Welcome to mirror list, hosted at ThFree Co, Russian Federation.

fold.cpp « opt « source - github.com/KhronosGroup/SPIRV-Tools.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 315741ad7ba736b2be978012fdcf0c1cd0d674c6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
// Copyright (c) 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "source/opt/fold.h"

#include <cassert>
#include <cstdint>
#include <vector>

#include "source/opt/const_folding_rules.h"
#include "source/opt/def_use_manager.h"
#include "source/opt/folding_rules.h"
#include "source/opt/ir_builder.h"
#include "source/opt/ir_context.h"

namespace spvtools {
namespace opt {
namespace {

#ifndef INT32_MIN
#define INT32_MIN (-2147483648)
#endif

#ifndef INT32_MAX
#define INT32_MAX 2147483647
#endif

#ifndef UINT32_MAX
#define UINT32_MAX 0xffffffff /* 4294967295U */
#endif

}  // namespace

uint32_t InstructionFolder::UnaryOperate(SpvOp opcode, uint32_t operand) const {
  switch (opcode) {
    // Arthimetics
    case SpvOp::SpvOpSNegate: {
      int32_t s_operand = static_cast<int32_t>(operand);
      if (s_operand == std::numeric_limits<int32_t>::min()) {
        return s_operand;
      }
      return -s_operand;
    }
    case SpvOp::SpvOpNot:
      return ~operand;
    case SpvOp::SpvOpLogicalNot:
      return !static_cast<bool>(operand);
    case SpvOp::SpvOpUConvert:
      return operand;
    case SpvOp::SpvOpSConvert:
      return operand;
    default:
      assert(false &&
             "Unsupported unary operation for OpSpecConstantOp instruction");
      return 0u;
  }
}

uint32_t InstructionFolder::BinaryOperate(SpvOp opcode, uint32_t a,
                                          uint32_t b) const {
  switch (opcode) {
    // Arthimetics
    case SpvOp::SpvOpIAdd:
      return a + b;
    case SpvOp::SpvOpISub:
      return a - b;
    case SpvOp::SpvOpIMul:
      return a * b;
    case SpvOp::SpvOpUDiv:
      if (b != 0) {
        return a / b;
      } else {
        // Dividing by 0 is undefined, so we will just pick 0.
        return 0;
      }
    case SpvOp::SpvOpSDiv:
      if (b != 0u) {
        return (static_cast<int32_t>(a)) / (static_cast<int32_t>(b));
      } else {
        // Dividing by 0 is undefined, so we will just pick 0.
        return 0;
      }
    case SpvOp::SpvOpSRem: {
      // The sign of non-zero result comes from the first operand: a. This is
      // guaranteed by C++11 rules for integer division operator. The division
      // result is rounded toward zero, so the result of '%' has the sign of
      // the first operand.
      if (b != 0u) {
        return static_cast<int32_t>(a) % static_cast<int32_t>(b);
      } else {
        // Remainder when dividing with 0 is undefined, so we will just pick 0.
        return 0;
      }
    }
    case SpvOp::SpvOpSMod: {
      // The sign of non-zero result comes from the second operand: b
      if (b != 0u) {
        int32_t rem = BinaryOperate(SpvOp::SpvOpSRem, a, b);
        int32_t b_prim = static_cast<int32_t>(b);
        return (rem + b_prim) % b_prim;
      } else {
        // Mod with 0 is undefined, so we will just pick 0.
        return 0;
      }
    }
    case SpvOp::SpvOpUMod:
      if (b != 0u) {
        return (a % b);
      } else {
        // Mod with 0 is undefined, so we will just pick 0.
        return 0;
      }

    // Shifting
    case SpvOp::SpvOpShiftRightLogical:
      if (b >= 32) {
        // This is undefined behaviour when |b| > 32.  Choose 0 for consistency.
        // When |b| == 32, doing the shift in C++ in undefined, but the result
        // will be 0, so just return that value.
        return 0;
      }
      return a >> b;
    case SpvOp::SpvOpShiftRightArithmetic:
      if (b > 32) {
        // This is undefined behaviour.  Choose 0 for consistency.
        return 0;
      }
      if (b == 32) {
        // Doing the shift in C++ is undefined, but the result is defined in the
        // spir-v spec.  Find that value another way.
        if (static_cast<int32_t>(a) >= 0) {
          return 0;
        } else {
          return static_cast<uint32_t>(-1);
        }
      }
      return (static_cast<int32_t>(a)) >> b;
    case SpvOp::SpvOpShiftLeftLogical:
      if (b >= 32) {
        // This is undefined behaviour when |b| > 32.  Choose 0 for consistency.
        // When |b| == 32, doing the shift in C++ in undefined, but the result
        // will be 0, so just return that value.
        return 0;
      }
      return a << b;

    // Bitwise operations
    case SpvOp::SpvOpBitwiseOr:
      return a | b;
    case SpvOp::SpvOpBitwiseAnd:
      return a & b;
    case SpvOp::SpvOpBitwiseXor:
      return a ^ b;

    // Logical
    case SpvOp::SpvOpLogicalEqual:
      return (static_cast<bool>(a)) == (static_cast<bool>(b));
    case SpvOp::SpvOpLogicalNotEqual:
      return (static_cast<bool>(a)) != (static_cast<bool>(b));
    case SpvOp::SpvOpLogicalOr:
      return (static_cast<bool>(a)) || (static_cast<bool>(b));
    case SpvOp::SpvOpLogicalAnd:
      return (static_cast<bool>(a)) && (static_cast<bool>(b));

    // Comparison
    case SpvOp::SpvOpIEqual:
      return a == b;
    case SpvOp::SpvOpINotEqual:
      return a != b;
    case SpvOp::SpvOpULessThan:
      return a < b;
    case SpvOp::SpvOpSLessThan:
      return (static_cast<int32_t>(a)) < (static_cast<int32_t>(b));
    case SpvOp::SpvOpUGreaterThan:
      return a > b;
    case SpvOp::SpvOpSGreaterThan:
      return (static_cast<int32_t>(a)) > (static_cast<int32_t>(b));
    case SpvOp::SpvOpULessThanEqual:
      return a <= b;
    case SpvOp::SpvOpSLessThanEqual:
      return (static_cast<int32_t>(a)) <= (static_cast<int32_t>(b));
    case SpvOp::SpvOpUGreaterThanEqual:
      return a >= b;
    case SpvOp::SpvOpSGreaterThanEqual:
      return (static_cast<int32_t>(a)) >= (static_cast<int32_t>(b));
    default:
      assert(false &&
             "Unsupported binary operation for OpSpecConstantOp instruction");
      return 0u;
  }
}

uint32_t InstructionFolder::TernaryOperate(SpvOp opcode, uint32_t a, uint32_t b,
                                           uint32_t c) const {
  switch (opcode) {
    case SpvOp::SpvOpSelect:
      return (static_cast<bool>(a)) ? b : c;
    default:
      assert(false &&
             "Unsupported ternary operation for OpSpecConstantOp instruction");
      return 0u;
  }
}

uint32_t InstructionFolder::OperateWords(
    SpvOp opcode, const std::vector<uint32_t>& operand_words) const {
  switch (operand_words.size()) {
    case 1:
      return UnaryOperate(opcode, operand_words.front());
    case 2:
      return BinaryOperate(opcode, operand_words.front(), operand_words.back());
    case 3:
      return TernaryOperate(opcode, operand_words[0], operand_words[1],
                            operand_words[2]);
    default:
      assert(false && "Invalid number of operands");
      return 0;
  }
}

bool InstructionFolder::FoldInstructionInternal(Instruction* inst) const {
  auto identity_map = [](uint32_t id) { return id; };
  Instruction* folded_inst = FoldInstructionToConstant(inst, identity_map);
  if (folded_inst != nullptr) {
    inst->SetOpcode(SpvOpCopyObject);
    inst->SetInOperands({{SPV_OPERAND_TYPE_ID, {folded_inst->result_id()}}});
    return true;
  }

  analysis::ConstantManager* const_manager = context_->get_constant_mgr();
  std::vector<const analysis::Constant*> constants =
      const_manager->GetOperandConstants(inst);

  for (const FoldingRule& rule :
       GetFoldingRules().GetRulesForInstruction(inst)) {
    if (rule(context_, inst, constants)) {
      return true;
    }
  }
  return false;
}

// Returns the result of performing an operation on scalar constant operands.
// This function extracts the operand values as 32 bit words and returns the
// result in 32 bit word. Scalar constants with longer than 32-bit width are
// not accepted in this function.
uint32_t InstructionFolder::FoldScalars(
    SpvOp opcode,
    const std::vector<const analysis::Constant*>& operands) const {
  assert(IsFoldableOpcode(opcode) &&
         "Unhandled instruction opcode in FoldScalars");
  std::vector<uint32_t> operand_values_in_raw_words;
  for (const auto& operand : operands) {
    if (const analysis::ScalarConstant* scalar = operand->AsScalarConstant()) {
      const auto& scalar_words = scalar->words();
      assert(scalar_words.size() == 1 &&
             "Scalar constants with longer than 32-bit width are not allowed "
             "in FoldScalars()");
      operand_values_in_raw_words.push_back(scalar_words.front());
    } else if (operand->AsNullConstant()) {
      operand_values_in_raw_words.push_back(0u);
    } else {
      assert(false &&
             "FoldScalars() only accepts ScalarConst or NullConst type of "
             "constant");
    }
  }
  return OperateWords(opcode, operand_values_in_raw_words);
}

bool InstructionFolder::FoldBinaryIntegerOpToConstant(
    Instruction* inst, const std::function<uint32_t(uint32_t)>& id_map,
    uint32_t* result) const {
  SpvOp opcode = inst->opcode();
  analysis::ConstantManager* const_manger = context_->get_constant_mgr();

  uint32_t ids[2];
  const analysis::IntConstant* constants[2];
  for (uint32_t i = 0; i < 2; i++) {
    const Operand* operand = &inst->GetInOperand(i);
    if (operand->type != SPV_OPERAND_TYPE_ID) {
      return false;
    }
    ids[i] = id_map(operand->words[0]);
    const analysis::Constant* constant =
        const_manger->FindDeclaredConstant(ids[i]);
    constants[i] = (constant != nullptr ? constant->AsIntConstant() : nullptr);
  }

  switch (opcode) {
    // Arthimetics
    case SpvOp::SpvOpIMul:
      for (uint32_t i = 0; i < 2; i++) {
        if (constants[i] != nullptr && constants[i]->IsZero()) {
          *result = 0;
          return true;
        }
      }
      break;
    case SpvOp::SpvOpUDiv:
    case SpvOp::SpvOpSDiv:
    case SpvOp::SpvOpSRem:
    case SpvOp::SpvOpSMod:
    case SpvOp::SpvOpUMod:
      // This changes undefined behaviour (ie divide by 0) into a 0.
      for (uint32_t i = 0; i < 2; i++) {
        if (constants[i] != nullptr && constants[i]->IsZero()) {
          *result = 0;
          return true;
        }
      }
      break;

    // Shifting
    case SpvOp::SpvOpShiftRightLogical:
    case SpvOp::SpvOpShiftLeftLogical:
      if (constants[1] != nullptr) {
        // When shifting by a value larger than the size of the result, the
        // result is undefined.  We are setting the undefined behaviour to a
        // result of 0.  If the shift amount is the same as the size of the
        // result, then the result is defined, and it 0.
        uint32_t shift_amount = constants[1]->GetU32BitValue();
        if (shift_amount >= 32) {
          *result = 0;
          return true;
        }
      }
      break;

    // Bitwise operations
    case SpvOp::SpvOpBitwiseOr:
      for (uint32_t i = 0; i < 2; i++) {
        if (constants[i] != nullptr) {
          // TODO: Change the mask against a value based on the bit width of the
          // instruction result type.  This way we can handle say 16-bit values
          // as well.
          uint32_t mask = constants[i]->GetU32BitValue();
          if (mask == 0xFFFFFFFF) {
            *result = 0xFFFFFFFF;
            return true;
          }
        }
      }
      break;
    case SpvOp::SpvOpBitwiseAnd:
      for (uint32_t i = 0; i < 2; i++) {
        if (constants[i] != nullptr) {
          if (constants[i]->IsZero()) {
            *result = 0;
            return true;
          }
        }
      }
      break;

    // Comparison
    case SpvOp::SpvOpULessThan:
      if (constants[0] != nullptr &&
          constants[0]->GetU32BitValue() == UINT32_MAX) {
        *result = false;
        return true;
      }
      if (constants[1] != nullptr && constants[1]->GetU32BitValue() == 0) {
        *result = false;
        return true;
      }
      break;
    case SpvOp::SpvOpSLessThan:
      if (constants[0] != nullptr &&
          constants[0]->GetS32BitValue() == INT32_MAX) {
        *result = false;
        return true;
      }
      if (constants[1] != nullptr &&
          constants[1]->GetS32BitValue() == INT32_MIN) {
        *result = false;
        return true;
      }
      break;
    case SpvOp::SpvOpUGreaterThan:
      if (constants[0] != nullptr && constants[0]->IsZero()) {
        *result = false;
        return true;
      }
      if (constants[1] != nullptr &&
          constants[1]->GetU32BitValue() == UINT32_MAX) {
        *result = false;
        return true;
      }
      break;
    case SpvOp::SpvOpSGreaterThan:
      if (constants[0] != nullptr &&
          constants[0]->GetS32BitValue() == INT32_MIN) {
        *result = false;
        return true;
      }
      if (constants[1] != nullptr &&
          constants[1]->GetS32BitValue() == INT32_MAX) {
        *result = false;
        return true;
      }
      break;
    case SpvOp::SpvOpULessThanEqual:
      if (constants[0] != nullptr && constants[0]->IsZero()) {
        *result = true;
        return true;
      }
      if (constants[1] != nullptr &&
          constants[1]->GetU32BitValue() == UINT32_MAX) {
        *result = true;
        return true;
      }
      break;
    case SpvOp::SpvOpSLessThanEqual:
      if (constants[0] != nullptr &&
          constants[0]->GetS32BitValue() == INT32_MIN) {
        *result = true;
        return true;
      }
      if (constants[1] != nullptr &&
          constants[1]->GetS32BitValue() == INT32_MAX) {
        *result = true;
        return true;
      }
      break;
    case SpvOp::SpvOpUGreaterThanEqual:
      if (constants[0] != nullptr &&
          constants[0]->GetU32BitValue() == UINT32_MAX) {
        *result = true;
        return true;
      }
      if (constants[1] != nullptr && constants[1]->GetU32BitValue() == 0) {
        *result = true;
        return true;
      }
      break;
    case SpvOp::SpvOpSGreaterThanEqual:
      if (constants[0] != nullptr &&
          constants[0]->GetS32BitValue() == INT32_MAX) {
        *result = true;
        return true;
      }
      if (constants[1] != nullptr &&
          constants[1]->GetS32BitValue() == INT32_MIN) {
        *result = true;
        return true;
      }
      break;
    default:
      break;
  }
  return false;
}

bool InstructionFolder::FoldBinaryBooleanOpToConstant(
    Instruction* inst, const std::function<uint32_t(uint32_t)>& id_map,
    uint32_t* result) const {
  SpvOp opcode = inst->opcode();
  analysis::ConstantManager* const_manger = context_->get_constant_mgr();

  uint32_t ids[2];
  const analysis::BoolConstant* constants[2];
  for (uint32_t i = 0; i < 2; i++) {
    const Operand* operand = &inst->GetInOperand(i);
    if (operand->type != SPV_OPERAND_TYPE_ID) {
      return false;
    }
    ids[i] = id_map(operand->words[0]);
    const analysis::Constant* constant =
        const_manger->FindDeclaredConstant(ids[i]);
    constants[i] = (constant != nullptr ? constant->AsBoolConstant() : nullptr);
  }

  switch (opcode) {
    // Logical
    case SpvOp::SpvOpLogicalOr:
      for (uint32_t i = 0; i < 2; i++) {
        if (constants[i] != nullptr) {
          if (constants[i]->value()) {
            *result = true;
            return true;
          }
        }
      }
      break;
    case SpvOp::SpvOpLogicalAnd:
      for (uint32_t i = 0; i < 2; i++) {
        if (constants[i] != nullptr) {
          if (!constants[i]->value()) {
            *result = false;
            return true;
          }
        }
      }
      break;

    default:
      break;
  }
  return false;
}

bool InstructionFolder::FoldIntegerOpToConstant(
    Instruction* inst, const std::function<uint32_t(uint32_t)>& id_map,
    uint32_t* result) const {
  assert(IsFoldableOpcode(inst->opcode()) &&
         "Unhandled instruction opcode in FoldScalars");
  switch (inst->NumInOperands()) {
    case 2:
      return FoldBinaryIntegerOpToConstant(inst, id_map, result) ||
             FoldBinaryBooleanOpToConstant(inst, id_map, result);
    default:
      return false;
  }
}

std::vector<uint32_t> InstructionFolder::FoldVectors(
    SpvOp opcode, uint32_t num_dims,
    const std::vector<const analysis::Constant*>& operands) const {
  assert(IsFoldableOpcode(opcode) &&
         "Unhandled instruction opcode in FoldVectors");
  std::vector<uint32_t> result;
  for (uint32_t d = 0; d < num_dims; d++) {
    std::vector<uint32_t> operand_values_for_one_dimension;
    for (const auto& operand : operands) {
      if (const analysis::VectorConstant* vector_operand =
              operand->AsVectorConstant()) {
        // Extract the raw value of the scalar component constants
        // in 32-bit words here. The reason of not using FoldScalars() here
        // is that we do not create temporary null constants as components
        // when the vector operand is a NullConstant because Constant creation
        // may need extra checks for the validity and that is not managed in
        // here.
        if (const analysis::ScalarConstant* scalar_component =
                vector_operand->GetComponents().at(d)->AsScalarConstant()) {
          const auto& scalar_words = scalar_component->words();
          assert(
              scalar_words.size() == 1 &&
              "Vector components with longer than 32-bit width are not allowed "
              "in FoldVectors()");
          operand_values_for_one_dimension.push_back(scalar_words.front());
        } else if (operand->AsNullConstant()) {
          operand_values_for_one_dimension.push_back(0u);
        } else {
          assert(false &&
                 "VectorConst should only has ScalarConst or NullConst as "
                 "components");
        }
      } else if (operand->AsNullConstant()) {
        operand_values_for_one_dimension.push_back(0u);
      } else {
        assert(false &&
               "FoldVectors() only accepts VectorConst or NullConst type of "
               "constant");
      }
    }
    result.push_back(OperateWords(opcode, operand_values_for_one_dimension));
  }
  return result;
}

bool InstructionFolder::IsFoldableOpcode(SpvOp opcode) const {
  // NOTE: Extend to more opcodes as new cases are handled in the folder
  // functions.
  switch (opcode) {
    case SpvOp::SpvOpBitwiseAnd:
    case SpvOp::SpvOpBitwiseOr:
    case SpvOp::SpvOpBitwiseXor:
    case SpvOp::SpvOpIAdd:
    case SpvOp::SpvOpIEqual:
    case SpvOp::SpvOpIMul:
    case SpvOp::SpvOpINotEqual:
    case SpvOp::SpvOpISub:
    case SpvOp::SpvOpLogicalAnd:
    case SpvOp::SpvOpLogicalEqual:
    case SpvOp::SpvOpLogicalNot:
    case SpvOp::SpvOpLogicalNotEqual:
    case SpvOp::SpvOpLogicalOr:
    case SpvOp::SpvOpNot:
    case SpvOp::SpvOpSDiv:
    case SpvOp::SpvOpSelect:
    case SpvOp::SpvOpSGreaterThan:
    case SpvOp::SpvOpSGreaterThanEqual:
    case SpvOp::SpvOpShiftLeftLogical:
    case SpvOp::SpvOpShiftRightArithmetic:
    case SpvOp::SpvOpShiftRightLogical:
    case SpvOp::SpvOpSLessThan:
    case SpvOp::SpvOpSLessThanEqual:
    case SpvOp::SpvOpSMod:
    case SpvOp::SpvOpSNegate:
    case SpvOp::SpvOpSRem:
    case SpvOp::SpvOpSConvert:
    case SpvOp::SpvOpUConvert:
    case SpvOp::SpvOpUDiv:
    case SpvOp::SpvOpUGreaterThan:
    case SpvOp::SpvOpUGreaterThanEqual:
    case SpvOp::SpvOpULessThan:
    case SpvOp::SpvOpULessThanEqual:
    case SpvOp::SpvOpUMod:
      return true;
    default:
      return false;
  }
}

bool InstructionFolder::IsFoldableConstant(
    const analysis::Constant* cst) const {
  // Currently supported constants are 32-bit values or null constants.
  if (const analysis::ScalarConstant* scalar = cst->AsScalarConstant())
    return scalar->words().size() == 1;
  else
    return cst->AsNullConstant() != nullptr;
}

Instruction* InstructionFolder::FoldInstructionToConstant(
    Instruction* inst, std::function<uint32_t(uint32_t)> id_map) const {
  analysis::ConstantManager* const_mgr = context_->get_constant_mgr();

  if (!inst->IsFoldableByFoldScalar() && !HasConstFoldingRule(inst)) {
    return nullptr;
  }
  // Collect the values of the constant parameters.
  std::vector<const analysis::Constant*> constants;
  bool missing_constants = false;
  inst->ForEachInId([&constants, &missing_constants, const_mgr,
                     &id_map](uint32_t* op_id) {
    uint32_t id = id_map(*op_id);
    const analysis::Constant* const_op = const_mgr->FindDeclaredConstant(id);
    if (!const_op) {
      constants.push_back(nullptr);
      missing_constants = true;
    } else {
      constants.push_back(const_op);
    }
  });

  const analysis::Constant* folded_const = nullptr;
  for (auto rule : GetConstantFoldingRules().GetRulesForInstruction(inst)) {
    folded_const = rule(context_, inst, constants);
    if (folded_const != nullptr) {
      Instruction* const_inst =
          const_mgr->GetDefiningInstruction(folded_const, inst->type_id());
      if (const_inst == nullptr) {
        return nullptr;
      }
      assert(const_inst->type_id() == inst->type_id());
      // May be a new instruction that needs to be analysed.
      context_->UpdateDefUse(const_inst);
      return const_inst;
    }
  }

  uint32_t result_val = 0;
  bool successful = false;
  // If all parameters are constant, fold the instruction to a constant.
  if (!missing_constants && inst->IsFoldableByFoldScalar()) {
    result_val = FoldScalars(inst->opcode(), constants);
    successful = true;
  }

  if (!successful && inst->IsFoldableByFoldScalar()) {
    successful = FoldIntegerOpToConstant(inst, id_map, &result_val);
  }

  if (successful) {
    const analysis::Constant* result_const =
        const_mgr->GetConstant(const_mgr->GetType(inst), {result_val});
    Instruction* folded_inst =
        const_mgr->GetDefiningInstruction(result_const, inst->type_id());
    return folded_inst;
  }
  return nullptr;
}

bool InstructionFolder::IsFoldableType(Instruction* type_inst) const {
  // Support 32-bit integers.
  if (type_inst->opcode() == SpvOpTypeInt) {
    return type_inst->GetSingleWordInOperand(0) == 32;
  }
  // Support booleans.
  if (type_inst->opcode() == SpvOpTypeBool) {
    return true;
  }
  // Nothing else yet.
  return false;
}

bool InstructionFolder::FoldInstruction(Instruction* inst) const {
  bool modified = false;
  Instruction* folded_inst(inst);
  while (folded_inst->opcode() != SpvOpCopyObject &&
         FoldInstructionInternal(&*folded_inst)) {
    modified = true;
  }
  return modified;
}

}  // namespace opt
}  // namespace spvtools