Welcome to mirror list, hosted at ThFree Co, Russian Federation.

function.cpp « val « source - github.com/KhronosGroup/SPIRV-Tools.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: fc7ccd062c0eb750d09f5b47be331219364d3a99 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
// Copyright (c) 2015-2016 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "source/val/function.h"

#include <algorithm>
#include <cassert>
#include <sstream>
#include <unordered_map>
#include <unordered_set>
#include <utility>

#include "source/cfa.h"
#include "source/val/basic_block.h"
#include "source/val/construct.h"
#include "source/val/validate.h"

namespace spvtools {
namespace val {

// Universal Limit of ResultID + 1
static const uint32_t kInvalidId = 0x400000;

Function::Function(uint32_t function_id, uint32_t result_type_id,
                   SpvFunctionControlMask function_control,
                   uint32_t function_type_id)
    : id_(function_id),
      function_type_id_(function_type_id),
      result_type_id_(result_type_id),
      function_control_(function_control),
      declaration_type_(FunctionDecl::kFunctionDeclUnknown),
      end_has_been_registered_(false),
      blocks_(),
      current_block_(nullptr),
      pseudo_entry_block_(0),
      pseudo_exit_block_(kInvalidId),
      cfg_constructs_(),
      variable_ids_(),
      parameter_ids_() {}

bool Function::IsFirstBlock(uint32_t block_id) const {
  return !ordered_blocks_.empty() && *first_block() == block_id;
}

spv_result_t Function::RegisterFunctionParameter(uint32_t parameter_id,
                                                 uint32_t type_id) {
  assert(current_block_ == nullptr &&
         "RegisterFunctionParameter can only be called when parsing the binary "
         "outside of a block");
  // TODO(umar): Validate function parameter type order and count
  // TODO(umar): Use these variables to validate parameter type
  (void)parameter_id;
  (void)type_id;
  return SPV_SUCCESS;
}

spv_result_t Function::RegisterLoopMerge(uint32_t merge_id,
                                         uint32_t continue_id) {
  RegisterBlock(merge_id, false);
  RegisterBlock(continue_id, false);
  BasicBlock& merge_block = blocks_.at(merge_id);
  BasicBlock& continue_target_block = blocks_.at(continue_id);
  assert(current_block_ &&
         "RegisterLoopMerge must be called when called within a block");
  current_block_->RegisterStructuralSuccessor(&merge_block);
  current_block_->RegisterStructuralSuccessor(&continue_target_block);

  current_block_->set_type(kBlockTypeLoop);
  merge_block.set_type(kBlockTypeMerge);
  continue_target_block.set_type(kBlockTypeContinue);
  Construct& loop_construct =
      AddConstruct({ConstructType::kLoop, current_block_, &merge_block});
  Construct& continue_construct =
      AddConstruct({ConstructType::kContinue, &continue_target_block});

  continue_construct.set_corresponding_constructs({&loop_construct});
  loop_construct.set_corresponding_constructs({&continue_construct});
  merge_block_header_[&merge_block] = current_block_;
  if (continue_target_headers_.find(&continue_target_block) ==
      continue_target_headers_.end()) {
    continue_target_headers_[&continue_target_block] = {current_block_};
  } else {
    continue_target_headers_[&continue_target_block].push_back(current_block_);
  }

  return SPV_SUCCESS;
}

spv_result_t Function::RegisterSelectionMerge(uint32_t merge_id) {
  RegisterBlock(merge_id, false);
  BasicBlock& merge_block = blocks_.at(merge_id);
  current_block_->set_type(kBlockTypeSelection);
  merge_block.set_type(kBlockTypeMerge);
  merge_block_header_[&merge_block] = current_block_;
  current_block_->RegisterStructuralSuccessor(&merge_block);

  AddConstruct({ConstructType::kSelection, current_block(), &merge_block});

  return SPV_SUCCESS;
}

spv_result_t Function::RegisterSetFunctionDeclType(FunctionDecl type) {
  assert(declaration_type_ == FunctionDecl::kFunctionDeclUnknown);
  declaration_type_ = type;
  return SPV_SUCCESS;
}

spv_result_t Function::RegisterBlock(uint32_t block_id, bool is_definition) {
  assert(
      declaration_type_ == FunctionDecl::kFunctionDeclDefinition &&
      "RegisterBlocks can only be called after declaration_type_ is defined");

  std::unordered_map<uint32_t, BasicBlock>::iterator inserted_block;
  bool success = false;
  tie(inserted_block, success) =
      blocks_.insert({block_id, BasicBlock(block_id)});
  if (is_definition) {  // new block definition
    assert(current_block_ == nullptr &&
           "Register Block can only be called when parsing a binary outside of "
           "a BasicBlock");

    undefined_blocks_.erase(block_id);
    current_block_ = &inserted_block->second;
    ordered_blocks_.push_back(current_block_);
  } else if (success) {  // Block doesn't exist but this is not a definition
    undefined_blocks_.insert(block_id);
  }

  return SPV_SUCCESS;
}

void Function::RegisterBlockEnd(std::vector<uint32_t> next_list) {
  assert(
      current_block_ &&
      "RegisterBlockEnd can only be called when parsing a binary in a block");
  std::vector<BasicBlock*> next_blocks;
  next_blocks.reserve(next_list.size());

  std::unordered_map<uint32_t, BasicBlock>::iterator inserted_block;
  bool success;
  for (uint32_t successor_id : next_list) {
    tie(inserted_block, success) =
        blocks_.insert({successor_id, BasicBlock(successor_id)});
    if (success) {
      undefined_blocks_.insert(successor_id);
    }
    next_blocks.push_back(&inserted_block->second);
  }

  if (current_block_->is_type(kBlockTypeLoop)) {
    // For each loop header, record the set of its successors, and include
    // its continue target if the continue target is not the loop header
    // itself.
    std::vector<BasicBlock*>& next_blocks_plus_continue_target =
        loop_header_successors_plus_continue_target_map_[current_block_];
    next_blocks_plus_continue_target = next_blocks;
    auto continue_target =
        FindConstructForEntryBlock(current_block_, ConstructType::kLoop)
            .corresponding_constructs()
            .back()
            ->entry_block();
    if (continue_target != current_block_) {
      next_blocks_plus_continue_target.push_back(continue_target);
    }
  }

  current_block_->RegisterSuccessors(next_blocks);
  current_block_ = nullptr;
  return;
}

void Function::RegisterFunctionEnd() {
  if (!end_has_been_registered_) {
    end_has_been_registered_ = true;

    ComputeAugmentedCFG();
  }
}

size_t Function::block_count() const { return blocks_.size(); }

size_t Function::undefined_block_count() const {
  return undefined_blocks_.size();
}

const std::vector<BasicBlock*>& Function::ordered_blocks() const {
  return ordered_blocks_;
}
std::vector<BasicBlock*>& Function::ordered_blocks() { return ordered_blocks_; }

const BasicBlock* Function::current_block() const { return current_block_; }
BasicBlock* Function::current_block() { return current_block_; }

const std::list<Construct>& Function::constructs() const {
  return cfg_constructs_;
}
std::list<Construct>& Function::constructs() { return cfg_constructs_; }

const BasicBlock* Function::first_block() const {
  if (ordered_blocks_.empty()) return nullptr;
  return ordered_blocks_[0];
}
BasicBlock* Function::first_block() {
  if (ordered_blocks_.empty()) return nullptr;
  return ordered_blocks_[0];
}

bool Function::IsBlockType(uint32_t merge_block_id, BlockType type) const {
  bool ret = false;
  const BasicBlock* block;
  std::tie(block, std::ignore) = GetBlock(merge_block_id);
  if (block) {
    ret = block->is_type(type);
  }
  return ret;
}

std::pair<const BasicBlock*, bool> Function::GetBlock(uint32_t block_id) const {
  const auto b = blocks_.find(block_id);
  if (b != end(blocks_)) {
    const BasicBlock* block = &(b->second);
    bool defined =
        undefined_blocks_.find(block->id()) == std::end(undefined_blocks_);
    return std::make_pair(block, defined);
  } else {
    return std::make_pair(nullptr, false);
  }
}

std::pair<BasicBlock*, bool> Function::GetBlock(uint32_t block_id) {
  const BasicBlock* out;
  bool defined;
  std::tie(out, defined) =
      const_cast<const Function*>(this)->GetBlock(block_id);
  return std::make_pair(const_cast<BasicBlock*>(out), defined);
}

Function::GetBlocksFunction Function::AugmentedCFGSuccessorsFunction() const {
  return [this](const BasicBlock* block) {
    auto where = augmented_successors_map_.find(block);
    return where == augmented_successors_map_.end() ? block->successors()
                                                    : &(*where).second;
  };
}

Function::GetBlocksFunction Function::AugmentedCFGPredecessorsFunction() const {
  return [this](const BasicBlock* block) {
    auto where = augmented_predecessors_map_.find(block);
    return where == augmented_predecessors_map_.end() ? block->predecessors()
                                                      : &(*where).second;
  };
}

Function::GetBlocksFunction Function::AugmentedStructuralCFGSuccessorsFunction()
    const {
  return [this](const BasicBlock* block) {
    auto where = augmented_successors_map_.find(block);
    return where == augmented_successors_map_.end()
               ? block->structural_successors()
               : &(*where).second;
  };
}

Function::GetBlocksFunction
Function::AugmentedStructuralCFGPredecessorsFunction() const {
  return [this](const BasicBlock* block) {
    auto where = augmented_predecessors_map_.find(block);
    return where == augmented_predecessors_map_.end()
               ? block->structural_predecessors()
               : &(*where).second;
  };
}

void Function::ComputeAugmentedCFG() {
  // Compute the successors of the pseudo-entry block, and
  // the predecessors of the pseudo exit block.
  auto succ_func = [](const BasicBlock* b) {
    return b->structural_successors();
  };
  auto pred_func = [](const BasicBlock* b) {
    return b->structural_predecessors();
  };
  CFA<BasicBlock>::ComputeAugmentedCFG(
      ordered_blocks_, &pseudo_entry_block_, &pseudo_exit_block_,
      &augmented_successors_map_, &augmented_predecessors_map_, succ_func,
      pred_func);
}

Construct& Function::AddConstruct(const Construct& new_construct) {
  cfg_constructs_.push_back(new_construct);
  auto& result = cfg_constructs_.back();
  entry_block_to_construct_[std::make_pair(new_construct.entry_block(),
                                           new_construct.type())] = &result;
  return result;
}

Construct& Function::FindConstructForEntryBlock(const BasicBlock* entry_block,
                                                ConstructType type) {
  auto where =
      entry_block_to_construct_.find(std::make_pair(entry_block, type));
  assert(where != entry_block_to_construct_.end());
  auto construct_ptr = (*where).second;
  assert(construct_ptr);
  return *construct_ptr;
}

int Function::GetBlockDepth(BasicBlock* bb) {
  // Guard against nullptr.
  if (!bb) {
    return 0;
  }
  // Only calculate the depth if it's not already calculated.
  // This function uses memoization to avoid duplicate CFG depth calculations.
  if (block_depth_.find(bb) != block_depth_.end()) {
    return block_depth_[bb];
  }
  // Avoid recursion. Something is wrong if the same block is encountered
  // multiple times.
  block_depth_[bb] = 0;

  BasicBlock* bb_dom = bb->immediate_dominator();
  if (!bb_dom || bb == bb_dom) {
    // This block has no dominator, so it's at depth 0.
    block_depth_[bb] = 0;
  } else if (bb->is_type(kBlockTypeContinue)) {
    // This rule must precede the rule for merge blocks in order to set up
    // depths correctly. If a block is both a merge and continue then the merge
    // is nested within the continue's loop (or the graph is incorrect).
    // The depth of the continue block entry point is 1 + loop header depth.
    Construct* continue_construct =
        entry_block_to_construct_[std::make_pair(bb, ConstructType::kContinue)];
    assert(continue_construct);
    // Continue construct has only 1 corresponding construct (loop header).
    Construct* loop_construct =
        continue_construct->corresponding_constructs()[0];
    assert(loop_construct);
    BasicBlock* loop_header = loop_construct->entry_block();
    // The continue target may be the loop itself (while 1).
    // In such cases, the depth of the continue block is: 1 + depth of the
    // loop's dominator block.
    if (loop_header == bb) {
      block_depth_[bb] = 1 + GetBlockDepth(bb_dom);
    } else {
      block_depth_[bb] = 1 + GetBlockDepth(loop_header);
    }
  } else if (bb->is_type(kBlockTypeMerge)) {
    // If this is a merge block, its depth is equal to the block before
    // branching.
    BasicBlock* header = merge_block_header_[bb];
    assert(header);
    block_depth_[bb] = GetBlockDepth(header);
  } else if (bb_dom->is_type(kBlockTypeSelection) ||
             bb_dom->is_type(kBlockTypeLoop)) {
    // The dominator of the given block is a header block. So, the nesting
    // depth of this block is: 1 + nesting depth of the header.
    block_depth_[bb] = 1 + GetBlockDepth(bb_dom);
  } else {
    block_depth_[bb] = GetBlockDepth(bb_dom);
  }
  return block_depth_[bb];
}

void Function::RegisterExecutionModelLimitation(SpvExecutionModel model,
                                                const std::string& message) {
  execution_model_limitations_.push_back(
      [model, message](SpvExecutionModel in_model, std::string* out_message) {
        if (model != in_model) {
          if (out_message) {
            *out_message = message;
          }
          return false;
        }
        return true;
      });
}

bool Function::IsCompatibleWithExecutionModel(SpvExecutionModel model,
                                              std::string* reason) const {
  bool return_value = true;
  std::stringstream ss_reason;

  for (const auto& is_compatible : execution_model_limitations_) {
    std::string message;
    if (!is_compatible(model, &message)) {
      if (!reason) return false;
      return_value = false;
      if (!message.empty()) {
        ss_reason << message << "\n";
      }
    }
  }

  if (!return_value && reason) {
    *reason = ss_reason.str();
  }

  return return_value;
}

bool Function::CheckLimitations(const ValidationState_t& _,
                                const Function* entry_point,
                                std::string* reason) const {
  bool return_value = true;
  std::stringstream ss_reason;

  for (const auto& is_compatible : limitations_) {
    std::string message;
    if (!is_compatible(_, entry_point, &message)) {
      if (!reason) return false;
      return_value = false;
      if (!message.empty()) {
        ss_reason << message << "\n";
      }
    }
  }

  if (!return_value && reason) {
    *reason = ss_reason.str();
  }

  return return_value;
}

}  // namespace val
}  // namespace spvtools