Welcome to mirror list, hosted at ThFree Co, Russian Federation.

stepcompress.c « klippy - github.com/Klipper3d/klipper.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: d39bbc324480c0648530981a55ab454b6f0c5a0a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
// Stepper pulse schedule compression
//
// Copyright (C) 2016  Kevin O'Connor <kevin@koconnor.net>
//
// This file may be distributed under the terms of the GNU GPLv3 license.
//
// The goal of this code is to take a series of scheduled stepper
// pulse times and compress them into a handful of commands that can
// be efficiently transmitted and executed on a microcontroller (mcu).
// The mcu accepts step pulse commands that take interval, count, and
// add parameters such that 'count' pulses occur, with each step event
// calculating the next step event time using:
//  next_wake_time = last_wake_time + interval; interval += add
// This code is writtin in C (instead of python) for processing
// efficiency - the repetitive integer math is vastly faster in C.

#include <math.h> // sqrt
#include <stddef.h> // offsetof
#include <stdint.h> // uint32_t
#include <stdio.h> // fprintf
#include <stdlib.h> // malloc
#include <string.h> // memset
#include "serialqueue.h" // struct queue_message

#define CHECK_LINES 1
#define QUEUE_START_SIZE 1024

struct stepcompress {
    // Buffer management
    uint32_t *queue, *queue_end, *queue_pos, *queue_next;
    // Internal tracking
    uint32_t relclock, max_error;
    // Error checking
    uint32_t errors;
    // Message generation
    uint64_t last_step_clock;
    struct list_head msg_queue;
    uint32_t queue_step_msgid, oid;
};


/****************************************************************
 * Queue management
 ****************************************************************/

// Shuffle the internal queue to avoid having to allocate more ram
static void
clean_queue(struct stepcompress *sc)
{
    uint32_t *src = sc->queue_pos, *dest = sc->queue;
    while (src < sc->queue_next)
        *dest++ = *src++ - sc->relclock;
    sc->queue_pos = sc->queue;
    sc->queue_next = dest;
    sc->relclock = 0;
}

// Expand the internal queue of step times
static void
expand_queue(struct stepcompress *sc, int count)
{
    if (sc->queue + count <= sc->queue_end) {
        clean_queue(sc);
        return;
    }
    int alloc = sc->queue_end - sc->queue;
    int pos = sc->queue_pos - sc->queue;
    int next = sc->queue_next - sc->queue;
    if (!alloc)
        alloc = QUEUE_START_SIZE;
    while (next + count > alloc)
        alloc *= 2;
    sc->queue = realloc(sc->queue, alloc * sizeof(*sc->queue));
    sc->queue_end = sc->queue + alloc;
    sc->queue_pos = sc->queue + pos;
    sc->queue_next = sc->queue + next;
}

// Check if the internal queue needs to be expanded, and expand if so
static inline void
check_expand(struct stepcompress *sc, int count)
{
    if (sc->queue_next + count > sc->queue_end)
        expand_queue(sc, count);
}


/****************************************************************
 * Step compression
 ****************************************************************/

#define DIV_UP(n,d) (((n) + (d) - 1) / (d))

static inline int32_t
idiv_up(int32_t n, int32_t d)
{
    return (n>=0) ? DIV_UP(n,d) : (n/d);
}

static inline int32_t
idiv_down(int32_t n, int32_t d)
{
    return (n>=0) ? (n/d) : (n - d + 1) / d;
}

struct points {
    int32_t minp, maxp;
};

// Given a requested step time, return the minimum and maximum
// acceptable times
static struct points
minmax_point(struct stepcompress *sc, uint32_t *pos)
{
    uint32_t prevpoint = pos > sc->queue_pos ? *(pos-1) - sc->relclock : 0;
    uint32_t point = *pos - sc->relclock;
    uint32_t max_error = (point - prevpoint) / 2;
    if (max_error > sc->max_error)
        max_error = sc->max_error;
    return (struct points){ point - max_error, point };
}

// The maximum add delta between two valid quadratic sequences of the
// form "add*count*(count-1)/2 + interval*count" is "(6 + 4*sqrt(2)) *
// maxerror / (count*count)".  The "6 + 4*sqrt(2)" is 11.65685, but
// using 11 and rounding up when dividing works well in practice.
#define QUADRATIC_DEV 11

struct step_move {
    uint32_t interval;
    uint16_t count;
    int16_t add;
};

// Find a 'step_move' that covers a series of step times
static struct step_move
compress_bisect_add(struct stepcompress *sc)
{
    uint32_t *last = sc->queue_next;
    if (last > sc->queue_pos + 65535)
        last = sc->queue_pos + 65535;
    struct points point = minmax_point(sc, sc->queue_pos);
    int32_t origmininterval = point.minp, origmaxinterval = point.maxp;
    int32_t add = 0, minadd=-0x8001, maxadd=0x8000;
    int32_t bestadd=0, bestcount=0, bestinterval=0;

    for (;;) {
        // Find longest valid sequence with the given 'add'
        int32_t mininterval = origmininterval, maxinterval = origmaxinterval;
        int32_t count = 1, addfactor = 0;
        for (;;) {
            if (sc->queue_pos + count >= last)
                return (struct step_move){ maxinterval, count, add };
            point = minmax_point(sc, sc->queue_pos + count);
            addfactor += count;
            int32_t c = add*addfactor;
            int32_t nextmininterval = mininterval;
            if (c + nextmininterval*(count+1) < point.minp)
                nextmininterval = DIV_UP(point.minp - c, count+1);
            int32_t nextmaxinterval = maxinterval;
            if (c + nextmaxinterval*(count+1) > point.maxp)
                nextmaxinterval = (point.maxp - c) / (count+1);
            if (nextmininterval > nextmaxinterval)
                break;
            count += 1;
            mininterval = nextmininterval;
            maxinterval = nextmaxinterval;
        }
        if (count > bestcount || (count == bestcount && add > bestadd)) {
            bestcount = count;
            bestadd = add;
            bestinterval = maxinterval;
        }

        // Check if a greater or lesser add could extend the sequence
        int32_t maxreach = add*addfactor + maxinterval*(count+1);
        if (maxreach < point.minp)
            origmaxinterval = maxinterval;
        else
            origmininterval = mininterval;

        if ((minadd+1)*addfactor + origmaxinterval*(count+1) < point.minp)
            minadd = idiv_up(point.minp - origmaxinterval*(count+1)
                             , addfactor) - 1;
        if ((maxadd-1)*addfactor + origmininterval*(count+1) > point.maxp)
            maxadd = idiv_down(point.maxp - origmininterval*(count+1)
                               , addfactor) + 1;

        // The maximum valid deviation between two quadratic sequences
        // can be calculated and used to further limit the add range.
        if (count > 1) {
            int32_t errdelta = DIV_UP(sc->max_error*QUADRATIC_DEV, count*count);
            if (minadd < add - errdelta)
                minadd = add - errdelta;
            if (maxadd > add + errdelta)
                maxadd = add + errdelta;
        }

        // Bisect valid add range and try again with new 'add'
        add = (maxadd + minadd) / 2;
        if (add <= minadd || add >= maxadd)
            break;
    }
    if (bestcount < 2)
        bestadd = 0;
    return (struct step_move){ bestinterval, bestcount, bestadd };
}


/****************************************************************
 * Step compress checking
 ****************************************************************/

// Verify that a given 'step_move' matches the actual step times
static void
check_line(struct stepcompress *sc, struct step_move move)
{
    if (!CHECK_LINES)
        return;
    int err = 0;
    if (!move.count || !move.interval || move.interval >= 0x80000000) {
        fprintf(stderr, "ERROR: Point out of range: %d %d %d\n"
                , move.interval, move.count, move.add);
        err++;
    }
    uint32_t interval = move.interval, p = interval;
    uint16_t i;
    for (i=0; i<move.count; i++) {
        struct points point = minmax_point(sc, sc->queue_pos + i);
        if (p < point.minp || p > point.maxp) {
            fprintf(stderr, "ERROR: Point %d of %d: %d not in %d:%d\n"
                    , i+1, move.count, p, point.minp, point.maxp);
            err++;
        }
        interval += move.add;
        p += interval;
    }
    sc->errors += err;
}


/****************************************************************
 * Step compress interface
 ****************************************************************/

// Allocate a new 'stepcompress' object
struct stepcompress *
stepcompress_alloc(uint32_t max_error, uint32_t queue_step_msgid, uint32_t oid)
{
    struct stepcompress *sc = malloc(sizeof(*sc));
    memset(sc, 0, sizeof(*sc));
    sc->max_error = max_error;
    list_init(&sc->msg_queue);
    sc->queue_step_msgid = queue_step_msgid;
    sc->oid = oid;
    return sc;
}

// Schedule a step event at the specified step_clock time
void
stepcompress_push(struct stepcompress *sc, double step_clock)
{
    check_expand(sc, 1);
    step_clock += 0.5 + sc->relclock - sc->last_step_clock;
    *sc->queue_next++ = step_clock;
}

// Schedule 'steps' number of steps with a constant time between steps
// using the formula: step_clock = clock_offset + step_num*factor
double
stepcompress_push_factor(struct stepcompress *sc
                         , double steps, double step_offset
                         , double clock_offset, double factor)
{
    // Calculate number of steps to take
    double ceil_steps = ceil(steps - step_offset);
    double next_step_offset = ceil_steps - (steps - step_offset);
    int count = ceil_steps;
    check_expand(sc, count);

    // Calculate each step time
    uint32_t *qn = sc->queue_next, *end = &qn[count];
    clock_offset += 0.5 + sc->relclock - sc->last_step_clock;
    double pos = step_offset;
    while (qn < end) {
        *qn++ = clock_offset + pos*factor;
        pos += 1.0;
    }
    sc->queue_next = qn;
    return next_step_offset;
}

// Schedule 'steps' number of steps using the formula:
//  step_clock = clock_offset + sqrt(step_num*factor + sqrt_offset)
double
stepcompress_push_sqrt(struct stepcompress *sc, double steps, double step_offset
                       , double clock_offset, double sqrt_offset, double factor)
{
    // Calculate number of steps to take
    double ceil_steps = ceil(steps - step_offset);
    double next_step_offset = ceil_steps - (steps - step_offset);
    int count = ceil_steps;
    check_expand(sc, count);

    // Calculate each step time
    uint32_t *qn = sc->queue_next, *end = &qn[count];
    clock_offset += 0.5 + sc->relclock - sc->last_step_clock;
    double pos = step_offset + sqrt_offset/factor;
    if (factor >= 0.0)
        while (qn < end) {
            *qn++ = clock_offset + sqrt(pos*factor);
            pos += 1.0;
        }
    else
        while (qn < end) {
            *qn++ = clock_offset - sqrt(pos*factor);
            pos += 1.0;
        }
    sc->queue_next = end;
    return next_step_offset;
}

// Convert previously scheduled steps into commands for the mcu
static void
stepcompress_flush(struct stepcompress *sc, uint64_t move_clock)
{
    if (sc->queue_pos >= sc->queue_next)
        return;
    while (move_clock > sc->last_step_clock) {
        struct step_move move = compress_bisect_add(sc);
        check_line(sc, move);

        uint32_t msg[5] = {
            sc->queue_step_msgid, sc->oid, move.interval, move.count, move.add
        };
        struct queue_message *qm = message_alloc_and_encode(msg, 5);
        qm->req_clock = sc->last_step_clock;
        list_add_tail(&qm->node, &sc->msg_queue);

        uint32_t addfactor = move.count*(move.count-1)/2;
        uint32_t ticks = move.add*addfactor + move.interval*move.count;
        sc->last_step_clock += ticks;
        if (sc->queue_pos + move.count >= sc->queue_next) {
            sc->queue_pos = sc->queue_next = sc->queue;
            sc->relclock = 0;
            break;
        }
        sc->queue_pos += move.count;
        sc->relclock += ticks;
    }
}

// Reset the internal state of the stepcompress object
void
stepcompress_reset(struct stepcompress *sc, uint64_t last_step_clock)
{
    stepcompress_flush(sc, UINT64_MAX);
    sc->last_step_clock = last_step_clock;
}

// Queue an mcu command to go out in order with stepper commands
void
stepcompress_queue_msg(struct stepcompress *sc, uint32_t *data, int len)
{
    stepcompress_flush(sc, UINT64_MAX);

    struct queue_message *qm = message_alloc_and_encode(data, len);
    qm->min_clock = -1;
    qm->req_clock = sc->last_step_clock;
    list_add_tail(&qm->node, &sc->msg_queue);
}

// Return the count of internal errors found
uint32_t
stepcompress_get_errors(struct stepcompress *sc)
{
    return sc->errors;
}


/****************************************************************
 * Step compress synchronization
 ****************************************************************/

// The steppersync object is used to synchronize the output of mcu
// step commands.  The mcu can only queue a limited number of step
// commands - this code tracks when items on the mcu step queue become
// free so that new commands can be transmitted.  It also ensures the
// mcu step queue is ordered between steppers so that no stepper
// starves the other steppers of space in the mcu step queue.

struct steppersync {
    // Serial port
    struct serialqueue *sq;
    struct command_queue *cq;
    // Storage for associated stepcompress objects
    struct stepcompress **sc_list;
    int sc_num;
    // Storage for list of pending move clocks
    uint64_t *move_clocks;
    int num_move_clocks;
};

// Allocate a new 'stepperysync' object
struct steppersync *
steppersync_alloc(struct serialqueue *sq, struct stepcompress **sc_list
                  , int sc_num, int move_num)
{
    struct steppersync *ss = malloc(sizeof(*ss));
    memset(ss, 0, sizeof(*ss));
    ss->sq = sq;
    ss->cq = serialqueue_alloc_commandqueue();

    ss->sc_list = malloc(sizeof(*sc_list)*sc_num);
    memcpy(ss->sc_list, sc_list, sizeof(*sc_list)*sc_num);
    ss->sc_num = sc_num;

    ss->move_clocks = malloc(sizeof(*ss->move_clocks)*move_num);
    memset(ss->move_clocks, 0, sizeof(*ss->move_clocks)*move_num);
    ss->num_move_clocks = move_num;

    return ss;
}

// Implement a binary heap algorithm to track when the next available
// 'struct move' in the mcu will be available
static void
heap_replace(struct steppersync *ss, uint64_t req_clock)
{
    uint64_t *mc = ss->move_clocks;
    int nmc = ss->num_move_clocks, pos = 0;
    for (;;) {
        int child1_pos = 2*pos+1, child2_pos = 2*pos+2;
        uint64_t child2_clock = child2_pos < nmc ? mc[child2_pos] : UINT64_MAX;
        uint64_t child1_clock = child1_pos < nmc ? mc[child1_pos] : UINT64_MAX;
        if (req_clock <= child1_clock && req_clock <= child2_clock) {
            mc[pos] = req_clock;
            break;
        }
        if (child1_clock < child2_clock) {
            mc[pos] = child1_clock;
            pos = child1_pos;
        } else {
            mc[pos] = child2_clock;
            pos = child2_pos;
        }
    }
}

// Find and transmit any scheduled steps prior to the given 'move_clock'
void
steppersync_flush(struct steppersync *ss, uint64_t move_clock)
{
    // Flush each stepcompress to the specified move_clock
    int i;
    for (i=0; i<ss->sc_num; i++)
        stepcompress_flush(ss->sc_list[i], move_clock);

    // Order commands by the reqclock of each pending command
    struct list_head msgs;
    list_init(&msgs);
    uint64_t min_clock = ss->move_clocks[0];
    for (;;) {
        // Find message with lowest reqclock
        uint64_t req_clock = MAX_CLOCK;
        struct queue_message *qm = NULL;
        for (i=0; i<ss->sc_num; i++) {
            struct stepcompress *sc = ss->sc_list[i];
            if (!list_empty(&sc->msg_queue)) {
                struct queue_message *m = list_first_entry(
                    &sc->msg_queue, struct queue_message, node);
                if (m->req_clock < req_clock) {
                    qm = m;
                    req_clock = m->req_clock;
                }
            }
        }
        if (!qm || (!qm->min_clock && req_clock > move_clock))
            break;

        // Set the min_clock for this command
        if (!qm->min_clock) {
            qm->min_clock = min_clock;
            heap_replace(ss, req_clock);
            min_clock = ss->move_clocks[0];
        } else {
            qm->min_clock = min_clock;
        }

        // Batch this command
        list_del(&qm->node);
        list_add_tail(&qm->node, &msgs);
    }

    // Transmit commands
    if (!list_empty(&msgs))
        serialqueue_send_batch(ss->sq, ss->cq, &msgs);
}