Welcome to mirror list, hosted at ThFree Co, Russian Federation.

fuzzer_pass_add_equation_instructions.cpp « fuzz « source - github.com/KhronosGroup/SPIRV-Tools.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 4bbded8e18ac96a9c11d670ce13ac90adc730574 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
// Copyright (c) 2020 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "source/fuzz/fuzzer_pass_add_equation_instructions.h"

#include <vector>

#include "source/fuzz/fuzzer_util.h"
#include "source/fuzz/transformation_equation_instruction.h"

namespace spvtools {
namespace fuzz {
namespace {

bool IsBitWidthSupported(opt::IRContext* ir_context, uint32_t bit_width) {
  switch (bit_width) {
    case 32:
      return true;
    case 64:
      return ir_context->get_feature_mgr()->HasCapability(
                 SpvCapabilityFloat64) &&
             ir_context->get_feature_mgr()->HasCapability(SpvCapabilityInt64);
    case 16:
      return ir_context->get_feature_mgr()->HasCapability(
                 SpvCapabilityFloat16) &&
             ir_context->get_feature_mgr()->HasCapability(SpvCapabilityInt16);
    default:
      return false;
  }
}

}  // namespace

FuzzerPassAddEquationInstructions::FuzzerPassAddEquationInstructions(
    opt::IRContext* ir_context, TransformationContext* transformation_context,
    FuzzerContext* fuzzer_context,
    protobufs::TransformationSequence* transformations,
    bool ignore_inapplicable_transformations)
    : FuzzerPass(ir_context, transformation_context, fuzzer_context,
                 transformations, ignore_inapplicable_transformations) {}

void FuzzerPassAddEquationInstructions::Apply() {
  ForEachInstructionWithInstructionDescriptor(
      [this](opt::Function* function, opt::BasicBlock* block,
             opt::BasicBlock::iterator inst_it,
             const protobufs::InstructionDescriptor& instruction_descriptor) {
        if (!GetFuzzerContext()->ChoosePercentage(
                GetFuzzerContext()->GetChanceOfAddingEquationInstruction())) {
          return;
        }

        // Check that it is OK to add an equation instruction before the given
        // instruction in principle - e.g. check that this does not lead to
        // inserting before an OpVariable or OpPhi instruction.  We use OpIAdd
        // as an example opcode for this check, to be representative of *some*
        // opcode that defines an equation, even though we may choose a
        // different opcode below.
        if (!fuzzerutil::CanInsertOpcodeBeforeInstruction(SpvOpIAdd, inst_it)) {
          return;
        }

        // Get all available instructions with result ids and types that are not
        // OpUndef.
        std::vector<opt::Instruction*> available_instructions =
            FindAvailableInstructions(
                function, block, inst_it,
                [this](opt::IRContext* /*unused*/,
                       opt::Instruction* instruction) -> bool {
                  return instruction->result_id() && instruction->type_id() &&
                         instruction->opcode() != SpvOpUndef &&
                         !GetTransformationContext()
                              ->GetFactManager()
                              ->IdIsIrrelevant(instruction->result_id());
                });

        // Try the opcodes for which we know how to make ids at random until
        // something works.
        std::vector<SpvOp> candidate_opcodes = {
            SpvOpIAdd,        SpvOpISub,        SpvOpLogicalNot, SpvOpSNegate,
            SpvOpConvertUToF, SpvOpConvertSToF, SpvOpBitcast};
        do {
          auto opcode =
              GetFuzzerContext()->RemoveAtRandomIndex(&candidate_opcodes);
          switch (opcode) {
            case SpvOpConvertSToF:
            case SpvOpConvertUToF: {
              std::vector<const opt::Instruction*> candidate_instructions;
              for (const auto* inst :
                   GetIntegerInstructions(available_instructions)) {
                const auto* type =
                    GetIRContext()->get_type_mgr()->GetType(inst->type_id());
                assert(type && "|inst| has invalid type");

                if (const auto* vector_type = type->AsVector()) {
                  type = vector_type->element_type();
                }

                if (IsBitWidthSupported(GetIRContext(),
                                        type->AsInteger()->width())) {
                  candidate_instructions.push_back(inst);
                }
              }

              if (candidate_instructions.empty()) {
                break;
              }

              const auto* operand =
                  candidate_instructions[GetFuzzerContext()->RandomIndex(
                      candidate_instructions)];

              const auto* type =
                  GetIRContext()->get_type_mgr()->GetType(operand->type_id());
              assert(type && "Operand has invalid type");

              // Make sure a result type exists in the module.
              if (const auto* vector = type->AsVector()) {
                // We store element count in a separate variable since the
                // call FindOrCreate* functions below might invalidate
                // |vector| pointer.
                const auto element_count = vector->element_count();

                FindOrCreateVectorType(
                    FindOrCreateFloatType(
                        vector->element_type()->AsInteger()->width()),
                    element_count);
              } else {
                FindOrCreateFloatType(type->AsInteger()->width());
              }

              ApplyTransformation(TransformationEquationInstruction(
                  GetFuzzerContext()->GetFreshId(), opcode,
                  {operand->result_id()}, instruction_descriptor));
              return;
            }
            case SpvOpBitcast: {
              const auto candidate_instructions =
                  GetNumericalInstructions(available_instructions);

              if (!candidate_instructions.empty()) {
                const auto* operand_inst =
                    candidate_instructions[GetFuzzerContext()->RandomIndex(
                        candidate_instructions)];
                const auto* operand_type =
                    GetIRContext()->get_type_mgr()->GetType(
                        operand_inst->type_id());
                assert(operand_type && "Operand instruction has invalid type");

                // Make sure a result type exists in the module.
                //
                // TODO(https://github.com/KhronosGroup/SPIRV-Tools/issues/3539):
                //  The only constraint on the types of OpBitcast's parameters
                //  is that they must have the same number of bits. Consider
                //  improving the code below to support this in full.
                if (const auto* vector = operand_type->AsVector()) {
                  // We store element count in a separate variable since the
                  // call FindOrCreate* functions below might invalidate
                  // |vector| pointer.
                  const auto element_count = vector->element_count();

                  uint32_t element_type_id;
                  if (const auto* int_type =
                          vector->element_type()->AsInteger()) {
                    element_type_id = FindOrCreateFloatType(int_type->width());
                  } else {
                    assert(vector->element_type()->AsFloat() &&
                           "Vector must have numerical elements");
                    element_type_id = FindOrCreateIntegerType(
                        vector->element_type()->AsFloat()->width(),
                        GetFuzzerContext()->ChooseEven());
                  }

                  FindOrCreateVectorType(element_type_id, element_count);
                } else if (const auto* int_type = operand_type->AsInteger()) {
                  FindOrCreateFloatType(int_type->width());
                } else {
                  assert(operand_type->AsFloat() &&
                         "Operand is not a scalar of numerical type");
                  FindOrCreateIntegerType(operand_type->AsFloat()->width(),
                                          GetFuzzerContext()->ChooseEven());
                }

                ApplyTransformation(TransformationEquationInstruction(
                    GetFuzzerContext()->GetFreshId(), opcode,
                    {operand_inst->result_id()}, instruction_descriptor));
                return;
              }
            } break;
            case SpvOpIAdd:
            case SpvOpISub: {
              // Instructions of integer (scalar or vector) result type are
              // suitable for these opcodes.
              auto integer_instructions =
                  GetIntegerInstructions(available_instructions);
              if (!integer_instructions.empty()) {
                // There is at least one such instruction, so pick one at random
                // for the LHS of an equation.
                auto lhs = integer_instructions.at(
                    GetFuzzerContext()->RandomIndex(integer_instructions));

                // For the RHS, we can use any instruction with an integer
                // scalar/vector result type of the same number of components
                // and the same bit-width for the underlying integer type.

                // Work out the element count and bit-width.
                auto lhs_type =
                    GetIRContext()->get_type_mgr()->GetType(lhs->type_id());
                uint32_t lhs_element_count;
                uint32_t lhs_bit_width;
                if (lhs_type->AsVector()) {
                  lhs_element_count = lhs_type->AsVector()->element_count();
                  lhs_bit_width = lhs_type->AsVector()
                                      ->element_type()
                                      ->AsInteger()
                                      ->width();
                } else {
                  lhs_element_count = 1;
                  lhs_bit_width = lhs_type->AsInteger()->width();
                }

                // Get all the instructions that match on element count and
                // bit-width.
                auto candidate_rhs_instructions = RestrictToElementBitWidth(
                    RestrictToVectorWidth(integer_instructions,
                                          lhs_element_count),
                    lhs_bit_width);

                // Choose a RHS instruction at random; there is guaranteed to
                // be at least one choice as the LHS will be available.
                auto rhs = candidate_rhs_instructions.at(
                    GetFuzzerContext()->RandomIndex(
                        candidate_rhs_instructions));

                // Add the equation instruction.
                ApplyTransformation(TransformationEquationInstruction(
                    GetFuzzerContext()->GetFreshId(), opcode,
                    {lhs->result_id(), rhs->result_id()},
                    instruction_descriptor));
                return;
              }
              break;
            }
            case SpvOpLogicalNot: {
              // Choose any available instruction of boolean scalar/vector
              // result type and equate its negation with a fresh id.
              auto boolean_instructions =
                  GetBooleanInstructions(available_instructions);
              if (!boolean_instructions.empty()) {
                ApplyTransformation(TransformationEquationInstruction(
                    GetFuzzerContext()->GetFreshId(), opcode,
                    {boolean_instructions
                         .at(GetFuzzerContext()->RandomIndex(
                             boolean_instructions))
                         ->result_id()},
                    instruction_descriptor));
                return;
              }
              break;
            }
            case SpvOpSNegate: {
              // Similar to OpLogicalNot, but for signed integer negation.
              auto integer_instructions =
                  GetIntegerInstructions(available_instructions);
              if (!integer_instructions.empty()) {
                ApplyTransformation(TransformationEquationInstruction(
                    GetFuzzerContext()->GetFreshId(), opcode,
                    {integer_instructions
                         .at(GetFuzzerContext()->RandomIndex(
                             integer_instructions))
                         ->result_id()},
                    instruction_descriptor));
                return;
              }
              break;
            }
            default:
              assert(false && "Unexpected opcode.");
              break;
          }
        } while (!candidate_opcodes.empty());
        // Reaching here means that we did not manage to apply any
        // transformation at this point of the module.
      });
}

std::vector<opt::Instruction*>
FuzzerPassAddEquationInstructions::GetIntegerInstructions(
    const std::vector<opt::Instruction*>& instructions) const {
  std::vector<opt::Instruction*> result;
  for (auto& inst : instructions) {
    auto type = GetIRContext()->get_type_mgr()->GetType(inst->type_id());
    if (type->AsInteger() ||
        (type->AsVector() && type->AsVector()->element_type()->AsInteger())) {
      result.push_back(inst);
    }
  }
  return result;
}

std::vector<opt::Instruction*>
FuzzerPassAddEquationInstructions::GetFloatInstructions(
    const std::vector<opt::Instruction*>& instructions) const {
  std::vector<opt::Instruction*> result;
  for (auto& inst : instructions) {
    auto type = GetIRContext()->get_type_mgr()->GetType(inst->type_id());
    if (type->AsFloat() ||
        (type->AsVector() && type->AsVector()->element_type()->AsFloat())) {
      result.push_back(inst);
    }
  }
  return result;
}

std::vector<opt::Instruction*>
FuzzerPassAddEquationInstructions::GetBooleanInstructions(
    const std::vector<opt::Instruction*>& instructions) const {
  std::vector<opt::Instruction*> result;
  for (auto& inst : instructions) {
    auto type = GetIRContext()->get_type_mgr()->GetType(inst->type_id());
    if (type->AsBool() ||
        (type->AsVector() && type->AsVector()->element_type()->AsBool())) {
      result.push_back(inst);
    }
  }
  return result;
}

std::vector<opt::Instruction*>
FuzzerPassAddEquationInstructions::RestrictToVectorWidth(
    const std::vector<opt::Instruction*>& instructions,
    uint32_t vector_width) const {
  std::vector<opt::Instruction*> result;
  for (auto& inst : instructions) {
    auto type = GetIRContext()->get_type_mgr()->GetType(inst->type_id());
    // Get the vector width of |inst|, which is 1 if |inst| is a scalar and is
    // otherwise derived from its vector type.
    uint32_t other_vector_width =
        type->AsVector() ? type->AsVector()->element_count() : 1;
    // Keep |inst| if the vector widths match.
    if (vector_width == other_vector_width) {
      result.push_back(inst);
    }
  }
  return result;
}

std::vector<opt::Instruction*>
FuzzerPassAddEquationInstructions::RestrictToElementBitWidth(
    const std::vector<opt::Instruction*>& instructions,
    uint32_t bit_width) const {
  std::vector<opt::Instruction*> result;
  for (auto& inst : instructions) {
    const opt::analysis::Type* type =
        GetIRContext()->get_type_mgr()->GetType(inst->type_id());
    if (type->AsVector()) {
      type = type->AsVector()->element_type();
    }
    assert((type->AsInteger() || type->AsFloat()) &&
           "Precondition: all input instructions must "
           "have integer or float scalar or vector type.");
    if ((type->AsInteger() && type->AsInteger()->width() == bit_width) ||
        (type->AsFloat() && type->AsFloat()->width() == bit_width)) {
      result.push_back(inst);
    }
  }
  return result;
}

std::vector<opt::Instruction*>
FuzzerPassAddEquationInstructions::GetNumericalInstructions(
    const std::vector<opt::Instruction*>& instructions) const {
  std::vector<opt::Instruction*> result;

  for (auto* inst : instructions) {
    const auto* type = GetIRContext()->get_type_mgr()->GetType(inst->type_id());
    assert(type && "Instruction has invalid type");

    if (const auto* vector_type = type->AsVector()) {
      type = vector_type->element_type();
    }

    if (!type->AsInteger() && !type->AsFloat()) {
      // Only numerical scalars or vectors of numerical components are
      // supported.
      continue;
    }

    if (!IsBitWidthSupported(GetIRContext(), type->AsInteger()
                                                 ? type->AsInteger()->width()
                                                 : type->AsFloat()->width())) {
      continue;
    }

    result.push_back(inst);
  }

  return result;
}

}  // namespace fuzz
}  // namespace spvtools