Welcome to mirror list, hosted at ThFree Co, Russian Federation.

transformation_set_memory_operands_mask.cpp « fuzz « source - github.com/KhronosGroup/SPIRV-Tools.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 16d591a6644a4f8999503f59dbe7850fe6bcc986 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
// Copyright (c) 2019 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "source/fuzz/transformation_set_memory_operands_mask.h"

#include "source/fuzz/instruction_descriptor.h"

namespace spvtools {
namespace fuzz {

namespace {

const uint32_t kOpLoadMemoryOperandsMaskIndex = 1;
const uint32_t kOpStoreMemoryOperandsMaskIndex = 2;
const uint32_t kOpCopyMemoryFirstMemoryOperandsMaskIndex = 2;
const uint32_t kOpCopyMemorySizedFirstMemoryOperandsMaskIndex = 3;

}  // namespace

TransformationSetMemoryOperandsMask::TransformationSetMemoryOperandsMask(
    protobufs::TransformationSetMemoryOperandsMask message)
    : message_(std::move(message)) {}

TransformationSetMemoryOperandsMask::TransformationSetMemoryOperandsMask(
    const protobufs::InstructionDescriptor& memory_access_instruction,
    uint32_t memory_operands_mask, uint32_t memory_operands_mask_index) {
  *message_.mutable_memory_access_instruction() = memory_access_instruction;
  message_.set_memory_operands_mask(memory_operands_mask);
  message_.set_memory_operands_mask_index(memory_operands_mask_index);
}

bool TransformationSetMemoryOperandsMask::IsApplicable(
    opt::IRContext* ir_context, const TransformationContext& /*unused*/) const {
  if (message_.memory_operands_mask_index() != 0) {
    // The following conditions should never be violated, even if
    // transformations end up being replayed in a different way to the manner in
    // which they were applied during fuzzing, hence why these are assertions
    // rather than applicability checks.
    assert(message_.memory_operands_mask_index() == 1);
    assert(
        spv::Op(
            message_.memory_access_instruction().target_instruction_opcode()) ==
            spv::Op::OpCopyMemory ||
        spv::Op(
            message_.memory_access_instruction().target_instruction_opcode()) ==
            spv::Op::OpCopyMemorySized);
    assert(MultipleMemoryOperandMasksAreSupported(ir_context) &&
           "Multiple memory operand masks are not supported for this SPIR-V "
           "version.");
  }

  auto instruction =
      FindInstruction(message_.memory_access_instruction(), ir_context);
  if (!instruction) {
    return false;
  }
  if (!IsMemoryAccess(*instruction)) {
    return false;
  }

  auto original_mask_in_operand_index = GetInOperandIndexForMask(
      *instruction, message_.memory_operands_mask_index());
  assert(original_mask_in_operand_index != 0 &&
         "The given mask index is not valid.");
  uint32_t original_mask =
      original_mask_in_operand_index < instruction->NumInOperands()
          ? instruction->GetSingleWordInOperand(original_mask_in_operand_index)
          : static_cast<uint32_t>(spv::MemoryAccessMask::MaskNone);
  uint32_t new_mask = message_.memory_operands_mask();

  // Volatile must not be removed
  if ((original_mask & uint32_t(spv::MemoryAccessMask::Volatile)) &&
      !(new_mask & uint32_t(spv::MemoryAccessMask::Volatile))) {
    return false;
  }

  // Nontemporal can be added or removed, and no other flag is allowed to
  // change.  We do this by checking that the masks are equal once we set
  // their Volatile and Nontemporal flags to the same value (this works
  // because valid manipulation of Volatile is checked above, and the manner
  // in which Nontemporal is manipulated does not matter).
  return (original_mask | uint32_t(spv::MemoryAccessMask::Volatile) |
          uint32_t(spv::MemoryAccessMask::Nontemporal)) ==
         (new_mask | uint32_t(spv::MemoryAccessMask::Volatile) |
          uint32_t(spv::MemoryAccessMask::Nontemporal));
}

void TransformationSetMemoryOperandsMask::Apply(
    opt::IRContext* ir_context, TransformationContext* /*unused*/) const {
  auto instruction =
      FindInstruction(message_.memory_access_instruction(), ir_context);
  auto original_mask_in_operand_index = GetInOperandIndexForMask(
      *instruction, message_.memory_operands_mask_index());
  // Either add a new operand, if no mask operand was already present, or
  // replace an existing mask operand.
  if (original_mask_in_operand_index >= instruction->NumInOperands()) {
    // Add first memory operand if it's missing.
    if (message_.memory_operands_mask_index() == 1 &&
        GetInOperandIndexForMask(*instruction, 0) >=
            instruction->NumInOperands()) {
      instruction->AddOperand({SPV_OPERAND_TYPE_MEMORY_ACCESS,
                               {uint32_t(spv::MemoryAccessMask::MaskNone)}});
    }

    instruction->AddOperand(
        {SPV_OPERAND_TYPE_MEMORY_ACCESS, {message_.memory_operands_mask()}});

  } else {
    instruction->SetInOperand(original_mask_in_operand_index,
                              {message_.memory_operands_mask()});
  }
}

protobufs::Transformation TransformationSetMemoryOperandsMask::ToMessage()
    const {
  protobufs::Transformation result;
  *result.mutable_set_memory_operands_mask() = message_;
  return result;
}

bool TransformationSetMemoryOperandsMask::IsMemoryAccess(
    const opt::Instruction& instruction) {
  switch (instruction.opcode()) {
    case spv::Op::OpLoad:
    case spv::Op::OpStore:
    case spv::Op::OpCopyMemory:
    case spv::Op::OpCopyMemorySized:
      return true;
    default:
      return false;
  }
}

uint32_t TransformationSetMemoryOperandsMask::GetInOperandIndexForMask(
    const opt::Instruction& instruction, uint32_t mask_index) {
  // Get the input operand index associated with the first memory operands mask
  // for the instruction.
  uint32_t first_mask_in_operand_index = 0;
  switch (instruction.opcode()) {
    case spv::Op::OpLoad:
      first_mask_in_operand_index = kOpLoadMemoryOperandsMaskIndex;
      break;
    case spv::Op::OpStore:
      first_mask_in_operand_index = kOpStoreMemoryOperandsMaskIndex;
      break;
    case spv::Op::OpCopyMemory:
      first_mask_in_operand_index = kOpCopyMemoryFirstMemoryOperandsMaskIndex;
      break;
    case spv::Op::OpCopyMemorySized:
      first_mask_in_operand_index =
          kOpCopyMemorySizedFirstMemoryOperandsMaskIndex;
      break;
    default:
      assert(false && "Unknown memory instruction.");
      break;
  }
  // If we are looking for the input operand index of the first mask, return it.
  // This will also return a correct value if the operand is missing.
  if (mask_index == 0) {
    return first_mask_in_operand_index;
  }
  assert(mask_index == 1 && "Memory operands mask index must be 0 or 1.");

  // Memory mask operands are optional. Thus, if the second operand exists,
  // its index will be >= |first_mask_in_operand_index + 1|. We can reason as
  // follows to separate the cases where the index of the second operand is
  // equal to |first_mask_in_operand_index + 1|:
  // - If the first memory operand doesn't exist, its value is equal to None.
  //   This means that it doesn't have additional operands following it and the
  //   condition in the if statement below will be satisfied.
  // - If the first memory operand exists and has no additional memory operands
  //   following it, the condition in the if statement below will be satisfied
  //   and we will return the correct value from the function.
  if (first_mask_in_operand_index + 1 >= instruction.NumInOperands()) {
    return first_mask_in_operand_index + 1;
  }

  // We are looking for the input operand index of the second mask.  This is a
  // little complicated because, depending on the contents of the first mask,
  // there may be some input operands separating the two masks.
  uint32_t first_mask =
      instruction.GetSingleWordInOperand(first_mask_in_operand_index);

  // Consider each bit that might have an associated extra input operand, and
  // count how many there are expected to be.
  uint32_t first_mask_extra_operand_count = 0;
  for (auto mask_bit : {spv::MemoryAccessMask::Aligned,
                        spv::MemoryAccessMask::MakePointerAvailable,
                        spv::MemoryAccessMask::MakePointerAvailableKHR,
                        spv::MemoryAccessMask::MakePointerVisible,
                        spv::MemoryAccessMask::MakePointerVisibleKHR}) {
    if (first_mask & uint32_t(mask_bit)) {
      first_mask_extra_operand_count++;
    }
  }
  return first_mask_in_operand_index + first_mask_extra_operand_count + 1;
}

bool TransformationSetMemoryOperandsMask::
    MultipleMemoryOperandMasksAreSupported(opt::IRContext* ir_context) {
  // TODO(afd): We capture the environments for which this loop control is
  //  definitely not supported.  The check should be refined on demand for other
  //  target environments.
  switch (ir_context->grammar().target_env()) {
    case SPV_ENV_UNIVERSAL_1_0:
    case SPV_ENV_UNIVERSAL_1_1:
    case SPV_ENV_UNIVERSAL_1_2:
    case SPV_ENV_UNIVERSAL_1_3:
    case SPV_ENV_VULKAN_1_0:
    case SPV_ENV_VULKAN_1_1:
      return false;
    default:
      return true;
  }
}

std::unordered_set<uint32_t> TransformationSetMemoryOperandsMask::GetFreshIds()
    const {
  return std::unordered_set<uint32_t>();
}

}  // namespace fuzz
}  // namespace spvtools