Welcome to mirror list, hosted at ThFree Co, Russian Federation.

transformation_load.cpp « fuzz « source - github.com/KhronosGroup/SPIRV-Tools.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: bf48d996bc226c11fbcd42ae6027ce0dc56fd0a3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
// Copyright (c) 2020 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "source/fuzz/transformation_load.h"

#include "source/fuzz/fuzzer_util.h"
#include "source/fuzz/instruction_descriptor.h"

namespace spvtools {
namespace fuzz {

TransformationLoad::TransformationLoad(protobufs::TransformationLoad message)
    : message_(std::move(message)) {}

TransformationLoad::TransformationLoad(
    uint32_t fresh_id, uint32_t pointer_id, bool is_atomic,
    uint32_t memory_scope, uint32_t memory_semantics,
    const protobufs::InstructionDescriptor& instruction_to_insert_before) {
  message_.set_fresh_id(fresh_id);
  message_.set_pointer_id(pointer_id);
  message_.set_is_atomic(is_atomic);
  message_.set_memory_scope_id(memory_scope);
  message_.set_memory_semantics_id(memory_semantics);

  *message_.mutable_instruction_to_insert_before() =
      instruction_to_insert_before;
}

bool TransformationLoad::IsApplicable(
    opt::IRContext* ir_context, const TransformationContext& /*unused*/) const {
  // The result id must be fresh.
  if (!fuzzerutil::IsFreshId(ir_context, message_.fresh_id())) {
    return false;
  }

  // The pointer must exist and have a type.
  auto pointer = ir_context->get_def_use_mgr()->GetDef(message_.pointer_id());
  if (!pointer || !pointer->type_id()) {
    return false;
  }
  // The type must indeed be a pointer type.
  auto pointer_type = ir_context->get_def_use_mgr()->GetDef(pointer->type_id());
  assert(pointer_type && "Type id must be defined.");
  if (pointer_type->opcode() != SpvOpTypePointer) {
    return false;
  }
  // We do not want to allow loading from null or undefined pointers, as it is
  // not clear how punishing the consequences of doing so are from a semantics
  // point of view.
  switch (pointer->opcode()) {
    case SpvOpConstantNull:
    case SpvOpUndef:
      return false;
    default:
      break;
  }

  // Determine which instruction we should be inserting before.
  auto insert_before =
      FindInstruction(message_.instruction_to_insert_before(), ir_context);
  // It must exist, ...
  if (!insert_before) {
    return false;
  }
  // ... and it must be legitimate to insert a load before it.
  if (!message_.is_atomic() &&
      !fuzzerutil::CanInsertOpcodeBeforeInstruction(SpvOpLoad, insert_before)) {
    return false;
  }

  if (message_.is_atomic() && !fuzzerutil::CanInsertOpcodeBeforeInstruction(
                                  SpvOpAtomicLoad, insert_before)) {
    return false;
  }

  if (message_.is_atomic()) {
    // Check the exists of memory scope and memory semantics ids.
    auto memory_scope_instruction =
        ir_context->get_def_use_mgr()->GetDef(message_.memory_scope_id());
    auto memory_semantics_instruction =
        ir_context->get_def_use_mgr()->GetDef(message_.memory_semantics_id());

    if (!memory_scope_instruction) {
      return false;
    }
    if (!memory_semantics_instruction) {
      return false;
    }
    // The memory scope and memory semantics instructions must have the
    // 'OpConstant' opcode.
    if (memory_scope_instruction->opcode() != SpvOpConstant) {
      return false;
    }
    if (memory_semantics_instruction->opcode() != SpvOpConstant) {
      return false;
    }
    // The memory scope and memory semantics need to be available before
    // |insert_before|.
    if (!fuzzerutil::IdIsAvailableBeforeInstruction(
            ir_context, insert_before, message_.memory_scope_id())) {
      return false;
    }
    if (!fuzzerutil::IdIsAvailableBeforeInstruction(
            ir_context, insert_before, message_.memory_semantics_id())) {
      return false;
    }
    // The memory scope and memory semantics instructions must have an Integer
    // operand type with signedness does not matters.
    if (ir_context->get_def_use_mgr()
            ->GetDef(memory_scope_instruction->type_id())
            ->opcode() != SpvOpTypeInt) {
      return false;
    }
    if (ir_context->get_def_use_mgr()
            ->GetDef(memory_semantics_instruction->type_id())
            ->opcode() != SpvOpTypeInt) {
      return false;
    }

    // The size of the integer for memory scope and memory semantics
    // instructions must be equal to 32 bits.
    auto memory_scope_int_width =
        ir_context->get_def_use_mgr()
            ->GetDef(memory_scope_instruction->type_id())
            ->GetSingleWordInOperand(0);
    auto memory_semantics_int_width =
        ir_context->get_def_use_mgr()
            ->GetDef(memory_semantics_instruction->type_id())
            ->GetSingleWordInOperand(0);

    if (memory_scope_int_width != 32) {
      return false;
    }
    if (memory_semantics_int_width != 32) {
      return false;
    }

    // The memory scope constant value must be that of SpvScopeInvocation.
    auto memory_scope_const_value =
        memory_scope_instruction->GetSingleWordInOperand(0);
    if (memory_scope_const_value != SpvScopeInvocation) {
      return false;
    }

    // The memory semantics constant value must match the storage class of the
    // pointer being loaded from.
    auto memory_semantics_const_value = static_cast<SpvMemorySemanticsMask>(
        memory_semantics_instruction->GetSingleWordInOperand(0));
    if (memory_semantics_const_value !=
        fuzzerutil::GetMemorySemanticsForStorageClass(
            static_cast<SpvStorageClass>(
                pointer_type->GetSingleWordInOperand(0)))) {
      return false;
    }
  }

  // The pointer needs to be available at the insertion point.
  return fuzzerutil::IdIsAvailableBeforeInstruction(ir_context, insert_before,
                                                    message_.pointer_id());
}

void TransformationLoad::Apply(opt::IRContext* ir_context,
                               TransformationContext* /*unused*/) const {
  if (message_.is_atomic()) {
    // OpAtomicLoad instruction.
    uint32_t result_type = fuzzerutil::GetPointeeTypeIdFromPointerType(
        ir_context, fuzzerutil::GetTypeId(ir_context, message_.pointer_id()));
    fuzzerutil::UpdateModuleIdBound(ir_context, message_.fresh_id());
    auto insert_before =
        FindInstruction(message_.instruction_to_insert_before(), ir_context);
    auto new_instruction = MakeUnique<opt::Instruction>(
        ir_context, SpvOpAtomicLoad, result_type, message_.fresh_id(),
        opt::Instruction::OperandList(
            {{SPV_OPERAND_TYPE_ID, {message_.pointer_id()}},
             {SPV_OPERAND_TYPE_SCOPE_ID, {message_.memory_scope_id()}},
             {SPV_OPERAND_TYPE_MEMORY_SEMANTICS_ID,
              {message_.memory_semantics_id()}}}));
    auto new_instruction_ptr = new_instruction.get();
    insert_before->InsertBefore(std::move(new_instruction));
    // Inform the def-use manager about the new instruction and record its basic
    // block.
    ir_context->get_def_use_mgr()->AnalyzeInstDefUse(new_instruction_ptr);
    ir_context->set_instr_block(new_instruction_ptr,
                                ir_context->get_instr_block(insert_before));
  } else {
    // OpLoad instruction.
    uint32_t result_type = fuzzerutil::GetPointeeTypeIdFromPointerType(
        ir_context, fuzzerutil::GetTypeId(ir_context, message_.pointer_id()));
    fuzzerutil::UpdateModuleIdBound(ir_context, message_.fresh_id());
    auto insert_before =
        FindInstruction(message_.instruction_to_insert_before(), ir_context);
    auto new_instruction = MakeUnique<opt::Instruction>(
        ir_context, SpvOpLoad, result_type, message_.fresh_id(),
        opt::Instruction::OperandList(
            {{SPV_OPERAND_TYPE_ID, {message_.pointer_id()}}}));
    auto new_instruction_ptr = new_instruction.get();
    insert_before->InsertBefore(std::move(new_instruction));
    // Inform the def-use manager about the new instruction and record its basic
    // block.
    ir_context->get_def_use_mgr()->AnalyzeInstDefUse(new_instruction_ptr);
    ir_context->set_instr_block(new_instruction_ptr,
                                ir_context->get_instr_block(insert_before));
  }
}

protobufs::Transformation TransformationLoad::ToMessage() const {
  protobufs::Transformation result;
  *result.mutable_load() = message_;
  return result;
}

std::unordered_set<uint32_t> TransformationLoad::GetFreshIds() const {
  return {message_.fresh_id()};
}

}  // namespace fuzz
}  // namespace spvtools