Welcome to mirror list, hosted at ThFree Co, Russian Federation.

heater.py « klippy - github.com/Klipper3d/klipper.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: d05035a0a045984d1ef1eee0a8adb809c9cc81b4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
# Printer heater support
#
# Copyright (C) 2016  Kevin O'Connor <kevin@koconnor.net>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import math, logging, threading

# Mapping from name to Steinhart-Hart coefficients
Thermistors = {
    "EPCOS 100K B57560G104F": (
        0.000722136308968056, 0.000216766566488498, 8.92935804531095e-08)
}

SAMPLE_TIME = 0.001
SAMPLE_COUNT = 8
REPORT_TIME = 0.300
KELVIN_TO_CELCIUS = -273.15
MAX_HEAT_TIME = 5.0
AMBIENT_TEMP = 25.
PWM_MAX = 255

class PrinterHeater:
    def __init__(self, printer, config):
        self.printer = printer
        self.config = config
        self.mcu_pwm = self.mcu_adc = None
        self.thermistor_c = Thermistors.get(config.get('thermistor_type'))
        self.pullup_r = config.getfloat('pullup_resistor', 4700.)
        self.lock = threading.Lock()
        self.last_temp = 0.
        self.last_temp_clock = 0
        self.target_temp = 0.
        self.report_clock = 0
        self.control = None
        # pwm caching
        self.next_pwm_clock = 0
        self.last_pwm_value = 0
        self.resend_clock = 0
        self.pwm_offset_clock = 0
    def build_config(self):
        heater_pin = self.config.get('heater_pin')
        thermistor_pin = self.config.get('thermistor_pin')
        self.mcu_pwm = self.printer.mcu.create_pwm(heater_pin, 0, MAX_HEAT_TIME)
        self.mcu_adc = self.printer.mcu.create_adc(thermistor_pin)
        min_adc = self.calc_adc(self.config.getfloat('max_temp'))
        max_adc = self.calc_adc(self.config.getfloat('min_temp'))
        freq = self.printer.mcu.get_mcu_freq()
        sample_clock = int(SAMPLE_TIME*freq)
        self.mcu_adc.set_minmax(
            sample_clock, SAMPLE_COUNT, minval=min_adc, maxval=max_adc)
        self.mcu_adc.set_adc_callback(self.adc_callback)
        self.report_clock = int(REPORT_TIME*freq)
        control_algo = self.config.get('control', 'watermark')
        algos = {'watermark': ControlBangBang, 'pid': ControlPID}
        self.control = algos[control_algo](self, self.config)
        self.next_pwm_clock = 0
        self.last_pwm_value = 0
        self.resend_clock = int(MAX_HEAT_TIME * freq * 3. / 4.)
        self.pwm_offset_clock = sample_clock*SAMPLE_COUNT + self.report_clock
    def run(self):
        self.mcu_adc.query_analog_in(self.report_clock)
    def set_pwm(self, read_clock, value):
        if value:
            if self.target_temp <= 0.:
                return
            if (read_clock < self.next_pwm_clock
                and abs(value - self.last_pwm_value) < 15):
                return
        elif not self.last_pwm_value:
            return
        pwm_clock = read_clock + self.pwm_offset_clock
        self.next_pwm_clock = pwm_clock + self.resend_clock
        self.last_pwm_value = value
        logging.debug("pwm=%d@%d (%d)" % (value, read_clock, pwm_clock))
        self.mcu_pwm.set_pwm(pwm_clock, value)
    # Temperature calculation
    def calc_temp(self, adc):
        r = self.pullup_r * adc / (1.0 - adc)
        ln_r = math.log(r)
        c1, c2, c3 = self.thermistor_c
        temp_inv = c1 + c2*ln_r + c3*math.pow(ln_r, 3)
        return 1.0/temp_inv + KELVIN_TO_CELCIUS
    def calc_adc(self, temp):
        if temp is None:
            return None
        c1, c2, c3 = self.thermistor_c
        temp -= KELVIN_TO_CELCIUS
        temp_inv = 1./temp
        y = (c1 - temp_inv) / (2*c3)
        x = math.sqrt(math.pow(c2 / (3.*c3), 3.) + math.pow(y, 2.))
        r = math.exp(math.pow(x-y, 1./3.) - math.pow(x+y, 1./3.))
        return r / (self.pullup_r + r)
    def adc_callback(self, read_clock, read_value):
        temp = self.calc_temp(float(read_value))
        with self.lock:
            self.last_temp = temp
            self.last_temp_clock = read_clock
            self.control.adc_callback(read_clock, temp)
        #logging.debug("temp: %d(%d) %f = %f" % (
        #    read_clock, read_clock & 0xffffffff, read_value, temp))
    # External commands
    def set_temp(self, print_time, degrees):
        with self.lock:
            self.target_temp = degrees
    def get_temp(self):
        with self.lock:
            return self.last_temp, self.target_temp
    def check_busy(self, eventtime):
        with self.lock:
            return self.control.check_busy(eventtime)
    def start_auto_tune(self, temp):
        with self.lock:
            self.control = ControlAutoTune(self, self.control, temp)


######################################################################
# Bang-bang control algo
######################################################################

class ControlBangBang:
    def __init__(self, heater, config):
        self.heater = heater
        self.max_delta = config.getfloat('max_delta', 2.0)
        self.heating = False
    def adc_callback(self, read_clock, temp):
        if self.heating and temp >= self.heater.target_temp+self.max_delta:
            self.heating = False
        elif not self.heating and temp <= self.heater.target_temp-self.max_delta:
            self.heating = True
        if self.heating:
            self.heater.set_pwm(read_clock, PWM_MAX)
        else:
            self.heater.set_pwm(read_clock, 0)
    def check_busy(self, eventtime):
        return self.heater.last_temp < self.heater.target_temp-self.max_delta


######################################################################
# Proportional Integral Derivative (PID) control algo
######################################################################

class ControlPID:
    def __init__(self, heater, config):
        self.heater = heater
        self.Kp = config.getfloat('pid_Kp')
        self.Ki = config.getfloat('pid_Ki')
        self.Kd = config.getfloat('pid_Kd')
        self.min_deriv_time = config.getfloat('pid_deriv_time', 2.)
        imax = config.getint('pid_integral_max', PWM_MAX)
        self.temp_integ_max = imax / self.Ki
        self.prev_temp = AMBIENT_TEMP
        self.prev_temp_clock = 0
        self.prev_temp_deriv = 0.
        self.prev_temp_integ = 0.
        self.inv_mcu_freq = 1. / self.heater.printer.mcu.get_mcu_freq()
    def adc_callback(self, read_clock, temp):
        time_diff = (read_clock - self.prev_temp_clock) * self.inv_mcu_freq
        # Calculate change of temperature
        temp_diff = temp - self.prev_temp
        if time_diff >= self.min_deriv_time:
            temp_deriv = temp_diff / time_diff
        else:
            temp_deriv = (self.prev_temp_deriv * (self.min_deriv_time-time_diff)
                          + temp_diff) / self.min_deriv_time
        # Calculate accumulated temperature "error"
        temp_err = self.heater.target_temp - temp
        temp_integ = self.prev_temp_integ + temp_err * time_diff
        temp_integ = max(0., min(self.temp_integ_max, temp_integ))
        # Calculate output
        co = int(self.Kp*temp_err + self.Ki*temp_integ - self.Kd*temp_deriv)
        #logging.debug("pid: %f@%d -> diff=%f deriv=%f err=%f integ=%f co=%d" % (
        #    temp, read_clock, temp_diff, temp_deriv, temp_err, temp_integ, co))
        bounded_co = max(0, min(PWM_MAX, co))
        self.heater.set_pwm(read_clock, bounded_co)
        # Store state for next measurement
        self.prev_temp = temp
        self.prev_temp_clock = read_clock
        self.prev_temp_deriv = temp_deriv
        if co == bounded_co:
            self.prev_temp_integ = temp_integ
    def check_busy(self, eventtime):
        temp_diff = self.heater.target_temp - self.heater.last_temp
        return abs(temp_diff) > 1. or abs(self.prev_temp_deriv) > 0.1


######################################################################
# Ziegler-Nichols PID autotuning
######################################################################

TUNE_PID_DELTA = 5.0

class ControlAutoTune:
    def __init__(self, heater, old_control, target_temp):
        self.heater = heater
        self.old_control = old_control
        self.target_temp = target_temp
        self.heating = False
        self.peaks = []
        self.peak = 0.
        self.peak_clock = 0
    def adc_callback(self, read_clock, temp):
        if self.heating and temp >= self.target_temp:
            self.heating = False
            self.check_peaks()
        elif not self.heating and temp <= self.target_temp - TUNE_PID_DELTA:
            self.heating = True
            self.check_peaks()
        if self.heating:
            self.heater.set_pwm(read_clock, PWM_MAX)
            if temp < self.peak:
                self.peak = temp
                self.peak_clock = read_clock
        else:
            self.heater.set_pwm(read_clock, 0)
            if temp > self.peak:
                self.peak = temp
                self.peak_clock = read_clock
    def check_peaks(self):
        self.peaks.append((self.peak, self.peak_clock))
        if self.heating:
            self.peak = 9999999.
        else:
            self.peak = -9999999.
        if len(self.peaks) < 4:
            return
        temp_diff = self.peaks[-1][0] - self.peaks[-2][0]
        clock_diff = self.peaks[-1][1] - self.peaks[-3][1]
        pwm_diff = PWM_MAX - 0
        Ku = 4. * (2. * pwm_diff) / (abs(temp_diff) * math.pi)
        Tu = clock_diff / self.heater.printer.mcu.get_mcu_freq()

        Kp = 0.6 * Ku
        Ti = 0.5 * Tu
        Td = 0.125 * Tu
        Ki = Kp / Ti
        Kd = Kp * Td
        logging.info("Autotune: raw=%f/%d/%d Ku=%f Tu=%f  Kp=%f Ki=%f Kd=%f" % (
            temp_diff, clock_diff, pwm_diff, Ku, Tu, Kp, Ki, Kd))
    def check_busy(self, eventtime):
        if self.heating or len(self.peaks) < 12:
            return True
        self.heater.control = self.old_control
        return False


######################################################################
# Tuning information test
######################################################################

class ControlBumpTest:
    def __init__(self, heater, old_control, target_temp):
        self.heater = heater
        self.old_control = old_control
        self.target_temp = target_temp
        self.temp_samples = {}
        self.pwm_samples = {}
        self.state = 0
    def set_pwm(self, read_clock, value):
        self.pwm_samples[read_clock + 2*self.heater.report_clock] = value
        self.heater.set_pwm(read_clock, value)
    def adc_callback(self, read_clock, temp):
        self.temp_samples[read_clock] = temp
        if not self.state:
            self.set_pwm(read_clock, 0)
            if len(self.temp_samples) >= 20:
                self.state += 1
        elif self.state == 1:
            if temp < self.target_temp:
                self.set_pwm(read_clock, PWM_MAX)
                return
            self.set_pwm(read_clock, 0)
            self.state += 1
        elif self.state == 2:
            self.set_pwm(read_clock, 0)
            if temp <= (self.target_temp + AMBIENT_TEMP) / 2.:
                self.dump_stats()
                self.state += 1
    def dump_stats(self):
        out = ["%d %.1f %d" % (clock, temp, self.pwm_samples.get(clock, -1))
               for clock, temp in sorted(self.temp_samples.items())]
        f = open("/tmp/heattest.txt", "wb")
        f.write('\n'.join(out))
        f.close()
    def check_busy(self, eventtime):
        if self.state < 3:
            return True
        self.heater.control = self.old_control
        return False