Welcome to mirror list, hosted at ThFree Co, Russian Federation.

graphics_robust_access_pass.cpp « opt « source - github.com/KhronosGroup/SPIRV-Tools.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 4652d72d5cbb53b877aaa9f28f793eb3dfa2bc58 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
// Copyright (c) 2019 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// This pass injects code in a graphics shader to implement guarantees
// satisfying Vulkan's robustBufferAccess rules.  Robust access rules permit
// an out-of-bounds access to be redirected to an access of the same type
// (load, store, etc.) but within the same root object.
//
// We assume baseline functionality in Vulkan, i.e. the module uses
// logical addressing mode, without VK_KHR_variable_pointers.
//
//    - Logical addressing mode implies:
//      - Each root pointer (a pointer that exists other than by the
//        execution of a shader instruction) is the result of an OpVariable.
//
//      - Instructions that result in pointers are:
//          OpVariable
//          OpAccessChain
//          OpInBoundsAccessChain
//          OpFunctionParameter
//          OpImageTexelPointer
//          OpCopyObject
//
//      - Instructions that use a pointer are:
//          OpLoad
//          OpStore
//          OpAccessChain
//          OpInBoundsAccessChain
//          OpFunctionCall
//          OpImageTexelPointer
//          OpCopyMemory
//          OpCopyObject
//          all OpAtomic* instructions
//
// We classify pointer-users into:
//  - Accesses:
//    - OpLoad
//    - OpStore
//    - OpAtomic*
//    - OpCopyMemory
//
//  - Address calculations:
//    - OpAccessChain
//    - OpInBoundsAccessChain
//
//  - Pass-through:
//    - OpFunctionCall
//    - OpFunctionParameter
//    - OpCopyObject
//
// The strategy is:
//
//  - Handle only logical addressing mode. In particular, don't handle a module
//    if it uses one of the variable-pointers capabilities.
//
//  - Don't handle modules using capability RuntimeDescriptorArrayEXT.  So the
//    only runtime arrays are those that are the last member in a
//    Block-decorated struct.  This allows us to feasibly/easily compute the
//    length of the runtime array. See below.
//
//  - The memory locations accessed by OpLoad, OpStore, OpCopyMemory, and
//    OpAtomic* are determined by their pointer parameter or parameters.
//    Pointers are always (correctly) typed and so the address and number of
//    consecutive locations are fully determined by the pointer.
//
//  - A pointer value originates as one of few cases:
//
//    - OpVariable for an interface object or an array of them: image,
//      buffer (UBO or SSBO), sampler, sampled-image, push-constant, input
//      variable, output variable. The execution environment is responsible for
//      allocating the correct amount of storage for these, and for ensuring
//      each resource bound to such a variable is big enough to contain the
//      SPIR-V pointee type of the variable.
//
//    - OpVariable for a non-interface object.  These are variables in
//      Workgroup, Private, and Function storage classes.  The compiler ensures
//      the underlying allocation is big enough to store the entire SPIR-V
//      pointee type of the variable.
//
//    - An OpFunctionParameter. This always maps to a pointer parameter to an
//      OpFunctionCall.
//
//      - In logical addressing mode, these are severely limited:
//        "Any pointer operand to an OpFunctionCall must be:
//          - a memory object declaration, or
//          - a pointer to an element in an array that is a memory object
//          declaration, where the element type is OpTypeSampler or OpTypeImage"
//
//      - This has an important simplifying consequence:
//
//        - When looking for a pointer to the structure containing a runtime
//          array, you begin with a pointer to the runtime array and trace
//          backward in the function.  You never have to trace back beyond
//          your function call boundary.  So you can't take a partial access
//          chain into an SSBO, then pass that pointer into a function.  So
//          we don't resort to using fat pointers to compute array length.
//          We can trace back to a pointer to the containing structure,
//          and use that in an OpArrayLength instruction. (The structure type
//          gives us the member index of the runtime array.)
//
//        - Otherwise, the pointer type fully encodes the range of valid
//          addresses. In particular, the type of a pointer to an aggregate
//          value fully encodes the range of indices when indexing into
//          that aggregate.
//
//    - The pointer is the result of an access chain instruction.  We clamp
//      indices contributing to address calculations.  As noted above, the
//      valid ranges are either bound by the length of a runtime array, or
//      by the type of the base pointer.  The length of a runtime array is
//      the result of an OpArrayLength instruction acting on the pointer of
//      the containing structure as noted above.
//
//      - Access chain indices are always treated as signed, so:
//        - Clamp the upper bound at the signed integer maximum.
//        - Use SClamp for all clamping.
//
//    - TODO(dneto): OpImageTexelPointer:
//      - Clamp coordinate to the image size returned by OpImageQuerySize
//      - If multi-sampled, clamp the sample index to the count returned by
//        OpImageQuerySamples.
//      - If not multi-sampled, set the sample index to 0.
//
//  - Rely on the external validator to check that pointers are only
//    used by the instructions as above.
//
//  - Handles OpTypeRuntimeArray
//    Track pointer back to original resource (pointer to struct), so we can
//    query the runtime array size.
//

#include "graphics_robust_access_pass.h"

#include <algorithm>
#include <cstring>
#include <functional>
#include <initializer_list>
#include <limits>
#include <utility>

#include "constants.h"
#include "def_use_manager.h"
#include "function.h"
#include "ir_context.h"
#include "module.h"
#include "pass.h"
#include "source/diagnostic.h"
#include "source/util/make_unique.h"
#include "spirv-tools/libspirv.h"
#include "spirv/unified1/GLSL.std.450.h"
#include "spirv/unified1/spirv.h"
#include "type_manager.h"
#include "types.h"

namespace spvtools {
namespace opt {

using opt::Instruction;
using opt::Operand;
using spvtools::MakeUnique;

GraphicsRobustAccessPass::GraphicsRobustAccessPass() : module_status_() {}

Pass::Status GraphicsRobustAccessPass::Process() {
  module_status_ = PerModuleState();

  ProcessCurrentModule();

  auto result = module_status_.failed
                    ? Status::Failure
                    : (module_status_.modified ? Status::SuccessWithChange
                                               : Status::SuccessWithoutChange);

  return result;
}

spvtools::DiagnosticStream GraphicsRobustAccessPass::Fail() {
  module_status_.failed = true;
  // We don't really have a position, and we'll ignore the result.
  return std::move(
      spvtools::DiagnosticStream({}, consumer(), "", SPV_ERROR_INVALID_BINARY)
      << name() << ": ");
}

spv_result_t GraphicsRobustAccessPass::IsCompatibleModule() {
  auto* feature_mgr = context()->get_feature_mgr();
  if (!feature_mgr->HasCapability(SpvCapabilityShader))
    return Fail() << "Can only process Shader modules";
  if (feature_mgr->HasCapability(SpvCapabilityVariablePointers))
    return Fail() << "Can't process modules with VariablePointers capability";
  if (feature_mgr->HasCapability(SpvCapabilityVariablePointersStorageBuffer))
    return Fail() << "Can't process modules with VariablePointersStorageBuffer "
                     "capability";
  if (feature_mgr->HasCapability(SpvCapabilityRuntimeDescriptorArrayEXT)) {
    // These have a RuntimeArray outside of Block-decorated struct.  There
    // is no way to compute the array length from within SPIR-V.
    return Fail() << "Can't process modules with RuntimeDescriptorArrayEXT "
                     "capability";
  }

  {
    auto* inst = context()->module()->GetMemoryModel();
    const auto addressing_model = inst->GetSingleWordOperand(0);
    if (addressing_model != SpvAddressingModelLogical)
      return Fail() << "Addressing model must be Logical.  Found "
                    << inst->PrettyPrint();
  }
  return SPV_SUCCESS;
}

spv_result_t GraphicsRobustAccessPass::ProcessCurrentModule() {
  auto err = IsCompatibleModule();
  if (err != SPV_SUCCESS) return err;

  ProcessFunction fn = [this](opt::Function* f) { return ProcessAFunction(f); };
  module_status_.modified |= context()->ProcessReachableCallTree(fn);

  // Need something here.  It's the price we pay for easier failure paths.
  return SPV_SUCCESS;
}

bool GraphicsRobustAccessPass::ProcessAFunction(opt::Function* function) {
  // Ensure that all pointers computed inside a function are within bounds.
  // Find the access chains in this block before trying to modify them.
  std::vector<Instruction*> access_chains;
  std::vector<Instruction*> image_texel_pointers;
  for (auto& block : *function) {
    for (auto& inst : block) {
      switch (inst.opcode()) {
        case SpvOpAccessChain:
        case SpvOpInBoundsAccessChain:
          access_chains.push_back(&inst);
          break;
        case SpvOpImageTexelPointer:
          image_texel_pointers.push_back(&inst);
          break;
        default:
          break;
      }
    }
  }
  for (auto* inst : access_chains) {
    ClampIndicesForAccessChain(inst);
    if (module_status_.failed) return module_status_.modified;
  }

  for (auto* inst : image_texel_pointers) {
    if (SPV_SUCCESS != ClampCoordinateForImageTexelPointer(inst)) break;
  }
  return module_status_.modified;
}

void GraphicsRobustAccessPass::ClampIndicesForAccessChain(
    Instruction* access_chain) {
  Instruction& inst = *access_chain;

  auto* constant_mgr = context()->get_constant_mgr();
  auto* def_use_mgr = context()->get_def_use_mgr();
  auto* type_mgr = context()->get_type_mgr();
  const bool have_int64_cap =
      context()->get_feature_mgr()->HasCapability(SpvCapabilityInt64);

  // Replaces one of the OpAccessChain index operands with a new value.
  // Updates def-use analysis.
  auto replace_index = [this, &inst, def_use_mgr](uint32_t operand_index,
                                                  Instruction* new_value) {
    inst.SetOperand(operand_index, {new_value->result_id()});
    def_use_mgr->AnalyzeInstUse(&inst);
    module_status_.modified = true;
    return SPV_SUCCESS;
  };

  // Replaces one of the OpAccesssChain index operands with a clamped value.
  // Replace the operand at |operand_index| with the value computed from
  // signed_clamp(%old_value, %min_value, %max_value).  It also analyzes
  // the new instruction and records that them module is modified.
  // Assumes %min_value is signed-less-or-equal than %max_value. (All callees
  // use 0 for %min_value).
  auto clamp_index = [&inst, type_mgr, this, &replace_index](
                         uint32_t operand_index, Instruction* old_value,
                         Instruction* min_value, Instruction* max_value) {
    auto* clamp_inst =
        MakeSClampInst(*type_mgr, old_value, min_value, max_value, &inst);
    return replace_index(operand_index, clamp_inst);
  };

  // Ensures the specified index of access chain |inst| has a value that is
  // at most |count| - 1.  If the index is already a constant value less than
  // |count| then no change is made.
  auto clamp_to_literal_count =
      [&inst, this, &constant_mgr, &type_mgr, have_int64_cap, &replace_index,
       &clamp_index](uint32_t operand_index, uint64_t count) -> spv_result_t {
    Instruction* index_inst =
        this->GetDef(inst.GetSingleWordOperand(operand_index));
    const auto* index_type =
        type_mgr->GetType(index_inst->type_id())->AsInteger();
    assert(index_type);
    const auto index_width = index_type->width();

    if (count <= 1) {
      // Replace the index with 0.
      return replace_index(operand_index, GetValueForType(0, index_type));
    }

    uint64_t maxval = count - 1;

    // Compute the bit width of a viable type to hold |maxval|.
    // Look for a bit width, up to 64 bits wide, to fit maxval.
    uint32_t maxval_width = index_width;
    while ((maxval_width < 64) && (0 != (maxval >> maxval_width))) {
      maxval_width *= 2;
    }
    // Determine the type for |maxval|.
    uint32_t next_id = context()->module()->IdBound();
    analysis::Integer signed_type_for_query(maxval_width, true);
    auto* maxval_type =
        type_mgr->GetRegisteredType(&signed_type_for_query)->AsInteger();
    if (next_id != context()->module()->IdBound()) {
      module_status_.modified = true;
    }
    // Access chain indices are treated as signed, so limit the maximum value
    // of the index so it will always be positive for a signed clamp operation.
    maxval = std::min(maxval, ((uint64_t(1) << (maxval_width - 1)) - 1));

    if (index_width > 64) {
      return this->Fail() << "Can't handle indices wider than 64 bits, found "
                             "constant index with "
                          << index_width << " bits as index number "
                          << operand_index << " of access chain "
                          << inst.PrettyPrint();
    }

    // Split into two cases: the current index is a constant, or not.

    // If the index is a constant then |index_constant| will not be a null
    // pointer.  (If index is an |OpConstantNull| then it |index_constant| will
    // not be a null pointer.)  Since access chain indices must be scalar
    // integers, this can't be a spec constant.
    if (auto* index_constant = constant_mgr->GetConstantFromInst(index_inst)) {
      auto* int_index_constant = index_constant->AsIntConstant();
      int64_t value = 0;
      // OpAccessChain indices are treated as signed.  So get the signed
      // constant value here.
      if (index_width <= 32) {
        value = int64_t(int_index_constant->GetS32BitValue());
      } else if (index_width <= 64) {
        value = int_index_constant->GetS64BitValue();
      }
      if (value < 0) {
        return replace_index(operand_index, GetValueForType(0, index_type));
      } else if (uint64_t(value) <= maxval) {
        // Nothing to do.
        return SPV_SUCCESS;
      } else {
        // Replace with maxval.
        assert(count > 0);  // Already took care of this case above.
        return replace_index(operand_index,
                             GetValueForType(maxval, maxval_type));
      }
    } else {
      // Generate a clamp instruction.
      assert(maxval >= 1);
      assert(index_width <= 64);  // Otherwise, already returned above.
      if (index_width >= 64 && !have_int64_cap) {
        // An inconsistent module.
        return Fail() << "Access chain index is wider than 64 bits, but Int64 "
                         "is not declared: "
                      << index_inst->PrettyPrint();
      }
      // Widen the index value if necessary
      if (maxval_width > index_width) {
        // Find the wider type.  We only need this case if a constant array
        // bound is too big.

        // From how we calculated maxval_width, widening won't require adding
        // the Int64 capability.
        assert(have_int64_cap || maxval_width <= 32);
        if (!have_int64_cap && maxval_width >= 64) {
          // Be defensive, but this shouldn't happen.
          return this->Fail()
                 << "Clamping index would require adding Int64 capability. "
                 << "Can't clamp 32-bit index " << operand_index
                 << " of access chain " << inst.PrettyPrint();
        }
        index_inst = WidenInteger(index_type->IsSigned(), maxval_width,
                                  index_inst, &inst);
      }

      // Finally, clamp the index.
      return clamp_index(operand_index, index_inst,
                         GetValueForType(0, maxval_type),
                         GetValueForType(maxval, maxval_type));
    }
    return SPV_SUCCESS;
  };

  // Ensures the specified index of access chain |inst| has a value that is at
  // most the value of |count_inst| minus 1, where |count_inst| is treated as an
  // unsigned integer. This can log a failure.
  auto clamp_to_count = [&inst, this, &constant_mgr, &clamp_to_literal_count,
                         &clamp_index,
                         &type_mgr](uint32_t operand_index,
                                    Instruction* count_inst) -> spv_result_t {
    Instruction* index_inst =
        this->GetDef(inst.GetSingleWordOperand(operand_index));
    const auto* index_type =
        type_mgr->GetType(index_inst->type_id())->AsInteger();
    const auto* count_type =
        type_mgr->GetType(count_inst->type_id())->AsInteger();
    assert(index_type);
    if (const auto* count_constant =
            constant_mgr->GetConstantFromInst(count_inst)) {
      uint64_t value = 0;
      const auto width = count_constant->type()->AsInteger()->width();
      if (width <= 32) {
        value = count_constant->AsIntConstant()->GetU32BitValue();
      } else if (width <= 64) {
        value = count_constant->AsIntConstant()->GetU64BitValue();
      } else {
        return this->Fail() << "Can't handle indices wider than 64 bits, found "
                               "constant index with "
                            << index_type->width() << "bits";
      }
      return clamp_to_literal_count(operand_index, value);
    } else {
      // Widen them to the same width.
      const auto index_width = index_type->width();
      const auto count_width = count_type->width();
      const auto target_width = std::max(index_width, count_width);
      // UConvert requires the result type to have 0 signedness.  So enforce
      // that here.
      auto* wider_type = index_width < count_width ? count_type : index_type;
      if (index_type->width() < target_width) {
        // Access chain indices are treated as signed integers.
        index_inst = WidenInteger(true, target_width, index_inst, &inst);
      } else if (count_type->width() < target_width) {
        // Assume type sizes are treated as unsigned.
        count_inst = WidenInteger(false, target_width, count_inst, &inst);
      }
      // Compute count - 1.
      // It doesn't matter if 1 is signed or unsigned.
      auto* one = GetValueForType(1, wider_type);
      auto* count_minus_1 = InsertInst(
          &inst, SpvOpISub, type_mgr->GetId(wider_type), TakeNextId(),
          {{SPV_OPERAND_TYPE_ID, {count_inst->result_id()}},
           {SPV_OPERAND_TYPE_ID, {one->result_id()}}});
      auto* zero = GetValueForType(0, wider_type);
      // Make sure we clamp to an upper bound that is at most the signed max
      // for the target type.
      const uint64_t max_signed_value =
          ((uint64_t(1) << (target_width - 1)) - 1);
      // Use unsigned-min to ensure that the result is always non-negative.
      // That ensures we satisfy the invariant for SClamp, where the "min"
      // argument we give it (zero), is no larger than the third argument.
      auto* upper_bound =
          MakeUMinInst(*type_mgr, count_minus_1,
                       GetValueForType(max_signed_value, wider_type), &inst);
      // Now clamp the index to this upper bound.
      return clamp_index(operand_index, index_inst, zero, upper_bound);
    }
    return SPV_SUCCESS;
  };

  const Instruction* base_inst = GetDef(inst.GetSingleWordInOperand(0));
  const Instruction* base_type = GetDef(base_inst->type_id());
  Instruction* pointee_type = GetDef(base_type->GetSingleWordInOperand(1));

  // Walk the indices from earliest to latest, replacing indices with a
  // clamped value, and updating the pointee_type.  The order matters for
  // the case when we have to compute the length of a runtime array.  In
  // that the algorithm relies on the fact that that the earlier indices
  // have already been clamped.
  const uint32_t num_operands = inst.NumOperands();
  for (uint32_t idx = 3; !module_status_.failed && idx < num_operands; ++idx) {
    const uint32_t index_id = inst.GetSingleWordOperand(idx);
    Instruction* index_inst = GetDef(index_id);

    switch (pointee_type->opcode()) {
      case SpvOpTypeMatrix:  // Use column count
      case SpvOpTypeVector:  // Use component count
      {
        const uint32_t count = pointee_type->GetSingleWordOperand(2);
        clamp_to_literal_count(idx, count);
        pointee_type = GetDef(pointee_type->GetSingleWordOperand(1));
      } break;

      case SpvOpTypeArray: {
        // The array length can be a spec constant, so go through the general
        // case.
        Instruction* array_len = GetDef(pointee_type->GetSingleWordOperand(2));
        clamp_to_count(idx, array_len);
        pointee_type = GetDef(pointee_type->GetSingleWordOperand(1));
      } break;

      case SpvOpTypeStruct: {
        // SPIR-V requires the index to be an OpConstant.
        // We need to know the index literal value so we can compute the next
        // pointee type.
        if (index_inst->opcode() != SpvOpConstant ||
            !constant_mgr->GetConstantFromInst(index_inst)
                 ->type()
                 ->AsInteger()) {
          Fail() << "Member index into struct is not a constant integer: "
                 << index_inst->PrettyPrint(
                        SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES)
                 << "\nin access chain: "
                 << inst.PrettyPrint(SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES);
          return;
        }
        const auto num_members = pointee_type->NumInOperands();
        const auto* index_constant =
            constant_mgr->GetConstantFromInst(index_inst);
        // Get the sign-extended value, since access index is always treated as
        // signed.
        const auto index_value = index_constant->GetSignExtendedValue();
        if (index_value < 0 || index_value >= num_members) {
          Fail() << "Member index " << index_value
                 << " is out of bounds for struct type: "
                 << pointee_type->PrettyPrint(
                        SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES)
                 << "\nin access chain: "
                 << inst.PrettyPrint(SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES);
          return;
        }
        pointee_type = GetDef(pointee_type->GetSingleWordInOperand(
            static_cast<uint32_t>(index_value)));
        // No need to clamp this index.  We just checked that it's valid.
      } break;

      case SpvOpTypeRuntimeArray: {
        auto* array_len = MakeRuntimeArrayLengthInst(&inst, idx);
        if (!array_len) {  // We've already signaled an error.
          return;
        }
        clamp_to_count(idx, array_len);
        if (module_status_.failed) return;
        pointee_type = GetDef(pointee_type->GetSingleWordOperand(1));
      } break;

      default:
        Fail() << " Unhandled pointee type for access chain "
               << pointee_type->PrettyPrint(
                      SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES);
    }
  }
}

uint32_t GraphicsRobustAccessPass::GetGlslInsts() {
  if (module_status_.glsl_insts_id == 0) {
    // This string serves double-duty as raw data for a string and for a vector
    // of 32-bit words
    const char glsl[] = "GLSL.std.450";
    // Use an existing import if we can.
    for (auto& inst : context()->module()->ext_inst_imports()) {
      if (inst.GetInOperand(0).AsString() == glsl) {
        module_status_.glsl_insts_id = inst.result_id();
      }
    }
    if (module_status_.glsl_insts_id == 0) {
      // Make a new import instruction.
      module_status_.glsl_insts_id = TakeNextId();
      std::vector<uint32_t> words = spvtools::utils::MakeVector(glsl);
      auto import_inst = MakeUnique<Instruction>(
          context(), SpvOpExtInstImport, 0, module_status_.glsl_insts_id,
          std::initializer_list<Operand>{
              Operand{SPV_OPERAND_TYPE_LITERAL_STRING, std::move(words)}});
      Instruction* inst = import_inst.get();
      context()->module()->AddExtInstImport(std::move(import_inst));
      module_status_.modified = true;
      context()->AnalyzeDefUse(inst);
      // Reanalyze the feature list, since we added an extended instruction
      // set improt.
      context()->get_feature_mgr()->Analyze(context()->module());
    }
  }
  return module_status_.glsl_insts_id;
}

opt::Instruction* opt::GraphicsRobustAccessPass::GetValueForType(
    uint64_t value, const analysis::Integer* type) {
  auto* mgr = context()->get_constant_mgr();
  assert(type->width() <= 64);
  std::vector<uint32_t> words;
  words.push_back(uint32_t(value));
  if (type->width() > 32) {
    words.push_back(uint32_t(value >> 32u));
  }
  const auto* constant = mgr->GetConstant(type, words);
  return mgr->GetDefiningInstruction(
      constant, context()->get_type_mgr()->GetTypeInstruction(type));
}

opt::Instruction* opt::GraphicsRobustAccessPass::WidenInteger(
    bool sign_extend, uint32_t bit_width, Instruction* value,
    Instruction* before_inst) {
  analysis::Integer unsigned_type_for_query(bit_width, false);
  auto* type_mgr = context()->get_type_mgr();
  auto* unsigned_type = type_mgr->GetRegisteredType(&unsigned_type_for_query);
  auto type_id = context()->get_type_mgr()->GetId(unsigned_type);
  auto conversion_id = TakeNextId();
  auto* conversion = InsertInst(
      before_inst, (sign_extend ? SpvOpSConvert : SpvOpUConvert), type_id,
      conversion_id, {{SPV_OPERAND_TYPE_ID, {value->result_id()}}});
  return conversion;
}

Instruction* GraphicsRobustAccessPass::MakeUMinInst(
    const analysis::TypeManager& tm, Instruction* x, Instruction* y,
    Instruction* where) {
  // Get IDs of instructions we'll be referencing. Evaluate them before calling
  // the function so we force a deterministic ordering in case both of them need
  // to take a new ID.
  const uint32_t glsl_insts_id = GetGlslInsts();
  uint32_t smin_id = TakeNextId();
  const auto xwidth = tm.GetType(x->type_id())->AsInteger()->width();
  const auto ywidth = tm.GetType(y->type_id())->AsInteger()->width();
  assert(xwidth == ywidth);
  (void)xwidth;
  (void)ywidth;
  auto* smin_inst = InsertInst(
      where, SpvOpExtInst, x->type_id(), smin_id,
      {
          {SPV_OPERAND_TYPE_ID, {glsl_insts_id}},
          {SPV_OPERAND_TYPE_EXTENSION_INSTRUCTION_NUMBER, {GLSLstd450UMin}},
          {SPV_OPERAND_TYPE_ID, {x->result_id()}},
          {SPV_OPERAND_TYPE_ID, {y->result_id()}},
      });
  return smin_inst;
}

Instruction* GraphicsRobustAccessPass::MakeSClampInst(
    const analysis::TypeManager& tm, Instruction* x, Instruction* min,
    Instruction* max, Instruction* where) {
  // Get IDs of instructions we'll be referencing. Evaluate them before calling
  // the function so we force a deterministic ordering in case both of them need
  // to take a new ID.
  const uint32_t glsl_insts_id = GetGlslInsts();
  uint32_t clamp_id = TakeNextId();
  const auto xwidth = tm.GetType(x->type_id())->AsInteger()->width();
  const auto minwidth = tm.GetType(min->type_id())->AsInteger()->width();
  const auto maxwidth = tm.GetType(max->type_id())->AsInteger()->width();
  assert(xwidth == minwidth);
  assert(xwidth == maxwidth);
  (void)xwidth;
  (void)minwidth;
  (void)maxwidth;
  auto* clamp_inst = InsertInst(
      where, SpvOpExtInst, x->type_id(), clamp_id,
      {
          {SPV_OPERAND_TYPE_ID, {glsl_insts_id}},
          {SPV_OPERAND_TYPE_EXTENSION_INSTRUCTION_NUMBER, {GLSLstd450SClamp}},
          {SPV_OPERAND_TYPE_ID, {x->result_id()}},
          {SPV_OPERAND_TYPE_ID, {min->result_id()}},
          {SPV_OPERAND_TYPE_ID, {max->result_id()}},
      });
  return clamp_inst;
}

Instruction* GraphicsRobustAccessPass::MakeRuntimeArrayLengthInst(
    Instruction* access_chain, uint32_t operand_index) {
  // The Index parameter to the access chain at |operand_index| is indexing
  // *into* the runtime-array.  To get the number of elements in the runtime
  // array we need a pointer to the Block-decorated struct that contains the
  // runtime array. So conceptually we have to go 2 steps backward in the
  // access chain.  The two steps backward might forces us to traverse backward
  // across multiple dominating instructions.
  auto* type_mgr = context()->get_type_mgr();

  // How many access chain indices do we have to unwind to find the pointer
  // to the struct containing the runtime array?
  uint32_t steps_remaining = 2;
  // Find or create an instruction computing the pointer to the structure
  // containing the runtime array.
  // Walk backward through pointer address calculations until we either get
  // to exactly the right base pointer, or to an access chain instruction
  // that we can replicate but truncate to compute the address of the right
  // struct.
  Instruction* current_access_chain = access_chain;
  Instruction* pointer_to_containing_struct = nullptr;
  while (steps_remaining > 0) {
    switch (current_access_chain->opcode()) {
      case SpvOpCopyObject:
        // Whoops. Walk right through this one.
        current_access_chain =
            GetDef(current_access_chain->GetSingleWordInOperand(0));
        break;
      case SpvOpAccessChain:
      case SpvOpInBoundsAccessChain: {
        const int first_index_operand = 3;
        // How many indices in this access chain contribute to getting us
        // to an element in the runtime array?
        const auto num_contributing_indices =
            current_access_chain == access_chain
                ? operand_index - (first_index_operand - 1)
                : current_access_chain->NumInOperands() - 1 /* skip the base */;
        Instruction* base =
            GetDef(current_access_chain->GetSingleWordInOperand(0));
        if (num_contributing_indices == steps_remaining) {
          // The base pointer points to the structure.
          pointer_to_containing_struct = base;
          steps_remaining = 0;
          break;
        } else if (num_contributing_indices < steps_remaining) {
          // Peel off the index and keep going backward.
          steps_remaining -= num_contributing_indices;
          current_access_chain = base;
        } else {
          // This access chain has more indices than needed.  Generate a new
          // access chain instruction, but truncating the list of indices.
          const int base_operand = 2;
          // We'll use the base pointer and the indices up to but not including
          // the one indexing into the runtime array.
          Instruction::OperandList ops;
          // Use the base pointer
          ops.push_back(current_access_chain->GetOperand(base_operand));
          const uint32_t num_indices_to_keep =
              num_contributing_indices - steps_remaining - 1;
          for (uint32_t i = 0; i <= num_indices_to_keep; i++) {
            ops.push_back(
                current_access_chain->GetOperand(first_index_operand + i));
          }
          // Compute the type of the result of the new access chain.  Start at
          // the base and walk the indices in a forward direction.
          auto* constant_mgr = context()->get_constant_mgr();
          std::vector<uint32_t> indices_for_type;
          for (uint32_t i = 0; i < ops.size() - 1; i++) {
            uint32_t index_for_type_calculation = 0;
            Instruction* index =
                GetDef(current_access_chain->GetSingleWordOperand(
                    first_index_operand + i));
            if (auto* index_constant =
                    constant_mgr->GetConstantFromInst(index)) {
              // We only need 32 bits. For the type calculation, it's sufficient
              // to take the zero-extended value. It only matters for the struct
              // case, and struct member indices are unsigned.
              index_for_type_calculation =
                  uint32_t(index_constant->GetZeroExtendedValue());
            } else {
              // Indexing into a variably-sized thing like an array.  Use 0.
              index_for_type_calculation = 0;
            }
            indices_for_type.push_back(index_for_type_calculation);
          }
          auto* base_ptr_type = type_mgr->GetType(base->type_id())->AsPointer();
          auto* base_pointee_type = base_ptr_type->pointee_type();
          auto* new_access_chain_result_pointee_type =
              type_mgr->GetMemberType(base_pointee_type, indices_for_type);
          const uint32_t new_access_chain_type_id = type_mgr->FindPointerToType(
              type_mgr->GetId(new_access_chain_result_pointee_type),
              base_ptr_type->storage_class());

          // Create the instruction and insert it.
          const auto new_access_chain_id = TakeNextId();
          auto* new_access_chain =
              InsertInst(current_access_chain, current_access_chain->opcode(),
                         new_access_chain_type_id, new_access_chain_id, ops);
          pointer_to_containing_struct = new_access_chain;
          steps_remaining = 0;
          break;
        }
      } break;
      default:
        Fail() << "Unhandled access chain in logical addressing mode passes "
                  "through "
               << current_access_chain->PrettyPrint(
                      SPV_BINARY_TO_TEXT_OPTION_SHOW_BYTE_OFFSET |
                      SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES);
        return nullptr;
    }
  }
  assert(pointer_to_containing_struct);
  auto* pointee_type =
      type_mgr->GetType(pointer_to_containing_struct->type_id())
          ->AsPointer()
          ->pointee_type();

  auto* struct_type = pointee_type->AsStruct();
  const uint32_t member_index_of_runtime_array =
      uint32_t(struct_type->element_types().size() - 1);
  // Create the length-of-array instruction before the original access chain,
  // but after the generation of the pointer to the struct.
  const auto array_len_id = TakeNextId();
  analysis::Integer uint_type_for_query(32, false);
  auto* uint_type = type_mgr->GetRegisteredType(&uint_type_for_query);
  auto* array_len = InsertInst(
      access_chain, SpvOpArrayLength, type_mgr->GetId(uint_type), array_len_id,
      {{SPV_OPERAND_TYPE_ID, {pointer_to_containing_struct->result_id()}},
       {SPV_OPERAND_TYPE_LITERAL_INTEGER, {member_index_of_runtime_array}}});
  return array_len;
}

spv_result_t GraphicsRobustAccessPass::ClampCoordinateForImageTexelPointer(
    opt::Instruction* image_texel_pointer) {
  // TODO(dneto): Write tests for this code.
  // TODO(dneto): Use signed-clamp
  (void)(image_texel_pointer);
  return SPV_SUCCESS;

  // Do not compile this code until it is ready to be used.
#if 0
  // Example:
  //   %texel_ptr = OpImageTexelPointer %texel_ptr_type %image_ptr %coord
  //   %sample
  //
  // We want to clamp %coord components between vector-0 and the result
  // of OpImageQuerySize acting on the underlying image.  So insert:
  //     %image = OpLoad %image_type %image_ptr
  //     %query_size = OpImageQuerySize %query_size_type %image
  //
  // For a multi-sampled image, %sample is the sample index, and we need
  // to clamp it between zero and the number of samples in the image.
  //     %sample_count = OpImageQuerySamples %uint %image
  //     %max_sample_index = OpISub %uint %sample_count %uint_1
  // For non-multi-sampled images, the sample index must be constant zero.

  auto* def_use_mgr = context()->get_def_use_mgr();
  auto* type_mgr = context()->get_type_mgr();
  auto* constant_mgr = context()->get_constant_mgr();

  auto* image_ptr = GetDef(image_texel_pointer->GetSingleWordInOperand(0));
  auto* image_ptr_type = GetDef(image_ptr->type_id());
  auto image_type_id = image_ptr_type->GetSingleWordInOperand(1);
  auto* image_type = GetDef(image_type_id);
  auto* coord = GetDef(image_texel_pointer->GetSingleWordInOperand(1));
  auto* samples = GetDef(image_texel_pointer->GetSingleWordInOperand(2));

  // We will modify the module, at least by adding image query instructions.
  module_status_.modified = true;

  // Declare the ImageQuery capability if the module doesn't already have it.
  auto* feature_mgr = context()->get_feature_mgr();
  if (!feature_mgr->HasCapability(SpvCapabilityImageQuery)) {
    auto cap = MakeUnique<Instruction>(
        context(), SpvOpCapability, 0, 0,
        std::initializer_list<Operand>{
            {SPV_OPERAND_TYPE_CAPABILITY, {SpvCapabilityImageQuery}}});
    def_use_mgr->AnalyzeInstDefUse(cap.get());
    context()->AddCapability(std::move(cap));
    feature_mgr->Analyze(context()->module());
  }

  // OpImageTexelPointer is used to translate a coordinate and sample index
  // into an address for use with an atomic operation.  That is, it may only
  // used with what Vulkan calls a "storage image"
  // (OpTypeImage parameter Sampled=2).
  // Note: A storage image never has a level-of-detail associated with it.

  // Constraints on the sample id:
  //  - Only 2D images can be multi-sampled: OpTypeImage parameter MS=1
  //    only if Dim=2D.
  //  - Non-multi-sampled images (OpTypeImage parameter MS=0) must use
  //    sample ID to a constant 0.

  // The coordinate is treated as unsigned, and should be clamped against the
  // image "size", returned by OpImageQuerySize. (Note: OpImageQuerySizeLod
  // is only usable with a sampled image, i.e. its image type has Sampled=1).

  // Determine the result type for the OpImageQuerySize.
  // For non-arrayed images:
  //   non-Cube:
  //     - Always the same as the coordinate type
  //   Cube:
  //     - Use all but the last component of the coordinate (which is the face
  //       index from 0 to 5).
  // For arrayed images (in Vulkan the Dim is 1D, 2D, or Cube):
  //   non-Cube:
  //     - A vector with the components in the coordinate, and one more for
  //       the layer index.
  //   Cube:
  //     - The same as the coordinate type: 3-element integer vector.
  //     - The third component from the size query is the layer count.
  //     - The third component in the texel pointer calculation is
  //       6 * layer + face, where 0 <= face < 6.
  //   Cube: Use all but the last component of the coordinate (which is the face
  //   index from 0 to 5).
  const auto dim = SpvDim(image_type->GetSingleWordInOperand(1));
  const bool arrayed = image_type->GetSingleWordInOperand(3) == 1;
  const bool multisampled = image_type->GetSingleWordInOperand(4) != 0;
  const auto query_num_components = [dim, arrayed, this]() -> int {
    const int arrayness_bonus = arrayed ? 1 : 0;
    int num_coords = 0;
    switch (dim) {
      case SpvDimBuffer:
      case SpvDim1D:
        num_coords = 1;
        break;
      case SpvDimCube:
        // For cube, we need bounds for x, y, but not face.
      case SpvDimRect:
      case SpvDim2D:
        num_coords = 2;
        break;
      case SpvDim3D:
        num_coords = 3;
        break;
      case SpvDimSubpassData:
      case SpvDimMax:
        return Fail() << "Invalid image dimension for OpImageTexelPointer: "
                      << int(dim);
        break;
    }
    return num_coords + arrayness_bonus;
  }();
  const auto* coord_component_type = [type_mgr, coord]() {
    const analysis::Type* coord_type = type_mgr->GetType(coord->type_id());
    if (auto* vector_type = coord_type->AsVector()) {
      return vector_type->element_type()->AsInteger();
    }
    return coord_type->AsInteger();
  }();
  // For now, only handle 32-bit case for coordinates.
  if (!coord_component_type) {
    return Fail() << " Coordinates for OpImageTexelPointer are not integral: "
                  << image_texel_pointer->PrettyPrint(
                         SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES);
  }
  if (coord_component_type->width() != 32) {
    return Fail() << " Expected OpImageTexelPointer coordinate components to "
                     "be 32-bits wide. They are "
                  << coord_component_type->width() << " bits. "
                  << image_texel_pointer->PrettyPrint(
                         SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES);
  }
  const auto* query_size_type =
      [type_mgr, coord_component_type,
       query_num_components]() -> const analysis::Type* {
    if (query_num_components == 1) return coord_component_type;
    analysis::Vector proposed(coord_component_type, query_num_components);
    return type_mgr->GetRegisteredType(&proposed);
  }();

  const uint32_t image_id = TakeNextId();
  auto* image =
      InsertInst(image_texel_pointer, SpvOpLoad, image_type_id, image_id,
                 {{SPV_OPERAND_TYPE_ID, {image_ptr->result_id()}}});

  const uint32_t query_size_id = TakeNextId();
  auto* query_size =
      InsertInst(image_texel_pointer, SpvOpImageQuerySize,
                 type_mgr->GetTypeInstruction(query_size_type), query_size_id,
                 {{SPV_OPERAND_TYPE_ID, {image->result_id()}}});

  auto* component_1 = constant_mgr->GetConstant(coord_component_type, {1});
  const uint32_t component_1_id =
      constant_mgr->GetDefiningInstruction(component_1)->result_id();
  auto* component_0 = constant_mgr->GetConstant(coord_component_type, {0});
  const uint32_t component_0_id =
      constant_mgr->GetDefiningInstruction(component_0)->result_id();

  // If the image is a cube array, then the last component of the queried
  // size is the layer count.  In the query, we have to accommodate folding
  // in the face index ranging from 0 through 5. The inclusive upper bound
  // on the third coordinate therefore is multiplied by 6.
  auto* query_size_including_faces = query_size;
  if (arrayed && (dim == SpvDimCube)) {
    // Multiply the last coordinate by 6.
    auto* component_6 = constant_mgr->GetConstant(coord_component_type, {6});
    const uint32_t component_6_id =
        constant_mgr->GetDefiningInstruction(component_6)->result_id();
    assert(query_num_components == 3);
    auto* multiplicand = constant_mgr->GetConstant(
        query_size_type, {component_1_id, component_1_id, component_6_id});
    auto* multiplicand_inst =
        constant_mgr->GetDefiningInstruction(multiplicand);
    const auto query_size_including_faces_id = TakeNextId();
    query_size_including_faces = InsertInst(
        image_texel_pointer, SpvOpIMul,
        type_mgr->GetTypeInstruction(query_size_type),
        query_size_including_faces_id,
        {{SPV_OPERAND_TYPE_ID, {query_size_including_faces->result_id()}},
         {SPV_OPERAND_TYPE_ID, {multiplicand_inst->result_id()}}});
  }

  // Make a coordinate-type with all 1 components.
  auto* coordinate_1 =
      query_num_components == 1
          ? component_1
          : constant_mgr->GetConstant(
                query_size_type,
                std::vector<uint32_t>(query_num_components, component_1_id));
  // Make a coordinate-type with all 1 components.
  auto* coordinate_0 =
      query_num_components == 0
          ? component_0
          : constant_mgr->GetConstant(
                query_size_type,
                std::vector<uint32_t>(query_num_components, component_0_id));

  const uint32_t query_max_including_faces_id = TakeNextId();
  auto* query_max_including_faces = InsertInst(
      image_texel_pointer, SpvOpISub,
      type_mgr->GetTypeInstruction(query_size_type),
      query_max_including_faces_id,
      {{SPV_OPERAND_TYPE_ID, {query_size_including_faces->result_id()}},
       {SPV_OPERAND_TYPE_ID,
        {constant_mgr->GetDefiningInstruction(coordinate_1)->result_id()}}});

  // Clamp the coordinate
  auto* clamp_coord = MakeSClampInst(
      *type_mgr, coord, constant_mgr->GetDefiningInstruction(coordinate_0),
      query_max_including_faces, image_texel_pointer);
  image_texel_pointer->SetInOperand(1, {clamp_coord->result_id()});

  // Clamp the sample index
  if (multisampled) {
    // Get the sample count via OpImageQuerySamples
    const auto query_samples_id = TakeNextId();
    auto* query_samples = InsertInst(
        image_texel_pointer, SpvOpImageQuerySamples,
        constant_mgr->GetDefiningInstruction(component_0)->type_id(),
        query_samples_id, {{SPV_OPERAND_TYPE_ID, {image->result_id()}}});

    const auto max_samples_id = TakeNextId();
    auto* max_samples = InsertInst(image_texel_pointer, SpvOpImageQuerySamples,
                                   query_samples->type_id(), max_samples_id,
                                   {{SPV_OPERAND_TYPE_ID, {query_samples_id}},
                                    {SPV_OPERAND_TYPE_ID, {component_1_id}}});

    auto* clamp_samples = MakeSClampInst(
        *type_mgr, samples, constant_mgr->GetDefiningInstruction(coordinate_0),
        max_samples, image_texel_pointer);
    image_texel_pointer->SetInOperand(2, {clamp_samples->result_id()});

  } else {
    // Just replace it with 0.  Don't even check what was there before.
    image_texel_pointer->SetInOperand(2, {component_0_id});
  }

  def_use_mgr->AnalyzeInstUse(image_texel_pointer);

  return SPV_SUCCESS;
#endif
}

opt::Instruction* GraphicsRobustAccessPass::InsertInst(
    opt::Instruction* where_inst, SpvOp opcode, uint32_t type_id,
    uint32_t result_id, const Instruction::OperandList& operands) {
  module_status_.modified = true;
  auto* result = where_inst->InsertBefore(
      MakeUnique<Instruction>(context(), opcode, type_id, result_id, operands));
  context()->get_def_use_mgr()->AnalyzeInstDefUse(result);
  auto* basic_block = context()->get_instr_block(where_inst);
  context()->set_instr_block(result, basic_block);
  return result;
}

}  // namespace opt
}  // namespace spvtools