Welcome to mirror list, hosted at ThFree Co, Russian Federation.

binary.cpp « source - github.com/KhronosGroup/SPIRV-Tools.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: beb56be7b52f7cbf5324df6e59f7aa99d7ca461b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
// Copyright (c) 2015-2020 The Khronos Group Inc.
// Modifications Copyright (C) 2020 Advanced Micro Devices, Inc. All rights
// reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "source/binary.h"

#include <algorithm>
#include <cassert>
#include <cstring>
#include <iterator>
#include <limits>
#include <string>
#include <unordered_map>
#include <vector>

#include "source/assembly_grammar.h"
#include "source/diagnostic.h"
#include "source/ext_inst.h"
#include "source/latest_version_spirv_header.h"
#include "source/opcode.h"
#include "source/operand.h"
#include "source/spirv_constant.h"
#include "source/spirv_endian.h"
#include "source/util/string_utils.h"

spv_result_t spvBinaryHeaderGet(const spv_const_binary binary,
                                const spv_endianness_t endian,
                                spv_header_t* pHeader) {
  if (!binary->code) return SPV_ERROR_INVALID_BINARY;
  if (binary->wordCount < SPV_INDEX_INSTRUCTION)
    return SPV_ERROR_INVALID_BINARY;
  if (!pHeader) return SPV_ERROR_INVALID_POINTER;

  // TODO: Validation checking?
  pHeader->magic = spvFixWord(binary->code[SPV_INDEX_MAGIC_NUMBER], endian);
  pHeader->version = spvFixWord(binary->code[SPV_INDEX_VERSION_NUMBER], endian);
  // Per 2.3.1 version's high and low bytes are 0
  if ((pHeader->version & 0x000000ff) || pHeader->version & 0xff000000)
    return SPV_ERROR_INVALID_BINARY;
  // Minimum version was 1.0 and max version is defined by SPV_VERSION.
  if (pHeader->version < SPV_SPIRV_VERSION_WORD(1, 0) ||
      pHeader->version > SPV_VERSION)
    return SPV_ERROR_INVALID_BINARY;

  pHeader->generator =
      spvFixWord(binary->code[SPV_INDEX_GENERATOR_NUMBER], endian);
  pHeader->bound = spvFixWord(binary->code[SPV_INDEX_BOUND], endian);
  pHeader->schema = spvFixWord(binary->code[SPV_INDEX_SCHEMA], endian);
  pHeader->instructions = &binary->code[SPV_INDEX_INSTRUCTION];

  return SPV_SUCCESS;
}

std::string spvDecodeLiteralStringOperand(const spv_parsed_instruction_t& inst,
                                          const uint16_t operand_index) {
  assert(operand_index < inst.num_operands);
  const spv_parsed_operand_t& operand = inst.operands[operand_index];

  return spvtools::utils::MakeString(inst.words + operand.offset,
                                     operand.num_words);
}

namespace {

// A SPIR-V binary parser.  A parser instance communicates detailed parse
// results via callbacks.
class Parser {
 public:
  // The user_data value is provided to the callbacks as context.
  Parser(const spv_const_context context, void* user_data,
         spv_parsed_header_fn_t parsed_header_fn,
         spv_parsed_instruction_fn_t parsed_instruction_fn)
      : grammar_(context),
        consumer_(context->consumer),
        user_data_(user_data),
        parsed_header_fn_(parsed_header_fn),
        parsed_instruction_fn_(parsed_instruction_fn) {}

  // Parses the specified binary SPIR-V module, issuing callbacks on a parsed
  // header and for each parsed instruction.  Returns SPV_SUCCESS on success.
  // Otherwise returns an error code and issues a diagnostic.
  spv_result_t parse(const uint32_t* words, size_t num_words,
                     spv_diagnostic* diagnostic);

 private:
  // All remaining methods work on the current module parse state.

  // Like the parse method, but works on the current module parse state.
  spv_result_t parseModule();

  // Parses an instruction at the current position of the binary.  Assumes
  // the header has been parsed, the endian has been set, and the word index is
  // still in range.  Advances the parsing position past the instruction, and
  // updates other parsing state for the current module.
  // On success, returns SPV_SUCCESS and issues the parsed-instruction callback.
  // On failure, returns an error code and issues a diagnostic.
  spv_result_t parseInstruction();

  // Parses an instruction operand with the given type, for an instruction
  // starting at inst_offset words into the SPIR-V binary.
  // If the SPIR-V binary is the same endianness as the host, then the
  // endian_converted_inst_words parameter is ignored.  Otherwise, this method
  // appends the words for this operand, converted to host native endianness,
  // to the end of endian_converted_inst_words.  This method also updates the
  // expected_operands parameter, and the scalar members of the inst parameter.
  // On success, returns SPV_SUCCESS, advances past the operand, and pushes a
  // new entry on to the operands vector.  Otherwise returns an error code and
  // issues a diagnostic.
  spv_result_t parseOperand(size_t inst_offset, spv_parsed_instruction_t* inst,
                            const spv_operand_type_t type,
                            std::vector<uint32_t>* endian_converted_inst_words,
                            std::vector<spv_parsed_operand_t>* operands,
                            spv_operand_pattern_t* expected_operands);

  // Records the numeric type for an operand according to the type information
  // associated with the given non-zero type Id.  This can fail if the type Id
  // is not a type Id, or if the type Id does not reference a scalar numeric
  // type.  On success, return SPV_SUCCESS and populates the num_words,
  // number_kind, and number_bit_width fields of parsed_operand.
  spv_result_t setNumericTypeInfoForType(spv_parsed_operand_t* parsed_operand,
                                         uint32_t type_id);

  // Records the number type for an instruction at the given offset, if that
  // instruction generates a type.  For types that aren't scalar numbers,
  // record something with number kind SPV_NUMBER_NONE.
  void recordNumberType(size_t inst_offset,
                        const spv_parsed_instruction_t* inst);

  // Returns a diagnostic stream object initialized with current position in
  // the input stream, and for the given error code. Any data written to the
  // returned object will be propagated to the current parse's diagnostic
  // object.
  spvtools::DiagnosticStream diagnostic(spv_result_t error) {
    return spvtools::DiagnosticStream({0, 0, _.instruction_count}, consumer_,
                                      "", error);
  }

  // Returns a diagnostic stream object with the default parse error code.
  spvtools::DiagnosticStream diagnostic() {
    // The default failure for parsing is invalid binary.
    return diagnostic(SPV_ERROR_INVALID_BINARY);
  }

  // Issues a diagnostic describing an exhaustion of input condition when
  // trying to decode an instruction operand, and returns
  // SPV_ERROR_INVALID_BINARY.
  spv_result_t exhaustedInputDiagnostic(size_t inst_offset, spv::Op opcode,
                                        spv_operand_type_t type) {
    return diagnostic() << "End of input reached while decoding Op"
                        << spvOpcodeString(opcode) << " starting at word "
                        << inst_offset
                        << ((_.word_index < _.num_words) ? ": truncated "
                                                         : ": missing ")
                        << spvOperandTypeStr(type) << " operand at word offset "
                        << _.word_index - inst_offset << ".";
  }

  // Returns the endian-corrected word at the current position.
  uint32_t peek() const { return peekAt(_.word_index); }

  // Returns the endian-corrected word at the given position.
  uint32_t peekAt(size_t index) const {
    assert(index < _.num_words);
    return spvFixWord(_.words[index], _.endian);
  }

  // Data members

  const spvtools::AssemblyGrammar grammar_;        // SPIR-V syntax utility.
  const spvtools::MessageConsumer& consumer_;      // Message consumer callback.
  void* const user_data_;                          // Context for the callbacks
  const spv_parsed_header_fn_t parsed_header_fn_;  // Parsed header callback
  const spv_parsed_instruction_fn_t
      parsed_instruction_fn_;  // Parsed instruction callback

  // Describes the format of a typed literal number.
  struct NumberType {
    spv_number_kind_t type;
    uint32_t bit_width;
  };

  // The state used to parse a single SPIR-V binary module.
  struct State {
    State(const uint32_t* words_arg, size_t num_words_arg,
          spv_diagnostic* diagnostic_arg)
        : words(words_arg),
          num_words(num_words_arg),
          diagnostic(diagnostic_arg),
          word_index(0),
          instruction_count(0),
          endian(),
          requires_endian_conversion(false) {
      // Temporary storage for parser state within a single instruction.
      // Most instructions require fewer than 25 words or operands.
      operands.reserve(25);
      endian_converted_words.reserve(25);
      expected_operands.reserve(25);
    }
    State() : State(0, 0, nullptr) {}
    const uint32_t* words;       // Words in the binary SPIR-V module.
    size_t num_words;            // Number of words in the module.
    spv_diagnostic* diagnostic;  // Where diagnostics go.
    size_t word_index;           // The current position in words.
    size_t instruction_count;    // The count of processed instructions
    spv_endianness_t endian;     // The endianness of the binary.
    // Is the SPIR-V binary in a different endianness from the host native
    // endianness?
    bool requires_endian_conversion;

    // Maps a result ID to its type ID.  By convention:
    //  - a result ID that is a type definition maps to itself.
    //  - a result ID without a type maps to 0.  (E.g. for OpLabel)
    std::unordered_map<uint32_t, uint32_t> id_to_type_id;
    // Maps a type ID to its number type description.
    std::unordered_map<uint32_t, NumberType> type_id_to_number_type_info;
    // Maps an ExtInstImport id to the extended instruction type.
    std::unordered_map<uint32_t, spv_ext_inst_type_t>
        import_id_to_ext_inst_type;

    // Used by parseOperand
    std::vector<spv_parsed_operand_t> operands;
    std::vector<uint32_t> endian_converted_words;
    spv_operand_pattern_t expected_operands;
  } _;
};

spv_result_t Parser::parse(const uint32_t* words, size_t num_words,
                           spv_diagnostic* diagnostic_arg) {
  _ = State(words, num_words, diagnostic_arg);

  const spv_result_t result = parseModule();

  // Clear the module state.  The tables might be big.
  _ = State();

  return result;
}

spv_result_t Parser::parseModule() {
  if (!_.words) return diagnostic() << "Missing module.";

  if (_.num_words < SPV_INDEX_INSTRUCTION)
    return diagnostic() << "Module has incomplete header: only " << _.num_words
                        << " words instead of " << SPV_INDEX_INSTRUCTION;

  // Check the magic number and detect the module's endianness.
  spv_const_binary_t binary{_.words, _.num_words};
  if (spvBinaryEndianness(&binary, &_.endian)) {
    return diagnostic() << "Invalid SPIR-V magic number '" << std::hex
                        << _.words[0] << "'.";
  }
  _.requires_endian_conversion = !spvIsHostEndian(_.endian);

  // Process the header.
  spv_header_t header;
  if (spvBinaryHeaderGet(&binary, _.endian, &header)) {
    // It turns out there is no way to trigger this error since the only
    // failure cases are already handled above, with better messages.
    return diagnostic(SPV_ERROR_INTERNAL)
           << "Internal error: unhandled header parse failure";
  }
  if (parsed_header_fn_) {
    if (auto error = parsed_header_fn_(user_data_, _.endian, header.magic,
                                       header.version, header.generator,
                                       header.bound, header.schema)) {
      return error;
    }
  }

  // Process the instructions.
  _.word_index = SPV_INDEX_INSTRUCTION;
  while (_.word_index < _.num_words)
    if (auto error = parseInstruction()) return error;

  // Running off the end should already have been reported earlier.
  assert(_.word_index == _.num_words);

  return SPV_SUCCESS;
}

spv_result_t Parser::parseInstruction() {
  _.instruction_count++;

  // The zero values for all members except for opcode are the
  // correct initial values.
  spv_parsed_instruction_t inst = {};

  const uint32_t first_word = peek();

  // If the module's endianness is different from the host native endianness,
  // then converted_words contains the endian-translated words in the
  // instruction.
  _.endian_converted_words.clear();
  _.endian_converted_words.push_back(first_word);

  // After a successful parse of the instruction, the inst.operands member
  // will point to this vector's storage.
  _.operands.clear();

  assert(_.word_index < _.num_words);
  // Decompose and check the first word.
  uint16_t inst_word_count = 0;
  spvOpcodeSplit(first_word, &inst_word_count, &inst.opcode);
  if (inst_word_count < 1) {
    return diagnostic() << "Invalid instruction word count: "
                        << inst_word_count;
  }
  spv_opcode_desc opcode_desc;
  if (grammar_.lookupOpcode(static_cast<spv::Op>(inst.opcode), &opcode_desc))
    return diagnostic() << "Invalid opcode: " << inst.opcode;

  // Advance past the opcode word.  But remember the of the start
  // of the instruction.
  const size_t inst_offset = _.word_index;
  _.word_index++;

  // Maintains the ordered list of expected operand types.
  // For many instructions we only need the {numTypes, operandTypes}
  // entries in opcode_desc.  However, sometimes we need to modify
  // the list as we parse the operands. This occurs when an operand
  // has its own logical operands (such as the LocalSize operand for
  // ExecutionMode), or for extended instructions that may have their
  // own operands depending on the selected extended instruction.
  _.expected_operands.clear();
  for (auto i = 0; i < opcode_desc->numTypes; i++)
    _.expected_operands.push_back(
        opcode_desc->operandTypes[opcode_desc->numTypes - i - 1]);

  while (_.word_index < inst_offset + inst_word_count) {
    const uint16_t inst_word_index = uint16_t(_.word_index - inst_offset);
    if (_.expected_operands.empty()) {
      return diagnostic() << "Invalid instruction Op" << opcode_desc->name
                          << " starting at word " << inst_offset
                          << ": expected no more operands after "
                          << inst_word_index
                          << " words, but stated word count is "
                          << inst_word_count << ".";
    }

    spv_operand_type_t type =
        spvTakeFirstMatchableOperand(&_.expected_operands);

    if (auto error =
            parseOperand(inst_offset, &inst, type, &_.endian_converted_words,
                         &_.operands, &_.expected_operands)) {
      return error;
    }
  }

  if (!_.expected_operands.empty() &&
      !spvOperandIsOptional(_.expected_operands.back())) {
    return diagnostic() << "End of input reached while decoding Op"
                        << opcode_desc->name << " starting at word "
                        << inst_offset << ": expected more operands after "
                        << inst_word_count << " words.";
  }

  if ((inst_offset + inst_word_count) != _.word_index) {
    return diagnostic() << "Invalid word count: Op" << opcode_desc->name
                        << " starting at word " << inst_offset
                        << " says it has " << inst_word_count
                        << " words, but found " << _.word_index - inst_offset
                        << " words instead.";
  }

  // Check the computed length of the endian-converted words vector against
  // the declared number of words in the instruction.  If endian conversion
  // is required, then they should match.  If no endian conversion was
  // performed, then the vector only contains the initial opcode/word-count
  // word.
  assert(!_.requires_endian_conversion ||
         (inst_word_count == _.endian_converted_words.size()));
  assert(_.requires_endian_conversion ||
         (_.endian_converted_words.size() == 1));

  recordNumberType(inst_offset, &inst);

  if (_.requires_endian_conversion) {
    // We must wait until here to set this pointer, because the vector might
    // have been be resized while we accumulated its elements.
    inst.words = _.endian_converted_words.data();
  } else {
    // If no conversion is required, then just point to the underlying binary.
    // This saves time and space.
    inst.words = _.words + inst_offset;
  }
  inst.num_words = inst_word_count;

  // We must wait until here to set this pointer, because the vector might
  // have been be resized while we accumulated its elements.
  inst.operands = _.operands.data();
  inst.num_operands = uint16_t(_.operands.size());

  // Issue the callback.  The callee should know that all the storage in inst
  // is transient, and will disappear immediately afterward.
  if (parsed_instruction_fn_) {
    if (auto error = parsed_instruction_fn_(user_data_, &inst)) return error;
  }

  return SPV_SUCCESS;
}

spv_result_t Parser::parseOperand(size_t inst_offset,
                                  spv_parsed_instruction_t* inst,
                                  const spv_operand_type_t type,
                                  std::vector<uint32_t>* words,
                                  std::vector<spv_parsed_operand_t>* operands,
                                  spv_operand_pattern_t* expected_operands) {
  const spv::Op opcode = static_cast<spv::Op>(inst->opcode);
  // We'll fill in this result as we go along.
  spv_parsed_operand_t parsed_operand;
  parsed_operand.offset = uint16_t(_.word_index - inst_offset);
  // Most operands occupy one word.  This might be be adjusted later.
  parsed_operand.num_words = 1;
  // The type argument is the one used by the grammar to parse the instruction.
  // But it can exposes internal parser details such as whether an operand is
  // optional or actually represents a variable-length sequence of operands.
  // The resulting type should be adjusted to avoid those internal details.
  // In most cases, the resulting operand type is the same as the grammar type.
  parsed_operand.type = type;

  // Assume non-numeric values.  This will be updated for literal numbers.
  parsed_operand.number_kind = SPV_NUMBER_NONE;
  parsed_operand.number_bit_width = 0;

  if (_.word_index >= _.num_words)
    return exhaustedInputDiagnostic(inst_offset, opcode, type);

  const uint32_t word = peek();

  // Do the words in this operand have to be converted to native endianness?
  // True for all but literal strings.
  bool convert_operand_endianness = true;

  switch (type) {
    case SPV_OPERAND_TYPE_TYPE_ID:
      if (!word)
        return diagnostic(SPV_ERROR_INVALID_ID) << "Error: Type Id is 0";
      inst->type_id = word;
      break;

    case SPV_OPERAND_TYPE_RESULT_ID:
      if (!word)
        return diagnostic(SPV_ERROR_INVALID_ID) << "Error: Result Id is 0";
      inst->result_id = word;
      // Save the result ID to type ID mapping.
      // In the grammar, type ID always appears before result ID.
      if (_.id_to_type_id.find(inst->result_id) != _.id_to_type_id.end())
        return diagnostic(SPV_ERROR_INVALID_ID)
               << "Id " << inst->result_id << " is defined more than once";
      // Record it.
      // A regular value maps to its type.  Some instructions (e.g. OpLabel)
      // have no type Id, and will map to 0.  The result Id for a
      // type-generating instruction (e.g. OpTypeInt) maps to itself.
      _.id_to_type_id[inst->result_id] =
          spvOpcodeGeneratesType(opcode) ? inst->result_id : inst->type_id;
      break;

    case SPV_OPERAND_TYPE_ID:
    case SPV_OPERAND_TYPE_OPTIONAL_ID:
      if (!word) return diagnostic(SPV_ERROR_INVALID_ID) << "Id is 0";
      parsed_operand.type = SPV_OPERAND_TYPE_ID;

      if (opcode == spv::Op::OpExtInst && parsed_operand.offset == 3) {
        // The current word is the extended instruction set Id.
        // Set the extended instruction set type for the current instruction.
        auto ext_inst_type_iter = _.import_id_to_ext_inst_type.find(word);
        if (ext_inst_type_iter == _.import_id_to_ext_inst_type.end()) {
          return diagnostic(SPV_ERROR_INVALID_ID)
                 << "OpExtInst set Id " << word
                 << " does not reference an OpExtInstImport result Id";
        }
        inst->ext_inst_type = ext_inst_type_iter->second;
      }
      break;

    case SPV_OPERAND_TYPE_SCOPE_ID:
    case SPV_OPERAND_TYPE_MEMORY_SEMANTICS_ID:
      // Check for trivially invalid values.  The operand descriptions already
      // have the word "ID" in them.
      if (!word) return diagnostic() << spvOperandTypeStr(type) << " is 0";
      break;

    case SPV_OPERAND_TYPE_EXTENSION_INSTRUCTION_NUMBER: {
      assert(spv::Op::OpExtInst == opcode);
      assert(inst->ext_inst_type != SPV_EXT_INST_TYPE_NONE);
      spv_ext_inst_desc ext_inst;
      if (grammar_.lookupExtInst(inst->ext_inst_type, word, &ext_inst) ==
          SPV_SUCCESS) {
        // if we know about this ext inst, push the expected operands
        spvPushOperandTypes(ext_inst->operandTypes, expected_operands);
      } else {
        // if we don't know this extended instruction and the set isn't
        // non-semantic, we cannot process further
        if (!spvExtInstIsNonSemantic(inst->ext_inst_type)) {
          return diagnostic()
                 << "Invalid extended instruction number: " << word;
        } else {
          // for non-semantic instruction sets, we know the form of all such
          // extended instructions contains a series of IDs as parameters
          expected_operands->push_back(SPV_OPERAND_TYPE_VARIABLE_ID);
        }
      }
    } break;

    case SPV_OPERAND_TYPE_SPEC_CONSTANT_OP_NUMBER: {
      assert(spv::Op::OpSpecConstantOp == opcode);
      if (word > static_cast<uint32_t>(spv::Op::Max) ||
          grammar_.lookupSpecConstantOpcode(spv::Op(word))) {
        return diagnostic()
               << "Invalid " << spvOperandTypeStr(type) << ": " << word;
      }
      spv_opcode_desc opcode_entry = nullptr;
      if (grammar_.lookupOpcode(spv::Op(word), &opcode_entry)) {
        return diagnostic(SPV_ERROR_INTERNAL)
               << "OpSpecConstant opcode table out of sync";
      }
      // OpSpecConstant opcodes must have a type and result. We've already
      // processed them, so skip them when preparing to parse the other
      // operants for the opcode.
      assert(opcode_entry->hasType);
      assert(opcode_entry->hasResult);
      assert(opcode_entry->numTypes >= 2);
      spvPushOperandTypes(opcode_entry->operandTypes + 2, expected_operands);
    } break;

    case SPV_OPERAND_TYPE_LITERAL_INTEGER:
    case SPV_OPERAND_TYPE_OPTIONAL_LITERAL_INTEGER:
      // These are regular single-word literal integer operands.
      // Post-parsing validation should check the range of the parsed value.
      parsed_operand.type = SPV_OPERAND_TYPE_LITERAL_INTEGER;
      // It turns out they are always unsigned integers!
      parsed_operand.number_kind = SPV_NUMBER_UNSIGNED_INT;
      parsed_operand.number_bit_width = 32;
      break;

    case SPV_OPERAND_TYPE_TYPED_LITERAL_NUMBER:
    case SPV_OPERAND_TYPE_OPTIONAL_TYPED_LITERAL_INTEGER:
      parsed_operand.type = SPV_OPERAND_TYPE_TYPED_LITERAL_NUMBER;
      if (opcode == spv::Op::OpSwitch) {
        // The literal operands have the same type as the value
        // referenced by the selector Id.
        const uint32_t selector_id = peekAt(inst_offset + 1);
        const auto type_id_iter = _.id_to_type_id.find(selector_id);
        if (type_id_iter == _.id_to_type_id.end() ||
            type_id_iter->second == 0) {
          return diagnostic() << "Invalid OpSwitch: selector id " << selector_id
                              << " has no type";
        }
        uint32_t type_id = type_id_iter->second;

        if (selector_id == type_id) {
          // Recall that by convention, a result ID that is a type definition
          // maps to itself.
          return diagnostic() << "Invalid OpSwitch: selector id " << selector_id
                              << " is a type, not a value";
        }
        if (auto error = setNumericTypeInfoForType(&parsed_operand, type_id))
          return error;
        if (parsed_operand.number_kind != SPV_NUMBER_UNSIGNED_INT &&
            parsed_operand.number_kind != SPV_NUMBER_SIGNED_INT) {
          return diagnostic() << "Invalid OpSwitch: selector id " << selector_id
                              << " is not a scalar integer";
        }
      } else {
        assert(opcode == spv::Op::OpConstant ||
               opcode == spv::Op::OpSpecConstant);
        // The literal number type is determined by the type Id for the
        // constant.
        assert(inst->type_id);
        if (auto error =
                setNumericTypeInfoForType(&parsed_operand, inst->type_id))
          return error;
      }
      break;

    case SPV_OPERAND_TYPE_LITERAL_STRING:
    case SPV_OPERAND_TYPE_OPTIONAL_LITERAL_STRING: {
      const size_t max_words = _.num_words - _.word_index;
      std::string string =
          spvtools::utils::MakeString(_.words + _.word_index, max_words, false);

      if (string.length() == max_words * 4)
        return exhaustedInputDiagnostic(inst_offset, opcode, type);

      // Make sure we can record the word count without overflow.
      //
      // This error can't currently be triggered because of validity
      // checks elsewhere.
      const size_t string_num_words = string.length() / 4 + 1;
      if (string_num_words > std::numeric_limits<uint16_t>::max()) {
        return diagnostic() << "Literal string is longer than "
                            << std::numeric_limits<uint16_t>::max()
                            << " words: " << string_num_words << " words long";
      }
      parsed_operand.num_words = uint16_t(string_num_words);
      parsed_operand.type = SPV_OPERAND_TYPE_LITERAL_STRING;

      if (spv::Op::OpExtInstImport == opcode) {
        // Record the extended instruction type for the ID for this import.
        // There is only one string literal argument to OpExtInstImport,
        // so it's sufficient to guard this just on the opcode.
        const spv_ext_inst_type_t ext_inst_type =
            spvExtInstImportTypeGet(string.c_str());
        if (SPV_EXT_INST_TYPE_NONE == ext_inst_type) {
          return diagnostic()
                 << "Invalid extended instruction import '" << string << "'";
        }
        // We must have parsed a valid result ID.  It's a condition
        // of the grammar, and we only accept non-zero result Ids.
        assert(inst->result_id);
        _.import_id_to_ext_inst_type[inst->result_id] = ext_inst_type;
      }
    } break;

    case SPV_OPERAND_TYPE_CAPABILITY:
    case SPV_OPERAND_TYPE_SOURCE_LANGUAGE:
    case SPV_OPERAND_TYPE_EXECUTION_MODEL:
    case SPV_OPERAND_TYPE_ADDRESSING_MODEL:
    case SPV_OPERAND_TYPE_MEMORY_MODEL:
    case SPV_OPERAND_TYPE_EXECUTION_MODE:
    case SPV_OPERAND_TYPE_STORAGE_CLASS:
    case SPV_OPERAND_TYPE_DIMENSIONALITY:
    case SPV_OPERAND_TYPE_SAMPLER_ADDRESSING_MODE:
    case SPV_OPERAND_TYPE_SAMPLER_FILTER_MODE:
    case SPV_OPERAND_TYPE_SAMPLER_IMAGE_FORMAT:
    case SPV_OPERAND_TYPE_FP_ROUNDING_MODE:
    case SPV_OPERAND_TYPE_LINKAGE_TYPE:
    case SPV_OPERAND_TYPE_ACCESS_QUALIFIER:
    case SPV_OPERAND_TYPE_OPTIONAL_ACCESS_QUALIFIER:
    case SPV_OPERAND_TYPE_FUNCTION_PARAMETER_ATTRIBUTE:
    case SPV_OPERAND_TYPE_DECORATION:
    case SPV_OPERAND_TYPE_BUILT_IN:
    case SPV_OPERAND_TYPE_GROUP_OPERATION:
    case SPV_OPERAND_TYPE_KERNEL_ENQ_FLAGS:
    case SPV_OPERAND_TYPE_KERNEL_PROFILING_INFO:
    case SPV_OPERAND_TYPE_RAY_FLAGS:
    case SPV_OPERAND_TYPE_RAY_QUERY_INTERSECTION:
    case SPV_OPERAND_TYPE_RAY_QUERY_COMMITTED_INTERSECTION_TYPE:
    case SPV_OPERAND_TYPE_RAY_QUERY_CANDIDATE_INTERSECTION_TYPE:
    case SPV_OPERAND_TYPE_DEBUG_BASE_TYPE_ATTRIBUTE_ENCODING:
    case SPV_OPERAND_TYPE_DEBUG_COMPOSITE_TYPE:
    case SPV_OPERAND_TYPE_DEBUG_TYPE_QUALIFIER:
    case SPV_OPERAND_TYPE_DEBUG_OPERATION:
    case SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_BASE_TYPE_ATTRIBUTE_ENCODING:
    case SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_COMPOSITE_TYPE:
    case SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_TYPE_QUALIFIER:
    case SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_OPERATION:
    case SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_IMPORTED_ENTITY:
    case SPV_OPERAND_TYPE_FPDENORM_MODE:
    case SPV_OPERAND_TYPE_FPOPERATION_MODE:
    case SPV_OPERAND_TYPE_QUANTIZATION_MODES:
    case SPV_OPERAND_TYPE_OVERFLOW_MODES:
    case SPV_OPERAND_TYPE_PACKED_VECTOR_FORMAT:
    case SPV_OPERAND_TYPE_OPTIONAL_PACKED_VECTOR_FORMAT: {
      // A single word that is a plain enum value.

      // Map an optional operand type to its corresponding concrete type.
      if (type == SPV_OPERAND_TYPE_OPTIONAL_ACCESS_QUALIFIER)
        parsed_operand.type = SPV_OPERAND_TYPE_ACCESS_QUALIFIER;
      if (type == SPV_OPERAND_TYPE_OPTIONAL_PACKED_VECTOR_FORMAT)
        parsed_operand.type = SPV_OPERAND_TYPE_PACKED_VECTOR_FORMAT;

      spv_operand_desc entry;
      if (grammar_.lookupOperand(type, word, &entry)) {
        return diagnostic()
               << "Invalid " << spvOperandTypeStr(parsed_operand.type)
               << " operand: " << word;
      }
      // Prepare to accept operands to this operand, if needed.
      spvPushOperandTypes(entry->operandTypes, expected_operands);
    } break;

    case SPV_OPERAND_TYPE_FP_FAST_MATH_MODE:
    case SPV_OPERAND_TYPE_FUNCTION_CONTROL:
    case SPV_OPERAND_TYPE_LOOP_CONTROL:
    case SPV_OPERAND_TYPE_IMAGE:
    case SPV_OPERAND_TYPE_OPTIONAL_IMAGE:
    case SPV_OPERAND_TYPE_OPTIONAL_MEMORY_ACCESS:
    case SPV_OPERAND_TYPE_SELECTION_CONTROL:
    case SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_INFO_FLAGS:
    case SPV_OPERAND_TYPE_DEBUG_INFO_FLAGS: {
      // This operand is a mask.

      // Map an optional operand type to its corresponding concrete type.
      if (type == SPV_OPERAND_TYPE_OPTIONAL_IMAGE)
        parsed_operand.type = SPV_OPERAND_TYPE_IMAGE;
      else if (type == SPV_OPERAND_TYPE_OPTIONAL_MEMORY_ACCESS)
        parsed_operand.type = SPV_OPERAND_TYPE_MEMORY_ACCESS;

      // Check validity of set mask bits. Also prepare for operands for those
      // masks if they have any.  To get operand order correct, scan from
      // MSB to LSB since we can only prepend operands to a pattern.
      // The only case in the grammar where you have more than one mask bit
      // having an operand is for image operands.  See SPIR-V 3.14 Image
      // Operands.
      uint32_t remaining_word = word;
      for (uint32_t mask = (1u << 31); remaining_word; mask >>= 1) {
        if (remaining_word & mask) {
          spv_operand_desc entry;
          if (grammar_.lookupOperand(type, mask, &entry)) {
            return diagnostic()
                   << "Invalid " << spvOperandTypeStr(parsed_operand.type)
                   << " operand: " << word << " has invalid mask component "
                   << mask;
          }
          remaining_word ^= mask;
          spvPushOperandTypes(entry->operandTypes, expected_operands);
        }
      }
      if (word == 0) {
        // An all-zeroes mask *might* also be valid.
        spv_operand_desc entry;
        if (SPV_SUCCESS == grammar_.lookupOperand(type, 0, &entry)) {
          // Prepare for its operands, if any.
          spvPushOperandTypes(entry->operandTypes, expected_operands);
        }
      }
    } break;
    default:
      return diagnostic() << "Internal error: Unhandled operand type: " << type;
  }

  assert(spvOperandIsConcrete(parsed_operand.type));

  operands->push_back(parsed_operand);

  const size_t index_after_operand = _.word_index + parsed_operand.num_words;

  // Avoid buffer overrun for the cases where the operand has more than one
  // word, and where it isn't a string.  (Those other cases have already been
  // handled earlier.)  For example, this error can occur for a multi-word
  // argument to OpConstant, or a multi-word case literal operand for OpSwitch.
  if (_.num_words < index_after_operand)
    return exhaustedInputDiagnostic(inst_offset, opcode, type);

  if (_.requires_endian_conversion) {
    // Copy instruction words.  Translate to native endianness as needed.
    if (convert_operand_endianness) {
      const spv_endianness_t endianness = _.endian;
      std::transform(_.words + _.word_index, _.words + index_after_operand,
                     std::back_inserter(*words),
                     [endianness](const uint32_t raw_word) {
                       return spvFixWord(raw_word, endianness);
                     });
    } else {
      words->insert(words->end(), _.words + _.word_index,
                    _.words + index_after_operand);
    }
  }

  // Advance past the operand.
  _.word_index = index_after_operand;

  return SPV_SUCCESS;
}

spv_result_t Parser::setNumericTypeInfoForType(
    spv_parsed_operand_t* parsed_operand, uint32_t type_id) {
  assert(type_id != 0);
  auto type_info_iter = _.type_id_to_number_type_info.find(type_id);
  if (type_info_iter == _.type_id_to_number_type_info.end()) {
    return diagnostic() << "Type Id " << type_id << " is not a type";
  }
  const NumberType& info = type_info_iter->second;
  if (info.type == SPV_NUMBER_NONE) {
    // This is a valid type, but for something other than a scalar number.
    return diagnostic() << "Type Id " << type_id
                        << " is not a scalar numeric type";
  }

  parsed_operand->number_kind = info.type;
  parsed_operand->number_bit_width = info.bit_width;
  // Round up the word count.
  parsed_operand->num_words = static_cast<uint16_t>((info.bit_width + 31) / 32);
  return SPV_SUCCESS;
}

void Parser::recordNumberType(size_t inst_offset,
                              const spv_parsed_instruction_t* inst) {
  const spv::Op opcode = static_cast<spv::Op>(inst->opcode);
  if (spvOpcodeGeneratesType(opcode)) {
    NumberType info = {SPV_NUMBER_NONE, 0};
    if (spv::Op::OpTypeInt == opcode) {
      const bool is_signed = peekAt(inst_offset + 3) != 0;
      info.type = is_signed ? SPV_NUMBER_SIGNED_INT : SPV_NUMBER_UNSIGNED_INT;
      info.bit_width = peekAt(inst_offset + 2);
    } else if (spv::Op::OpTypeFloat == opcode) {
      info.type = SPV_NUMBER_FLOATING;
      info.bit_width = peekAt(inst_offset + 2);
    }
    // The *result* Id of a type generating instruction is the type Id.
    _.type_id_to_number_type_info[inst->result_id] = info;
  }
}

}  // anonymous namespace

spv_result_t spvBinaryParse(const spv_const_context context, void* user_data,
                            const uint32_t* code, const size_t num_words,
                            spv_parsed_header_fn_t parsed_header,
                            spv_parsed_instruction_fn_t parsed_instruction,
                            spv_diagnostic* diagnostic) {
  spv_context_t hijack_context = *context;
  if (diagnostic) {
    *diagnostic = nullptr;
    spvtools::UseDiagnosticAsMessageConsumer(&hijack_context, diagnostic);
  }
  Parser parser(&hijack_context, user_data, parsed_header, parsed_instruction);
  return parser.parse(code, num_words, diagnostic);
}

// TODO(dneto): This probably belongs in text.cpp since that's the only place
// that a spv_binary_t value is created.
void spvBinaryDestroy(spv_binary binary) {
  if (binary) {
    if (binary->code) delete[] binary->code;
    delete binary;
  }
}

size_t spv_strnlen_s(const char* str, size_t strsz) {
  if (!str) return 0;
  for (size_t i = 0; i < strsz; i++) {
    if (!str[i]) return i;
  }
  return strsz;
}