __SRAM_segment_start__;
        xMPUSettings->xRegionSettings[ 0 ].ulRegionEndAddress = ( uint32_t ) __SRAM_segment_end__;
        xMPUSettings->xRegionSettings[ 0 ].ulRegionPermissions = ( tskMPU_READ_PERMISSION |
                                                                   tskMPU_WRITE_PERMISSION );

        /* Invalidate user configurable regions. */
        for( ul = 1UL; ul <= portNUM_CONFIGURABLE_REGIONS; ul++ )
        {
            xMPUSettings->xRegion[ ul ].ulRegionBaseAddress = ( ( ul - 1UL ) | portMPU_REGION_VALID );
            xMPUSettings->xRegion[ ul ].ulRegionAttribute = 0UL;
            xMPUSettings->xRegionSettings[ ul ].ulRegionStartAddress = 0UL;
            xMPUSettings->xRegionSettings[ ul ].ulRegionEndAddress = 0UL;
            xMPUSettings->xRegionSettings[ ul ].ulRegionPermissions = 0UL;
        }
    }
    else
    {
        /* This function is called automatically when the task is created - in
         * which case the stack region parameters will be valid.  At all other
         * times the stack parameters will not be valid and it is assumed that the
         * stack region has already been configured. */
        if( ulStackDepth > 0 )
        {
            /* Define the region that allows access to the stack. */
            xMPUSettings->xRegion[ 0 ].ulRegionBaseAddress =
                ( ( uint32_t ) pxBottomOfStack ) |
                ( portMPU_REGION_VALID ) |
                ( portSTACK_REGION ); /* Region number. */

            xMPUSettings->xRegion[ 0 ].ulRegionAttribute =
                ( portMPU_REGION_READ_WRITE ) |
                ( portMPU_REGION_EXECUTE_NEVER ) |
                ( prvGetMPURegionSizeSetting( ulStackDepth * ( uint32_t ) sizeof( StackType_t ) ) ) |
                ( portMPU_REGION_CACHEABLE_BUFFERABLE ) |
                ( portMPU_REGION_ENABLE );
            xMPUSettings->xRegionSettings[ 0 ].ulRegionStartAddress = ( uint32_t ) pxBottomOfStack;
            xMPUSettings->xRegionSettings[ 0 ].ulRegionEndAddress = ( uint32_t ) ( ( uint32_t ) ( pxBottomOfStack ) +
                                                                                   ( ulStackDepth * ( uint32_t ) sizeof( StackType_t ) ) - 1UL );
            xMPUSettings->xRegionSettings[ 0 ].ulRegionPermissions = ( tskMPU_READ_PERMISSION |
                                                                       tskMPU_WRITE_PERMISSION );
        }

        lIndex = 0;

        for( ul = 1UL; ul <= portNUM_CONFIGURABLE_REGIONS; ul++ )
        {
            if( ( xRegions[ lIndex ] ).ulLengthInBytes > 0UL )
            {
                /* Translate the generic region definition contained in
                 * xRegions into the CM3 specific MPU settings that are then
                 * stored in xMPUSettings. */
                xMPUSettings->xRegion[ ul ].ulRegionBaseAddress =
                    ( ( uint32_t ) xRegions[ lIndex ].pvBaseAddress ) |
                    ( portMPU_REGION_VALID ) |
                    ( ul - 1UL ); /* Region number. */

                xMPUSettings->xRegion[ ul ].ulRegionAttribute =
                    ( prvGetMPURegionSizeSetting( xRegions[ lIndex ].ulLengthInBytes ) ) |
                    ( xRegions[ lIndex ].ulParameters ) |
                    ( portMPU_REGION_ENABLE );

                xMPUSettings->xRegionSettings[ ul ].ulRegionStartAddress = ( uint32_t ) xRegions[ lIndex ].pvBaseAddress;
                xMPUSettings->xRegionSettings[ ul ].ulRegionEndAddress = ( uint32_t ) ( ( uint32_t ) xRegions[ lIndex ].pvBaseAddress + xRegions[ lIndex ].ulLengthInBytes - 1UL );
                xMPUSettings->xRegionSettings[ ul ].ulRegionPermissions = 0UL;

                if( ( ( xRegions[ lIndex ].ulParameters & portMPU_REGION_READ_ONLY ) == portMPU_REGION_READ_ONLY ) ||
                    ( ( xRegions[ lIndex ].ulParameters & portMPU_REGION_PRIVILEGED_READ_WRITE_UNPRIV_READ_ONLY ) == portMPU_REGION_PRIVILEGED_READ_WRITE_UNPRIV_READ_ONLY ) )
                {
                    xMPUSettings->xRegionSettings[ ul ].ulRegionPermissions = tskMPU_READ_PERMISSION;
                }

                if( ( xRegions[ lIndex ].ulParameters & portMPU_REGION_READ_WRITE ) == portMPU_REGION_READ_WRITE )
                {
                    xMPUSettings->xRegionSettings[ ul ].ulRegionPermissions = ( tskMPU_READ_PERMISSION | tskMPU_WRITE_PERMISSION );
                }
            }
            else
            {
                /* Invalidate the region. */
                xMPUSettings->xRegion[ ul ].ulRegionBaseAddress = ( ( ul - 1UL ) | portMPU_REGION_VALID );
                xMPUSettings->xRegion[ ul ].ulRegionAttribute = 0UL;
                xMPUSettings->xRegionSettings[ ul ].ulRegionStartAddress = 0UL;
                xMPUSettings->xRegionSettings[ ul ].ulRegionEndAddress = 0UL;
                xMPUSettings->xRegionSettings[ ul ].ulRegionPermissions = 0UL;
            }

            lIndex++;
        }
    }
}
/*-----------------------------------------------------------*/

BaseType_t xPortIsAuthorizedToAccessBuffer( const void * pvBuffer,
                                            uint32_t ulBufferLength,
                                            uint32_t ulAccessRequested ) /* PRIVILEGED_FUNCTION */

{
    uint32_t i, ulBufferStartAddress, ulBufferEndAddress;
    BaseType_t xAccessGranted = pdFALSE;
    const xMPU_SETTINGS * xTaskMpuSettings = xTaskGetMPUSettings( NULL ); /* Calling task's MPU settings. */

    if( ( xTaskMpuSettings->ulTaskFlags & portTASK_IS_PRIVILEGED_FLAG ) == portTASK_IS_PRIVILEGED_FLAG )
    {
        xAccessGranted = pdTRUE;
    }
    else
    {
        if( portADD_UINT32_WILL_OVERFLOW( ( ( uint32_t ) pvBuffer ), ( ulBufferLength - 1UL ) ) == pdFALSE )
        {
            ulBufferStartAddress = ( uint32_t ) pvBuffer;
            ulBufferEndAddress = ( ( ( uint32_t ) pvBuffer ) + ulBufferLength - 1UL );

            for( i = 0; i < portTOTAL_NUM_REGIONS_IN_TCB; i++ )
            {
                if( portIS_ADDRESS_WITHIN_RANGE( ulBufferStartAddress,
                                                 xTaskMpuSettings->xRegionSettings[ i ].ulRegionStartAddress,
                                                 xTaskMpuSettings->xRegionSettings[ i ].ulRegionEndAddress ) &&
                    portIS_ADDRESS_WITHIN_RANGE( ulBufferEndAddress,
                                                 xTaskMpuSettings->xRegionSettings[ i ].ulRegionStartAddress,
                                                 xTaskMpuSettings->xRegionSettings[ i ].ulRegionEndAddress ) &&
                    portIS_AUTHORIZED( ulAccessRequested, xTaskMpuSettings->xRegionSettings[ i ].ulRegionPermissions ) )
                {
                    xAccessGranted = pdTRUE;
                    break;
                }
            }
        }
    }

    return xAccessGranted;
}
/*-----------------------------------------------------------*/

#if ( configASSERT_DEFINED == 1 )

    void vPortValidateInterruptPriority( void )
    {
        uint32_t ulCurrentInterrupt;
        uint8_t ucCurrentPriority;

        /* Obtain the number of the currently executing interrupt. */
        __asm volatile ( "mrs %0, ipsr" : "=r" ( ulCurrentInterrupt )::"memory" );

        /* Is the interrupt number a user defined interrupt? */
        if( ulCurrentInterrupt >= portFIRST_USER_INTERRUPT_NUMBER )
        {
            /* Look up the interrupt's priority. */
            ucCurrentPriority = pcInterruptPriorityRegisters[ ulCurrentInterrupt ];

            /* The following assertion will fail if a service routine (ISR) for
             * an interrupt that has been assigned a priority above
             * configMAX_SYSCALL_INTERRUPT_PRIORITY calls an ISR safe FreeRTOS API
             * function.  ISR safe FreeRTOS API functions must *only* be called
             * from interrupts that have been assigned a priority at or below
             * configMAX_SYSCALL_INTERRUPT_PRIORITY.
             *
             * Numerically low interrupt priority numbers represent logically high
             * interrupt priorities, therefore the priority of the interrupt must
             * be set to a value equal to or numerically *higher* than
             * configMAX_SYSCALL_INTERRUPT_PRIORITY.
             *
             * Interrupts that  use the FreeRTOS API must not be left at their
             * default priority of  zero as that is the highest possible priority,
             * which is guaranteed to be above configMAX_SYSCALL_INTERRUPT_PRIORITY,
             * and  therefore also guaranteed to be invalid.
             *
             * FreeRTOS maintains separate thread and ISR API functions to ensure
             * interrupt entry is as fast and simple as possible.
             *
             * The following links provide detailed information:
             * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html
             * https://www.FreeRTOS.org/FAQHelp.html */
            configASSERT( ucCurrentPriority >= ucMaxSysCallPriority );
        }

        /* Priority grouping:  The interrupt controller (NVIC) allows the bits
         * that define each interrupt's priority to be split between bits that
         * define the interrupt's pre-emption priority bits and bits that define
         * the interrupt's sub-priority.  For simplicity all bits must be defined
         * to be pre-emption priority bits.  The following assertion will fail if
         * this is not the case (if some bits represent a sub-priority).
         *
         * If the application only uses CMSIS libraries for interrupt
         * configuration then the correct setting can be achieved on all Cortex-M
         * devices by calling NVIC_SetPriorityGrouping( 0 ); before starting the
         * scheduler.  Note however that some vendor specific peripheral libraries
         * assume a non-zero priority group setting, in which cases using a value
         * of zero will result in unpredictable behaviour. */
        configASSERT( ( portAIRCR_REG & portPRIORITY_GROUP_MASK ) <= ulMaxPRIGROUPValue );
    }

#endif /* configASSERT_DEFINED */
/*-----------------------------------------------------------*/

#if ( ( configUSE_MPU_WRAPPERS_V1 == 0 ) && ( configENABLE_ACCESS_CONTROL_LIST == 1 ) )

    void vPortGrantAccessToKernelObject( TaskHandle_t xInternalTaskHandle,
                                         int32_t lInternalIndexOfKernelObject ) /* PRIVILEGED_FUNCTION */
    {
        uint32_t ulAccessControlListEntryIndex, ulAccessControlListEntryBit;
        xMPU_SETTINGS * xTaskMpuSettings;

        ulAccessControlListEntryIndex = ( ( uint32_t ) lInternalIndexOfKernelObject / portACL_ENTRY_SIZE_BITS );
        ulAccessControlListEntryBit = ( ( uint32_t ) lInternalIndexOfKernelObject % portACL_ENTRY_SIZE_BITS );

        xTaskMpuSettings = xTaskGetMPUSettings( xInternalTaskHandle );

        xTaskMpuSettings->ulAccessControlList[ ulAccessControlListEntryIndex ] |= ( 1U << ulAccessControlListEntryBit );
    }

#endif /* #if ( ( configUSE_MPU_WRAPPERS_V1 == 0 ) && ( configENABLE_ACCESS_CONTROL_LIST == 1 ) ) */
/*-----------------------------------------------------------*/

#if ( ( configUSE_MPU_WRAPPERS_V1 == 0 ) && ( configENABLE_ACCESS_CONTROL_LIST == 1 ) )

    void vPortRevokeAccessToKernelObject( TaskHandle_t xInternalTaskHandle,
                                          int32_t lInternalIndexOfKernelObject ) /* PRIVILEGED_FUNCTION */
    {
        uint32_t ulAccessControlListEntryIndex, ulAccessControlListEntryBit;
        xMPU_SETTINGS * xTaskMpuSettings;

        ulAccessControlListEntryIndex = ( ( uint32_t ) lInternalIndexOfKernelObject / portACL_ENTRY_SIZE_BITS );
        ulAccessControlListEntryBit = ( ( uint32_t ) lInternalIndexOfKernelObject % portACL_ENTRY_SIZE_BITS );

        xTaskMpuSettings = xTaskGetMPUSettings( xInternalTaskHandle );

        xTaskMpuSettings->ulAccessControlList[ ulAccessControlListEntryIndex ] &= ~( 1U << ulAccessControlListEntryBit );
    }

#endif /* #if ( ( configUSE_MPU_WRAPPERS_V1 == 0 ) && ( configENABLE_ACCESS_CONTROL_LIST == 1 ) ) */
/*-----------------------------------------------------------*/

#if ( configUSE_MPU_WRAPPERS_V1 == 0 )

    #if ( configENABLE_ACCESS_CONTROL_LIST == 1 )

        BaseType_t xPortIsAuthorizedToAccessKernelObject( int32_t lInternalIndexOfKernelObject ) /* PRIVILEGED_FUNCTION */
        {
            uint32_t ulAccessControlListEntryIndex, ulAccessControlListEntryBit;
            BaseType_t xAccessGranted = pdFALSE;
            const xMPU_SETTINGS * xTaskMpuSettings;

            if( xSchedulerRunning == pdFALSE )
            {
                /* Grant access to all the kernel objects before the scheduler
                 * is started. It is necessary because there is no task running
                 * yet and therefore, we cannot use the permissions of any
                 * task. */
                xAccessGranted = pdTRUE;
            }
            else
            {
                xTaskMpuSettings = xTaskGetMPUSettings( NULL ); /* Calling task's MPU settings. */

                ulAccessControlListEntryIndex = ( ( uint32_t ) lInternalIndexOfKernelObject / portACL_ENTRY_SIZE_BITS );
                ulAccessControlListEntryBit = ( ( uint32_t ) lInternalIndexOfKernelObject % portACL_ENTRY_SIZE_BITS );

                if( ( xTaskMpuSettings->ulTaskFlags & portTASK_IS_PRIVILEGED_FLAG ) == portTASK_IS_PRIVILEGED_FLAG )
                {
                    xAccessGranted = pdTRUE;
                }
                else
                {
                    if( ( xTaskMpuSettings->ulAccessControlList[ ulAccessControlListEntryIndex ] & ( 1U << ulAccessControlListEntryBit ) ) != 0 )
                    {
                        xAccessGranted = pdTRUE;
                    }
                }
            }

            return xAccessGranted;
        }

    #else /* #if ( configENABLE_ACCESS_CONTROL_LIST == 1 ) */

        BaseType_t xPortIsAuthorizedToAccessKernelObject( int32_t lInternalIndexOfKernelObject ) /* PRIVILEGED_FUNCTION */
        {
            ( void ) lInternalIndexOfKernelObject;

            /* If Access Control List feature is not used, all the tasks have
             * access to all the kernel objects. */
            return pdTRUE;
        }

    #endif /* #if ( configENABLE_ACCESS_CONTROL_LIST == 1 ) */

#endif /* #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) */
/*-----------------------------------------------------------*/