Welcome to mirror list, hosted at ThFree Co, Russian Federation.

spirv_common.hpp - github.com/KhronosGroup/SPIRV-Cross.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 32f91c72bbd2f77fe51df30b9254515ed40a6130 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
/*
 * Copyright 2015-2021 Arm Limited
 * SPDX-License-Identifier: Apache-2.0 OR MIT
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/*
 * At your option, you may choose to accept this material under either:
 *  1. The Apache License, Version 2.0, found at <http://www.apache.org/licenses/LICENSE-2.0>, or
 *  2. The MIT License, found at <http://opensource.org/licenses/MIT>.
 */

#ifndef SPIRV_CROSS_COMMON_HPP
#define SPIRV_CROSS_COMMON_HPP

#ifndef SPV_ENABLE_UTILITY_CODE
#define SPV_ENABLE_UTILITY_CODE
#endif
#include "spirv.hpp"

#include "spirv_cross_containers.hpp"
#include "spirv_cross_error_handling.hpp"
#include <functional>

// A bit crude, but allows projects which embed SPIRV-Cross statically to
// effectively hide all the symbols from other projects.
// There is a case where we have:
// - Project A links against SPIRV-Cross statically.
// - Project A links against Project B statically.
// - Project B links against SPIRV-Cross statically (might be a different version).
// This leads to a conflict with extremely bizarre results.
// By overriding the namespace in one of the project builds, we can work around this.
// If SPIRV-Cross is embedded in dynamic libraries,
// prefer using -fvisibility=hidden on GCC/Clang instead.
#ifdef SPIRV_CROSS_NAMESPACE_OVERRIDE
#define SPIRV_CROSS_NAMESPACE SPIRV_CROSS_NAMESPACE_OVERRIDE
#else
#define SPIRV_CROSS_NAMESPACE spirv_cross
#endif

namespace SPIRV_CROSS_NAMESPACE
{
namespace inner
{
template <typename T>
void join_helper(StringStream<> &stream, T &&t)
{
	stream << std::forward<T>(t);
}

template <typename T, typename... Ts>
void join_helper(StringStream<> &stream, T &&t, Ts &&... ts)
{
	stream << std::forward<T>(t);
	join_helper(stream, std::forward<Ts>(ts)...);
}
} // namespace inner

class Bitset
{
public:
	Bitset() = default;
	explicit inline Bitset(uint64_t lower_)
	    : lower(lower_)
	{
	}

	inline bool get(uint32_t bit) const
	{
		if (bit < 64)
			return (lower & (1ull << bit)) != 0;
		else
			return higher.count(bit) != 0;
	}

	inline void set(uint32_t bit)
	{
		if (bit < 64)
			lower |= 1ull << bit;
		else
			higher.insert(bit);
	}

	inline void clear(uint32_t bit)
	{
		if (bit < 64)
			lower &= ~(1ull << bit);
		else
			higher.erase(bit);
	}

	inline uint64_t get_lower() const
	{
		return lower;
	}

	inline void reset()
	{
		lower = 0;
		higher.clear();
	}

	inline void merge_and(const Bitset &other)
	{
		lower &= other.lower;
		std::unordered_set<uint32_t> tmp_set;
		for (auto &v : higher)
			if (other.higher.count(v) != 0)
				tmp_set.insert(v);
		higher = std::move(tmp_set);
	}

	inline void merge_or(const Bitset &other)
	{
		lower |= other.lower;
		for (auto &v : other.higher)
			higher.insert(v);
	}

	inline bool operator==(const Bitset &other) const
	{
		if (lower != other.lower)
			return false;

		if (higher.size() != other.higher.size())
			return false;

		for (auto &v : higher)
			if (other.higher.count(v) == 0)
				return false;

		return true;
	}

	inline bool operator!=(const Bitset &other) const
	{
		return !(*this == other);
	}

	template <typename Op>
	void for_each_bit(const Op &op) const
	{
		// TODO: Add ctz-based iteration.
		for (uint32_t i = 0; i < 64; i++)
		{
			if (lower & (1ull << i))
				op(i);
		}

		if (higher.empty())
			return;

		// Need to enforce an order here for reproducible results,
		// but hitting this path should happen extremely rarely, so having this slow path is fine.
		SmallVector<uint32_t> bits;
		bits.reserve(higher.size());
		for (auto &v : higher)
			bits.push_back(v);
		std::sort(std::begin(bits), std::end(bits));

		for (auto &v : bits)
			op(v);
	}

	inline bool empty() const
	{
		return lower == 0 && higher.empty();
	}

private:
	// The most common bits to set are all lower than 64,
	// so optimize for this case. Bits spilling outside 64 go into a slower data structure.
	// In almost all cases, higher data structure will not be used.
	uint64_t lower = 0;
	std::unordered_set<uint32_t> higher;
};

// Helper template to avoid lots of nasty string temporary munging.
template <typename... Ts>
std::string join(Ts &&... ts)
{
	StringStream<> stream;
	inner::join_helper(stream, std::forward<Ts>(ts)...);
	return stream.str();
}

inline std::string merge(const SmallVector<std::string> &list, const char *between = ", ")
{
	StringStream<> stream;
	for (auto &elem : list)
	{
		stream << elem;
		if (&elem != &list.back())
			stream << between;
	}
	return stream.str();
}

// Make sure we don't accidentally call this with float or doubles with SFINAE.
// Have to use the radix-aware overload.
template <typename T, typename std::enable_if<!std::is_floating_point<T>::value, int>::type = 0>
inline std::string convert_to_string(const T &t)
{
	return std::to_string(t);
}

static inline std::string convert_to_string(int32_t value)
{
	// INT_MIN is ... special on some backends. If we use a decimal literal, and negate it, we
	// could accidentally promote the literal to long first, then negate.
	// To workaround it, emit int(0x80000000) instead.
	if (value == std::numeric_limits<int32_t>::min())
		return "int(0x80000000)";
	else
		return std::to_string(value);
}

static inline std::string convert_to_string(int64_t value, const std::string &int64_type, bool long_long_literal_suffix)
{
	// INT64_MIN is ... special on some backends.
	// If we use a decimal literal, and negate it, we might overflow the representable numbers.
	// To workaround it, emit int(0x80000000) instead.
	if (value == std::numeric_limits<int64_t>::min())
		return join(int64_type, "(0x8000000000000000u", (long_long_literal_suffix ? "ll" : "l"), ")");
	else
		return std::to_string(value) + (long_long_literal_suffix ? "ll" : "l");
}

// Allow implementations to set a convenient standard precision
#ifndef SPIRV_CROSS_FLT_FMT
#define SPIRV_CROSS_FLT_FMT "%.32g"
#endif

// Disable sprintf and strcat warnings.
// We cannot rely on snprintf and family existing because, ..., MSVC.
#if defined(__clang__) || defined(__GNUC__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
#elif defined(_MSC_VER)
#pragma warning(push)
#pragma warning(disable : 4996)
#endif

static inline void fixup_radix_point(char *str, char radix_point)
{
	// Setting locales is a very risky business in multi-threaded program,
	// so just fixup locales instead. We only need to care about the radix point.
	if (radix_point != '.')
	{
		while (*str != '\0')
		{
			if (*str == radix_point)
				*str = '.';
			str++;
		}
	}
}

inline std::string convert_to_string(float t, char locale_radix_point)
{
	// std::to_string for floating point values is broken.
	// Fallback to something more sane.
	char buf[64];
	sprintf(buf, SPIRV_CROSS_FLT_FMT, t);
	fixup_radix_point(buf, locale_radix_point);

	// Ensure that the literal is float.
	if (!strchr(buf, '.') && !strchr(buf, 'e'))
		strcat(buf, ".0");
	return buf;
}

inline std::string convert_to_string(double t, char locale_radix_point)
{
	// std::to_string for floating point values is broken.
	// Fallback to something more sane.
	char buf[64];
	sprintf(buf, SPIRV_CROSS_FLT_FMT, t);
	fixup_radix_point(buf, locale_radix_point);

	// Ensure that the literal is float.
	if (!strchr(buf, '.') && !strchr(buf, 'e'))
		strcat(buf, ".0");
	return buf;
}

template <typename T>
struct ValueSaver
{
	explicit ValueSaver(T &current_)
	    : current(current_)
	    , saved(current_)
	{
	}

	void release()
	{
		current = saved;
	}

	~ValueSaver()
	{
		release();
	}

	T &current;
	T saved;
};

#if defined(__clang__) || defined(__GNUC__)
#pragma GCC diagnostic pop
#elif defined(_MSC_VER)
#pragma warning(pop)
#endif

struct Instruction
{
	uint16_t op = 0;
	uint16_t count = 0;
	// If offset is 0 (not a valid offset into the instruction stream),
	// we have an instruction stream which is embedded in the object.
	uint32_t offset = 0;
	uint32_t length = 0;

	inline bool is_embedded() const
	{
		return offset == 0;
	}
};

struct EmbeddedInstruction : Instruction
{
	SmallVector<uint32_t> ops;
};

enum Types
{
	TypeNone,
	TypeType,
	TypeVariable,
	TypeConstant,
	TypeFunction,
	TypeFunctionPrototype,
	TypeBlock,
	TypeExtension,
	TypeExpression,
	TypeConstantOp,
	TypeCombinedImageSampler,
	TypeAccessChain,
	TypeUndef,
	TypeString,
	TypeCount
};

template <Types type>
class TypedID;

template <>
class TypedID<TypeNone>
{
public:
	TypedID() = default;
	TypedID(uint32_t id_)
	    : id(id_)
	{
	}

	template <Types U>
	TypedID(const TypedID<U> &other)
	{
		*this = other;
	}

	template <Types U>
	TypedID &operator=(const TypedID<U> &other)
	{
		id = uint32_t(other);
		return *this;
	}

	// Implicit conversion to u32 is desired here.
	// As long as we block implicit conversion between TypedID<A> and TypedID<B> we're good.
	operator uint32_t() const
	{
		return id;
	}

	template <Types U>
	operator TypedID<U>() const
	{
		return TypedID<U>(*this);
	}

private:
	uint32_t id = 0;
};

template <Types type>
class TypedID
{
public:
	TypedID() = default;
	TypedID(uint32_t id_)
	    : id(id_)
	{
	}

	explicit TypedID(const TypedID<TypeNone> &other)
	    : id(uint32_t(other))
	{
	}

	operator uint32_t() const
	{
		return id;
	}

private:
	uint32_t id = 0;
};

using VariableID = TypedID<TypeVariable>;
using TypeID = TypedID<TypeType>;
using ConstantID = TypedID<TypeConstant>;
using FunctionID = TypedID<TypeFunction>;
using BlockID = TypedID<TypeBlock>;
using ID = TypedID<TypeNone>;

// Helper for Variant interface.
struct IVariant
{
	virtual ~IVariant() = default;
	virtual IVariant *clone(ObjectPoolBase *pool) = 0;
	ID self = 0;

protected:
	IVariant() = default;
	IVariant(const IVariant&) = default;
	IVariant &operator=(const IVariant&) = default;
};

#define SPIRV_CROSS_DECLARE_CLONE(T)                                \
	IVariant *clone(ObjectPoolBase *pool) override                  \
	{                                                               \
		return static_cast<ObjectPool<T> *>(pool)->allocate(*this); \
	}

struct SPIRUndef : IVariant
{
	enum
	{
		type = TypeUndef
	};

	explicit SPIRUndef(TypeID basetype_)
	    : basetype(basetype_)
	{
	}
	TypeID basetype;

	SPIRV_CROSS_DECLARE_CLONE(SPIRUndef)
};

struct SPIRString : IVariant
{
	enum
	{
		type = TypeString
	};

	explicit SPIRString(std::string str_)
	    : str(std::move(str_))
	{
	}

	std::string str;

	SPIRV_CROSS_DECLARE_CLONE(SPIRString)
};

// This type is only used by backends which need to access the combined image and sampler IDs separately after
// the OpSampledImage opcode.
struct SPIRCombinedImageSampler : IVariant
{
	enum
	{
		type = TypeCombinedImageSampler
	};
	SPIRCombinedImageSampler(TypeID type_, VariableID image_, VariableID sampler_)
	    : combined_type(type_)
	    , image(image_)
	    , sampler(sampler_)
	{
	}
	TypeID combined_type;
	VariableID image;
	VariableID sampler;

	SPIRV_CROSS_DECLARE_CLONE(SPIRCombinedImageSampler)
};

struct SPIRConstantOp : IVariant
{
	enum
	{
		type = TypeConstantOp
	};

	SPIRConstantOp(TypeID result_type, spv::Op op, const uint32_t *args, uint32_t length)
	    : opcode(op)
	    , basetype(result_type)
	{
		arguments.reserve(length);
		for (uint32_t i = 0; i < length; i++)
			arguments.push_back(args[i]);
	}

	spv::Op opcode;
	SmallVector<uint32_t> arguments;
	TypeID basetype;

	SPIRV_CROSS_DECLARE_CLONE(SPIRConstantOp)
};

struct SPIRType : IVariant
{
	enum
	{
		type = TypeType
	};

	enum BaseType
	{
		Unknown,
		Void,
		Boolean,
		SByte,
		UByte,
		Short,
		UShort,
		Int,
		UInt,
		Int64,
		UInt64,
		AtomicCounter,
		Half,
		Float,
		Double,
		Struct,
		Image,
		SampledImage,
		Sampler,
		AccelerationStructure,
		RayQuery,

		// Keep internal types at the end.
		ControlPointArray,
		Interpolant,
		Char
	};

	// Scalar/vector/matrix support.
	BaseType basetype = Unknown;
	uint32_t width = 0;
	uint32_t vecsize = 1;
	uint32_t columns = 1;

	// Arrays, support array of arrays by having a vector of array sizes.
	SmallVector<uint32_t> array;

	// Array elements can be either specialization constants or specialization ops.
	// This array determines how to interpret the array size.
	// If an element is true, the element is a literal,
	// otherwise, it's an expression, which must be resolved on demand.
	// The actual size is not really known until runtime.
	SmallVector<bool> array_size_literal;

	// Pointers
	// Keep track of how many pointer layers we have.
	uint32_t pointer_depth = 0;
	bool pointer = false;
	bool forward_pointer = false;

	spv::StorageClass storage = spv::StorageClassGeneric;

	SmallVector<TypeID> member_types;

	// If member order has been rewritten to handle certain scenarios with Offset,
	// allow codegen to rewrite the index.
	SmallVector<uint32_t> member_type_index_redirection;

	struct ImageType
	{
		TypeID type;
		spv::Dim dim;
		bool depth;
		bool arrayed;
		bool ms;
		uint32_t sampled;
		spv::ImageFormat format;
		spv::AccessQualifier access;
	} image;

	// Structs can be declared multiple times if they are used as part of interface blocks.
	// We want to detect this so that we only emit the struct definition once.
	// Since we cannot rely on OpName to be equal, we need to figure out aliases.
	TypeID type_alias = 0;

	// Denotes the type which this type is based on.
	// Allows the backend to traverse how a complex type is built up during access chains.
	TypeID parent_type = 0;

	// Used in backends to avoid emitting members with conflicting names.
	std::unordered_set<std::string> member_name_cache;

	SPIRV_CROSS_DECLARE_CLONE(SPIRType)
};

struct SPIRExtension : IVariant
{
	enum
	{
		type = TypeExtension
	};

	enum Extension
	{
		Unsupported,
		GLSL,
		SPV_debug_info,
		SPV_AMD_shader_ballot,
		SPV_AMD_shader_explicit_vertex_parameter,
		SPV_AMD_shader_trinary_minmax,
		SPV_AMD_gcn_shader,
		NonSemanticDebugPrintf
	};

	explicit SPIRExtension(Extension ext_)
	    : ext(ext_)
	{
	}

	Extension ext;
	SPIRV_CROSS_DECLARE_CLONE(SPIRExtension)
};

// SPIREntryPoint is not a variant since its IDs are used to decorate OpFunction,
// so in order to avoid conflicts, we can't stick them in the ids array.
struct SPIREntryPoint
{
	SPIREntryPoint(FunctionID self_, spv::ExecutionModel execution_model, const std::string &entry_name)
	    : self(self_)
	    , name(entry_name)
	    , orig_name(entry_name)
	    , model(execution_model)
	{
	}
	SPIREntryPoint() = default;

	FunctionID self = 0;
	std::string name;
	std::string orig_name;
	SmallVector<VariableID> interface_variables;

	Bitset flags;
	struct WorkgroupSize
	{
		uint32_t x = 0, y = 0, z = 0;
		uint32_t id_x = 0, id_y = 0, id_z = 0;
		uint32_t constant = 0; // Workgroup size can be expressed as a constant/spec-constant instead.
	} workgroup_size;
	uint32_t invocations = 0;
	uint32_t output_vertices = 0;
	uint32_t output_primitives = 0;
	spv::ExecutionModel model = spv::ExecutionModelMax;
	bool geometry_passthrough = false;
};

struct SPIRExpression : IVariant
{
	enum
	{
		type = TypeExpression
	};

	// Only created by the backend target to avoid creating tons of temporaries.
	SPIRExpression(std::string expr, TypeID expression_type_, bool immutable_)
	    : expression(std::move(expr))
	    , expression_type(expression_type_)
	    , immutable(immutable_)
	{
	}

	// If non-zero, prepend expression with to_expression(base_expression).
	// Used in amortizing multiple calls to to_expression()
	// where in certain cases that would quickly force a temporary when not needed.
	ID base_expression = 0;

	std::string expression;
	TypeID expression_type = 0;

	// If this expression is a forwarded load,
	// allow us to reference the original variable.
	ID loaded_from = 0;

	// If this expression will never change, we can avoid lots of temporaries
	// in high level source.
	// An expression being immutable can be speculative,
	// it is assumed that this is true almost always.
	bool immutable = false;

	// Before use, this expression must be transposed.
	// This is needed for targets which don't support row_major layouts.
	bool need_transpose = false;

	// Whether or not this is an access chain expression.
	bool access_chain = false;

	// A list of expressions which this expression depends on.
	SmallVector<ID> expression_dependencies;

	// By reading this expression, we implicitly read these expressions as well.
	// Used by access chain Store and Load since we read multiple expressions in this case.
	SmallVector<ID> implied_read_expressions;

	// The expression was emitted at a certain scope. Lets us track when an expression read means multiple reads.
	uint32_t emitted_loop_level = 0;

	SPIRV_CROSS_DECLARE_CLONE(SPIRExpression)
};

struct SPIRFunctionPrototype : IVariant
{
	enum
	{
		type = TypeFunctionPrototype
	};

	explicit SPIRFunctionPrototype(TypeID return_type_)
	    : return_type(return_type_)
	{
	}

	TypeID return_type;
	SmallVector<uint32_t> parameter_types;

	SPIRV_CROSS_DECLARE_CLONE(SPIRFunctionPrototype)
};

struct SPIRBlock : IVariant
{
	enum
	{
		type = TypeBlock
	};

	enum Terminator
	{
		Unknown,
		Direct, // Emit next block directly without a particular condition.

		Select, // Block ends with an if/else block.
		MultiSelect, // Block ends with switch statement.

		Return, // Block ends with return.
		Unreachable, // Noop
		Kill, // Discard
		IgnoreIntersection, // Ray Tracing
		TerminateRay, // Ray Tracing
		EmitMeshTasks // Mesh shaders
	};

	enum Merge
	{
		MergeNone,
		MergeLoop,
		MergeSelection
	};

	enum Hints
	{
		HintNone,
		HintUnroll,
		HintDontUnroll,
		HintFlatten,
		HintDontFlatten
	};

	enum Method
	{
		MergeToSelectForLoop,
		MergeToDirectForLoop,
		MergeToSelectContinueForLoop
	};

	enum ContinueBlockType
	{
		ContinueNone,

		// Continue block is branchless and has at least one instruction.
		ForLoop,

		// Noop continue block.
		WhileLoop,

		// Continue block is conditional.
		DoWhileLoop,

		// Highly unlikely that anything will use this,
		// since it is really awkward/impossible to express in GLSL.
		ComplexLoop
	};

	enum : uint32_t
	{
		NoDominator = 0xffffffffu
	};

	Terminator terminator = Unknown;
	Merge merge = MergeNone;
	Hints hint = HintNone;
	BlockID next_block = 0;
	BlockID merge_block = 0;
	BlockID continue_block = 0;

	ID return_value = 0; // If 0, return nothing (void).
	ID condition = 0;
	BlockID true_block = 0;
	BlockID false_block = 0;
	BlockID default_block = 0;

	// If terminator is EmitMeshTasksEXT.
	struct
	{
		ID groups[3];
		ID payload;
	} mesh = {};

	SmallVector<Instruction> ops;

	struct Phi
	{
		ID local_variable; // flush local variable ...
		BlockID parent; // If we're in from_block and want to branch into this block ...
		VariableID function_variable; // to this function-global "phi" variable first.
	};

	// Before entering this block flush out local variables to magical "phi" variables.
	SmallVector<Phi> phi_variables;

	// Declare these temporaries before beginning the block.
	// Used for handling complex continue blocks which have side effects.
	SmallVector<std::pair<TypeID, ID>> declare_temporary;

	// Declare these temporaries, but only conditionally if this block turns out to be
	// a complex loop header.
	SmallVector<std::pair<TypeID, ID>> potential_declare_temporary;

	struct Case
	{
		uint64_t value;
		BlockID block;
	};
	SmallVector<Case> cases_32bit;
	SmallVector<Case> cases_64bit;

	// If we have tried to optimize code for this block but failed,
	// keep track of this.
	bool disable_block_optimization = false;

	// If the continue block is complex, fallback to "dumb" for loops.
	bool complex_continue = false;

	// Do we need a ladder variable to defer breaking out of a loop construct after a switch block?
	bool need_ladder_break = false;

	// If marked, we have explicitly handled Phi from this block, so skip any flushes related to that on a branch.
	// Used to handle an edge case with switch and case-label fallthrough where fall-through writes to Phi.
	BlockID ignore_phi_from_block = 0;

	// The dominating block which this block might be within.
	// Used in continue; blocks to determine if we really need to write continue.
	BlockID loop_dominator = 0;

	// All access to these variables are dominated by this block,
	// so before branching anywhere we need to make sure that we declare these variables.
	SmallVector<VariableID> dominated_variables;

	// These are variables which should be declared in a for loop header, if we
	// fail to use a classic for-loop,
	// we remove these variables, and fall back to regular variables outside the loop.
	SmallVector<VariableID> loop_variables;

	// Some expressions are control-flow dependent, i.e. any instruction which relies on derivatives or
	// sub-group-like operations.
	// Make sure that we only use these expressions in the original block.
	SmallVector<ID> invalidate_expressions;

	SPIRV_CROSS_DECLARE_CLONE(SPIRBlock)
};

struct SPIRFunction : IVariant
{
	enum
	{
		type = TypeFunction
	};

	SPIRFunction(TypeID return_type_, TypeID function_type_)
	    : return_type(return_type_)
	    , function_type(function_type_)
	{
	}

	struct Parameter
	{
		TypeID type;
		ID id;
		uint32_t read_count;
		uint32_t write_count;

		// Set to true if this parameter aliases a global variable,
		// used mostly in Metal where global variables
		// have to be passed down to functions as regular arguments.
		// However, for this kind of variable, we should not care about
		// read and write counts as access to the function arguments
		// is not local to the function in question.
		bool alias_global_variable;
	};

	// When calling a function, and we're remapping separate image samplers,
	// resolve these arguments into combined image samplers and pass them
	// as additional arguments in this order.
	// It gets more complicated as functions can pull in their own globals
	// and combine them with parameters,
	// so we need to distinguish if something is local parameter index
	// or a global ID.
	struct CombinedImageSamplerParameter
	{
		VariableID id;
		VariableID image_id;
		VariableID sampler_id;
		bool global_image;
		bool global_sampler;
		bool depth;
	};

	TypeID return_type;
	TypeID function_type;
	SmallVector<Parameter> arguments;

	// Can be used by backends to add magic arguments.
	// Currently used by combined image/sampler implementation.

	SmallVector<Parameter> shadow_arguments;
	SmallVector<VariableID> local_variables;
	BlockID entry_block = 0;
	SmallVector<BlockID> blocks;
	SmallVector<CombinedImageSamplerParameter> combined_parameters;

	struct EntryLine
	{
		uint32_t file_id = 0;
		uint32_t line_literal = 0;
	};
	EntryLine entry_line;

	void add_local_variable(VariableID id)
	{
		local_variables.push_back(id);
	}

	void add_parameter(TypeID parameter_type, ID id, bool alias_global_variable = false)
	{
		// Arguments are read-only until proven otherwise.
		arguments.push_back({ parameter_type, id, 0u, 0u, alias_global_variable });
	}

	// Hooks to be run when the function returns.
	// Mostly used for lowering internal data structures onto flattened structures.
	// Need to defer this, because they might rely on things which change during compilation.
	// Intentionally not a small vector, this one is rare, and std::function can be large.
	Vector<std::function<void()>> fixup_hooks_out;

	// Hooks to be run when the function begins.
	// Mostly used for populating internal data structures from flattened structures.
	// Need to defer this, because they might rely on things which change during compilation.
	// Intentionally not a small vector, this one is rare, and std::function can be large.
	Vector<std::function<void()>> fixup_hooks_in;

	// On function entry, make sure to copy a constant array into thread addr space to work around
	// the case where we are passing a constant array by value to a function on backends which do not
	// consider arrays value types.
	SmallVector<ID> constant_arrays_needed_on_stack;

	bool active = false;
	bool flush_undeclared = true;
	bool do_combined_parameters = true;

	SPIRV_CROSS_DECLARE_CLONE(SPIRFunction)
};

struct SPIRAccessChain : IVariant
{
	enum
	{
		type = TypeAccessChain
	};

	SPIRAccessChain(TypeID basetype_, spv::StorageClass storage_, std::string base_, std::string dynamic_index_,
	                int32_t static_index_)
	    : basetype(basetype_)
	    , storage(storage_)
	    , base(std::move(base_))
	    , dynamic_index(std::move(dynamic_index_))
	    , static_index(static_index_)
	{
	}

	// The access chain represents an offset into a buffer.
	// Some backends need more complicated handling of access chains to be able to use buffers, like HLSL
	// which has no usable buffer type ala GLSL SSBOs.
	// StructuredBuffer is too limited, so our only option is to deal with ByteAddressBuffer which works with raw addresses.

	TypeID basetype;
	spv::StorageClass storage;
	std::string base;
	std::string dynamic_index;
	int32_t static_index;

	VariableID loaded_from = 0;
	uint32_t matrix_stride = 0;
	uint32_t array_stride = 0;
	bool row_major_matrix = false;
	bool immutable = false;

	// By reading this expression, we implicitly read these expressions as well.
	// Used by access chain Store and Load since we read multiple expressions in this case.
	SmallVector<ID> implied_read_expressions;

	SPIRV_CROSS_DECLARE_CLONE(SPIRAccessChain)
};

struct SPIRVariable : IVariant
{
	enum
	{
		type = TypeVariable
	};

	SPIRVariable() = default;
	SPIRVariable(TypeID basetype_, spv::StorageClass storage_, ID initializer_ = 0, VariableID basevariable_ = 0)
	    : basetype(basetype_)
	    , storage(storage_)
	    , initializer(initializer_)
	    , basevariable(basevariable_)
	{
	}

	TypeID basetype = 0;
	spv::StorageClass storage = spv::StorageClassGeneric;
	uint32_t decoration = 0;
	ID initializer = 0;
	VariableID basevariable = 0;

	SmallVector<uint32_t> dereference_chain;
	bool compat_builtin = false;

	// If a variable is shadowed, we only statically assign to it
	// and never actually emit a statement for it.
	// When we read the variable as an expression, just forward
	// shadowed_id as the expression.
	bool statically_assigned = false;
	ID static_expression = 0;

	// Temporaries which can remain forwarded as long as this variable is not modified.
	SmallVector<ID> dependees;

	bool deferred_declaration = false;
	bool phi_variable = false;

	// Used to deal with Phi variable flushes. See flush_phi().
	bool allocate_temporary_copy = false;

	bool remapped_variable = false;
	uint32_t remapped_components = 0;

	// The block which dominates all access to this variable.
	BlockID dominator = 0;
	// If true, this variable is a loop variable, when accessing the variable
	// outside a loop,
	// we should statically forward it.
	bool loop_variable = false;
	// Set to true while we're inside the for loop.
	bool loop_variable_enable = false;

	SPIRFunction::Parameter *parameter = nullptr;

	SPIRV_CROSS_DECLARE_CLONE(SPIRVariable)
};

struct SPIRConstant : IVariant
{
	enum
	{
		type = TypeConstant
	};

	union Constant
	{
		uint32_t u32;
		int32_t i32;
		float f32;

		uint64_t u64;
		int64_t i64;
		double f64;
	};

	struct ConstantVector
	{
		Constant r[4];
		// If != 0, this element is a specialization constant, and we should keep track of it as such.
		ID id[4];
		uint32_t vecsize = 1;

		ConstantVector()
		{
			memset(r, 0, sizeof(r));
		}
	};

	struct ConstantMatrix
	{
		ConstantVector c[4];
		// If != 0, this column is a specialization constant, and we should keep track of it as such.
		ID id[4];
		uint32_t columns = 1;
	};

	static inline float f16_to_f32(uint16_t u16_value)
	{
		// Based on the GLM implementation.
		int s = (u16_value >> 15) & 0x1;
		int e = (u16_value >> 10) & 0x1f;
		int m = (u16_value >> 0) & 0x3ff;

		union
		{
			float f32;
			uint32_t u32;
		} u;

		if (e == 0)
		{
			if (m == 0)
			{
				u.u32 = uint32_t(s) << 31;
				return u.f32;
			}
			else
			{
				while ((m & 0x400) == 0)
				{
					m <<= 1;
					e--;
				}

				e++;
				m &= ~0x400;
			}
		}
		else if (e == 31)
		{
			if (m == 0)
			{
				u.u32 = (uint32_t(s) << 31) | 0x7f800000u;
				return u.f32;
			}
			else
			{
				u.u32 = (uint32_t(s) << 31) | 0x7f800000u | (m << 13);
				return u.f32;
			}
		}

		e += 127 - 15;
		m <<= 13;
		u.u32 = (uint32_t(s) << 31) | (e << 23) | m;
		return u.f32;
	}

	inline uint32_t specialization_constant_id(uint32_t col, uint32_t row) const
	{
		return m.c[col].id[row];
	}

	inline uint32_t specialization_constant_id(uint32_t col) const
	{
		return m.id[col];
	}

	inline uint32_t scalar(uint32_t col = 0, uint32_t row = 0) const
	{
		return m.c[col].r[row].u32;
	}

	inline int16_t scalar_i16(uint32_t col = 0, uint32_t row = 0) const
	{
		return int16_t(m.c[col].r[row].u32 & 0xffffu);
	}

	inline uint16_t scalar_u16(uint32_t col = 0, uint32_t row = 0) const
	{
		return uint16_t(m.c[col].r[row].u32 & 0xffffu);
	}

	inline int8_t scalar_i8(uint32_t col = 0, uint32_t row = 0) const
	{
		return int8_t(m.c[col].r[row].u32 & 0xffu);
	}

	inline uint8_t scalar_u8(uint32_t col = 0, uint32_t row = 0) const
	{
		return uint8_t(m.c[col].r[row].u32 & 0xffu);
	}

	inline float scalar_f16(uint32_t col = 0, uint32_t row = 0) const
	{
		return f16_to_f32(scalar_u16(col, row));
	}

	inline float scalar_f32(uint32_t col = 0, uint32_t row = 0) const
	{
		return m.c[col].r[row].f32;
	}

	inline int32_t scalar_i32(uint32_t col = 0, uint32_t row = 0) const
	{
		return m.c[col].r[row].i32;
	}

	inline double scalar_f64(uint32_t col = 0, uint32_t row = 0) const
	{
		return m.c[col].r[row].f64;
	}

	inline int64_t scalar_i64(uint32_t col = 0, uint32_t row = 0) const
	{
		return m.c[col].r[row].i64;
	}

	inline uint64_t scalar_u64(uint32_t col = 0, uint32_t row = 0) const
	{
		return m.c[col].r[row].u64;
	}

	inline const ConstantVector &vector() const
	{
		return m.c[0];
	}

	inline uint32_t vector_size() const
	{
		return m.c[0].vecsize;
	}

	inline uint32_t columns() const
	{
		return m.columns;
	}

	inline void make_null(const SPIRType &constant_type_)
	{
		m = {};
		m.columns = constant_type_.columns;
		for (auto &c : m.c)
			c.vecsize = constant_type_.vecsize;
	}

	inline bool constant_is_null() const
	{
		if (specialization)
			return false;
		if (!subconstants.empty())
			return false;

		for (uint32_t col = 0; col < columns(); col++)
			for (uint32_t row = 0; row < vector_size(); row++)
				if (scalar_u64(col, row) != 0)
					return false;

		return true;
	}

	explicit SPIRConstant(uint32_t constant_type_)
	    : constant_type(constant_type_)
	{
	}

	SPIRConstant() = default;

	SPIRConstant(TypeID constant_type_, const uint32_t *elements, uint32_t num_elements, bool specialized)
	    : constant_type(constant_type_)
	    , specialization(specialized)
	{
		subconstants.reserve(num_elements);
		for (uint32_t i = 0; i < num_elements; i++)
			subconstants.push_back(elements[i]);
		specialization = specialized;
	}

	// Construct scalar (32-bit).
	SPIRConstant(TypeID constant_type_, uint32_t v0, bool specialized)
	    : constant_type(constant_type_)
	    , specialization(specialized)
	{
		m.c[0].r[0].u32 = v0;
		m.c[0].vecsize = 1;
		m.columns = 1;
	}

	// Construct scalar (64-bit).
	SPIRConstant(TypeID constant_type_, uint64_t v0, bool specialized)
	    : constant_type(constant_type_)
	    , specialization(specialized)
	{
		m.c[0].r[0].u64 = v0;
		m.c[0].vecsize = 1;
		m.columns = 1;
	}

	// Construct vectors and matrices.
	SPIRConstant(TypeID constant_type_, const SPIRConstant *const *vector_elements, uint32_t num_elements,
	             bool specialized)
	    : constant_type(constant_type_)
	    , specialization(specialized)
	{
		bool matrix = vector_elements[0]->m.c[0].vecsize > 1;

		if (matrix)
		{
			m.columns = num_elements;

			for (uint32_t i = 0; i < num_elements; i++)
			{
				m.c[i] = vector_elements[i]->m.c[0];
				if (vector_elements[i]->specialization)
					m.id[i] = vector_elements[i]->self;
			}
		}
		else
		{
			m.c[0].vecsize = num_elements;
			m.columns = 1;

			for (uint32_t i = 0; i < num_elements; i++)
			{
				m.c[0].r[i] = vector_elements[i]->m.c[0].r[0];
				if (vector_elements[i]->specialization)
					m.c[0].id[i] = vector_elements[i]->self;
			}
		}
	}

	TypeID constant_type = 0;
	ConstantMatrix m;

	// If this constant is a specialization constant (i.e. created with OpSpecConstant*).
	bool specialization = false;
	// If this constant is used as an array length which creates specialization restrictions on some backends.
	bool is_used_as_array_length = false;

	// If true, this is a LUT, and should always be declared in the outer scope.
	bool is_used_as_lut = false;

	// For composites which are constant arrays, etc.
	SmallVector<ConstantID> subconstants;

	// Non-Vulkan GLSL, HLSL and sometimes MSL emits defines for each specialization constant,
	// and uses them to initialize the constant. This allows the user
	// to still be able to specialize the value by supplying corresponding
	// preprocessor directives before compiling the shader.
	std::string specialization_constant_macro_name;

	SPIRV_CROSS_DECLARE_CLONE(SPIRConstant)
};

// Variants have a very specific allocation scheme.
struct ObjectPoolGroup
{
	std::unique_ptr<ObjectPoolBase> pools[TypeCount];
};

class Variant
{
public:
	explicit Variant(ObjectPoolGroup *group_)
	    : group(group_)
	{
	}

	~Variant()
	{
		if (holder)
			group->pools[type]->deallocate_opaque(holder);
	}

	// Marking custom move constructor as noexcept is important.
	Variant(Variant &&other) SPIRV_CROSS_NOEXCEPT
	{
		*this = std::move(other);
	}

	// We cannot copy from other variant without our own pool group.
	// Have to explicitly copy.
	Variant(const Variant &variant) = delete;

	// Marking custom move constructor as noexcept is important.
	Variant &operator=(Variant &&other) SPIRV_CROSS_NOEXCEPT
	{
		if (this != &other)
		{
			if (holder)
				group->pools[type]->deallocate_opaque(holder);
			holder = other.holder;
			group = other.group;
			type = other.type;
			allow_type_rewrite = other.allow_type_rewrite;

			other.holder = nullptr;
			other.type = TypeNone;
		}
		return *this;
	}

	// This copy/clone should only be called in the Compiler constructor.
	// If this is called inside ::compile(), we invalidate any references we took higher in the stack.
	// This should never happen.
	Variant &operator=(const Variant &other)
	{
//#define SPIRV_CROSS_COPY_CONSTRUCTOR_SANITIZE
#ifdef SPIRV_CROSS_COPY_CONSTRUCTOR_SANITIZE
		abort();
#endif
		if (this != &other)
		{
			if (holder)
				group->pools[type]->deallocate_opaque(holder);

			if (other.holder)
				holder = other.holder->clone(group->pools[other.type].get());
			else
				holder = nullptr;

			type = other.type;
			allow_type_rewrite = other.allow_type_rewrite;
		}
		return *this;
	}

	void set(IVariant *val, Types new_type)
	{
		if (holder)
			group->pools[type]->deallocate_opaque(holder);
		holder = nullptr;

		if (!allow_type_rewrite && type != TypeNone && type != new_type)
		{
			if (val)
				group->pools[new_type]->deallocate_opaque(val);
			SPIRV_CROSS_THROW("Overwriting a variant with new type.");
		}

		holder = val;
		type = new_type;
		allow_type_rewrite = false;
	}

	template <typename T, typename... Ts>
	T *allocate_and_set(Types new_type, Ts &&... ts)
	{
		T *val = static_cast<ObjectPool<T> &>(*group->pools[new_type]).allocate(std::forward<Ts>(ts)...);
		set(val, new_type);
		return val;
	}

	template <typename T>
	T &get()
	{
		if (!holder)
			SPIRV_CROSS_THROW("nullptr");
		if (static_cast<Types>(T::type) != type)
			SPIRV_CROSS_THROW("Bad cast");
		return *static_cast<T *>(holder);
	}

	template <typename T>
	const T &get() const
	{
		if (!holder)
			SPIRV_CROSS_THROW("nullptr");
		if (static_cast<Types>(T::type) != type)
			SPIRV_CROSS_THROW("Bad cast");
		return *static_cast<const T *>(holder);
	}

	Types get_type() const
	{
		return type;
	}

	ID get_id() const
	{
		return holder ? holder->self : ID(0);
	}

	bool empty() const
	{
		return !holder;
	}

	void reset()
	{
		if (holder)
			group->pools[type]->deallocate_opaque(holder);
		holder = nullptr;
		type = TypeNone;
	}

	void set_allow_type_rewrite()
	{
		allow_type_rewrite = true;
	}

private:
	ObjectPoolGroup *group = nullptr;
	IVariant *holder = nullptr;
	Types type = TypeNone;
	bool allow_type_rewrite = false;
};

template <typename T>
T &variant_get(Variant &var)
{
	return var.get<T>();
}

template <typename T>
const T &variant_get(const Variant &var)
{
	return var.get<T>();
}

template <typename T, typename... P>
T &variant_set(Variant &var, P &&... args)
{
	auto *ptr = var.allocate_and_set<T>(static_cast<Types>(T::type), std::forward<P>(args)...);
	return *ptr;
}

struct AccessChainMeta
{
	uint32_t storage_physical_type = 0;
	bool need_transpose = false;
	bool storage_is_packed = false;
	bool storage_is_invariant = false;
	bool flattened_struct = false;
	bool relaxed_precision = false;
};

enum ExtendedDecorations
{
	// Marks if a buffer block is re-packed, i.e. member declaration might be subject to PhysicalTypeID remapping and padding.
	SPIRVCrossDecorationBufferBlockRepacked = 0,

	// A type in a buffer block might be declared with a different physical type than the logical type.
	// If this is not set, PhysicalTypeID == the SPIR-V type as declared.
	SPIRVCrossDecorationPhysicalTypeID,

	// Marks if the physical type is to be declared with tight packing rules, i.e. packed_floatN on MSL and friends.
	// If this is set, PhysicalTypeID might also be set. It can be set to same as logical type if all we're doing
	// is converting float3 to packed_float3 for example.
	// If this is marked on a struct, it means the struct itself must use only Packed types for all its members.
	SPIRVCrossDecorationPhysicalTypePacked,

	// The padding in bytes before declaring this struct member.
	// If used on a struct type, marks the target size of a struct.
	SPIRVCrossDecorationPaddingTarget,

	SPIRVCrossDecorationInterfaceMemberIndex,
	SPIRVCrossDecorationInterfaceOrigID,
	SPIRVCrossDecorationResourceIndexPrimary,
	// Used for decorations like resource indices for samplers when part of combined image samplers.
	// A variable might need to hold two resource indices in this case.
	SPIRVCrossDecorationResourceIndexSecondary,
	// Used for resource indices for multiplanar images when part of combined image samplers.
	SPIRVCrossDecorationResourceIndexTertiary,
	SPIRVCrossDecorationResourceIndexQuaternary,

	// Marks a buffer block for using explicit offsets (GLSL/HLSL).
	SPIRVCrossDecorationExplicitOffset,

	// Apply to a variable in the Input storage class; marks it as holding the base group passed to vkCmdDispatchBase(),
	// or the base vertex and instance indices passed to vkCmdDrawIndexed().
	// In MSL, this is used to adjust the WorkgroupId and GlobalInvocationId variables in compute shaders,
	// and to hold the BaseVertex and BaseInstance variables in vertex shaders.
	SPIRVCrossDecorationBuiltInDispatchBase,

	// Apply to a variable that is a function parameter; marks it as being a "dynamic"
	// combined image-sampler. In MSL, this is used when a function parameter might hold
	// either a regular combined image-sampler or one that has an attached sampler
	// Y'CbCr conversion.
	SPIRVCrossDecorationDynamicImageSampler,

	// Apply to a variable in the Input storage class; marks it as holding the size of the stage
	// input grid.
	// In MSL, this is used to hold the vertex and instance counts in a tessellation pipeline
	// vertex shader.
	SPIRVCrossDecorationBuiltInStageInputSize,

	// Apply to any access chain of a tessellation I/O variable; stores the type of the sub-object
	// that was chained to, as recorded in the input variable itself. This is used in case the pointer
	// is itself used as the base of an access chain, to calculate the original type of the sub-object
	// chained to, in case a swizzle needs to be applied. This should not happen normally with valid
	// SPIR-V, but the MSL backend can change the type of input variables, necessitating the
	// addition of swizzles to keep the generated code compiling.
	SPIRVCrossDecorationTessIOOriginalInputTypeID,

	// Apply to any access chain of an interface variable used with pull-model interpolation, where the variable is a
	// vector but the resulting pointer is a scalar; stores the component index that is to be accessed by the chain.
	// This is used when emitting calls to interpolation functions on the chain in MSL: in this case, the component
	// must be applied to the result, since pull-model interpolants in MSL cannot be swizzled directly, but the
	// results of interpolation can.
	SPIRVCrossDecorationInterpolantComponentExpr,

	// Apply to any struct type that is used in the Workgroup storage class.
	// This causes matrices in MSL prior to Metal 3.0 to be emitted using a special
	// class that is convertible to the standard matrix type, to work around the
	// lack of constructors in the 'threadgroup' address space.
	SPIRVCrossDecorationWorkgroupStruct,

	SPIRVCrossDecorationCount
};

struct Meta
{
	struct Decoration
	{
		std::string alias;
		std::string qualified_alias;
		std::string hlsl_semantic;
		Bitset decoration_flags;
		spv::BuiltIn builtin_type = spv::BuiltInMax;
		uint32_t location = 0;
		uint32_t component = 0;
		uint32_t set = 0;
		uint32_t binding = 0;
		uint32_t offset = 0;
		uint32_t xfb_buffer = 0;
		uint32_t xfb_stride = 0;
		uint32_t stream = 0;
		uint32_t array_stride = 0;
		uint32_t matrix_stride = 0;
		uint32_t input_attachment = 0;
		uint32_t spec_id = 0;
		uint32_t index = 0;
		spv::FPRoundingMode fp_rounding_mode = spv::FPRoundingModeMax;
		bool builtin = false;

		struct Extended
		{
			Extended()
			{
				// MSVC 2013 workaround to init like this.
				for (auto &v : values)
					v = 0;
			}

			Bitset flags;
			uint32_t values[SPIRVCrossDecorationCount];
		} extended;
	};

	Decoration decoration;

	// Intentionally not a SmallVector. Decoration is large and somewhat rare.
	Vector<Decoration> members;

	std::unordered_map<uint32_t, uint32_t> decoration_word_offset;

	// For SPV_GOOGLE_hlsl_functionality1.
	bool hlsl_is_magic_counter_buffer = false;
	// ID for the sibling counter buffer.
	uint32_t hlsl_magic_counter_buffer = 0;
};

// A user callback that remaps the type of any variable.
// var_name is the declared name of the variable.
// name_of_type is the textual name of the type which will be used in the code unless written to by the callback.
using VariableTypeRemapCallback =
    std::function<void(const SPIRType &type, const std::string &var_name, std::string &name_of_type)>;

class Hasher
{
public:
	inline void u32(uint32_t value)
	{
		h = (h * 0x100000001b3ull) ^ value;
	}

	inline uint64_t get() const
	{
		return h;
	}

private:
	uint64_t h = 0xcbf29ce484222325ull;
};

static inline bool type_is_floating_point(const SPIRType &type)
{
	return type.basetype == SPIRType::Half || type.basetype == SPIRType::Float || type.basetype == SPIRType::Double;
}

static inline bool type_is_integral(const SPIRType &type)
{
	return type.basetype == SPIRType::SByte || type.basetype == SPIRType::UByte || type.basetype == SPIRType::Short ||
	       type.basetype == SPIRType::UShort || type.basetype == SPIRType::Int || type.basetype == SPIRType::UInt ||
	       type.basetype == SPIRType::Int64 || type.basetype == SPIRType::UInt64;
}

static inline SPIRType::BaseType to_signed_basetype(uint32_t width)
{
	switch (width)
	{
	case 8:
		return SPIRType::SByte;
	case 16:
		return SPIRType::Short;
	case 32:
		return SPIRType::Int;
	case 64:
		return SPIRType::Int64;
	default:
		SPIRV_CROSS_THROW("Invalid bit width.");
	}
}

static inline SPIRType::BaseType to_unsigned_basetype(uint32_t width)
{
	switch (width)
	{
	case 8:
		return SPIRType::UByte;
	case 16:
		return SPIRType::UShort;
	case 32:
		return SPIRType::UInt;
	case 64:
		return SPIRType::UInt64;
	default:
		SPIRV_CROSS_THROW("Invalid bit width.");
	}
}

// Returns true if an arithmetic operation does not change behavior depending on signedness.
static inline bool opcode_is_sign_invariant(spv::Op opcode)
{
	switch (opcode)
	{
	case spv::OpIEqual:
	case spv::OpINotEqual:
	case spv::OpISub:
	case spv::OpIAdd:
	case spv::OpIMul:
	case spv::OpShiftLeftLogical:
	case spv::OpBitwiseOr:
	case spv::OpBitwiseXor:
	case spv::OpBitwiseAnd:
		return true;

	default:
		return false;
	}
}

static inline bool opcode_can_promote_integer_implicitly(spv::Op opcode)
{
	switch (opcode)
	{
	case spv::OpSNegate:
	case spv::OpNot:
	case spv::OpBitwiseAnd:
	case spv::OpBitwiseOr:
	case spv::OpBitwiseXor:
	case spv::OpShiftLeftLogical:
	case spv::OpShiftRightLogical:
	case spv::OpShiftRightArithmetic:
	case spv::OpIAdd:
	case spv::OpISub:
	case spv::OpIMul:
	case spv::OpSDiv:
	case spv::OpUDiv:
	case spv::OpSRem:
	case spv::OpUMod:
	case spv::OpSMod:
		return true;

	default:
		return false;
	}
}

struct SetBindingPair
{
	uint32_t desc_set;
	uint32_t binding;

	inline bool operator==(const SetBindingPair &other) const
	{
		return desc_set == other.desc_set && binding == other.binding;
	}

	inline bool operator<(const SetBindingPair &other) const
	{
		return desc_set < other.desc_set || (desc_set == other.desc_set && binding < other.binding);
	}
};

struct LocationComponentPair
{
	uint32_t location;
	uint32_t component;

	inline bool operator==(const LocationComponentPair &other) const
	{
		return location == other.location && component == other.component;
	}

	inline bool operator<(const LocationComponentPair &other) const
	{
		return location < other.location || (location == other.location && component < other.component);
	}
};

struct StageSetBinding
{
	spv::ExecutionModel model;
	uint32_t desc_set;
	uint32_t binding;

	inline bool operator==(const StageSetBinding &other) const
	{
		return model == other.model && desc_set == other.desc_set && binding == other.binding;
	}
};

struct InternalHasher
{
	inline size_t operator()(const SetBindingPair &value) const
	{
		// Quality of hash doesn't really matter here.
		auto hash_set = std::hash<uint32_t>()(value.desc_set);
		auto hash_binding = std::hash<uint32_t>()(value.binding);
		return (hash_set * 0x10001b31) ^ hash_binding;
	}

	inline size_t operator()(const LocationComponentPair &value) const
	{
		// Quality of hash doesn't really matter here.
		auto hash_set = std::hash<uint32_t>()(value.location);
		auto hash_binding = std::hash<uint32_t>()(value.component);
		return (hash_set * 0x10001b31) ^ hash_binding;
	}

	inline size_t operator()(const StageSetBinding &value) const
	{
		// Quality of hash doesn't really matter here.
		auto hash_model = std::hash<uint32_t>()(value.model);
		auto hash_set = std::hash<uint32_t>()(value.desc_set);
		auto tmp_hash = (hash_model * 0x10001b31) ^ hash_set;
		return (tmp_hash * 0x10001b31) ^ value.binding;
	}
};

// Special constant used in a {MSL,HLSL}ResourceBinding desc_set
// element to indicate the bindings for the push constants.
static const uint32_t ResourceBindingPushConstantDescriptorSet = ~(0u);

// Special constant used in a {MSL,HLSL}ResourceBinding binding
// element to indicate the bindings for the push constants.
static const uint32_t ResourceBindingPushConstantBinding = 0;
} // namespace SPIRV_CROSS_NAMESPACE

namespace std
{
template <SPIRV_CROSS_NAMESPACE::Types type>
struct hash<SPIRV_CROSS_NAMESPACE::TypedID<type>>
{
	size_t operator()(const SPIRV_CROSS_NAMESPACE::TypedID<type> &value) const
	{
		return std::hash<uint32_t>()(value);
	}
};
} // namespace std

#endif