Welcome to mirror list, hosted at ThFree Co, Russian Federation.

loss.py « utils « onmt - github.com/OpenNMT/OpenNMT-py.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 7409bcffdf81dbae3306cd1bfe5078fe0421dc62 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
"""
This includes: LossComputeBase and the standard NMTLossCompute, and
               sharded loss compute stuff.
"""
import torch
import torch.nn as nn
import torch.nn.functional as F

import onmt
from onmt.modules.sparse_losses import SparsemaxLoss
from onmt.modules.sparse_activations import LogSparsemax
from onmt.constants import ModelTask, DefaultTokens
from onmt.modules.copy_generator import collapse_copy_scores


class LossCompute(nn.Module):
    """
    Class for managing efficient loss computation. Handles
    sharding next step predictions and accumulating multiple
    loss computations

    Users can implement their own loss computation strategy by making
    subclass of this one.  Users need to implement the _compute_loss()
    and make_shard_state() methods.

    Args:
        criterion (:obj:`nn. loss function`) : NLLoss or customed loss
        generator (:obj:`nn.Module`) :
        normalization (str "tokens" or "sents")
        copy_attn (bool): whether copy attention mechanism is on/off
        lambda_coverage: Hyper-param to apply coverage attention if any
        lambda_align: Hyper-param for alignment loss
        tgt_shift_index: 1 for NMT, 0 for LM
        vocab: target vocab (for copy attention score calculation)
             module that maps the output of the decoder to a
             distribution over the target vocabulary.
    """
    def __init__(self, criterion, generator, normalization="tokens",
                 copy_attn=False, lambda_coverage=0.0, lambda_align=0.0,
                 tgt_shift_index=1, vocab=None):
        super(LossCompute, self).__init__()
        self.criterion = criterion
        self.generator = generator
        self.normalization = normalization
        self.lambda_coverage = lambda_coverage
        self.lambda_align = lambda_align
        self.tgt_shift_index = tgt_shift_index
        self.copy_attn = copy_attn
        self.vocab = vocab  # target vocab for copy_attn need

    @classmethod
    def from_opts(cls, opt, model, vocab, train=True):
        """
        Returns a subclass which wraps around an nn.Module subclass
        (such as nn.NLLLoss) which defines the loss criterion. The LossCompute
        object passes relevant data to a Statistics object which handles
        training/validation logging.
        The Criterion and LossCompute options are triggered by opt settings.
        """
        device = torch.device("cuda" if onmt.utils.misc.use_gpu(opt)
                              else "cpu")

        padding_idx = vocab[DefaultTokens.PAD]
        unk_idx = vocab[DefaultTokens.UNK]

        if opt.lambda_coverage != 0:
            assert opt.coverage_attn, "--coverage_attn needs to be set in " \
                "order to use --lambda_coverage != 0"

        tgt_shift_idx = 1 if opt.model_task == ModelTask.SEQ2SEQ else 0

        if opt.copy_attn:
            criterion = onmt.modules.CopyGeneratorLoss(
                len(vocab), opt.copy_attn_force,
                unk_index=unk_idx, ignore_index=padding_idx
            )
        else:
            if opt.label_smoothing > 0 and train:
                criterion = LabelSmoothingLoss(
                    opt.label_smoothing, len(vocab),
                    ignore_index=padding_idx
                )
            elif isinstance(model.generator[-1], LogSparsemax):
                criterion = SparsemaxLoss(ignore_index=padding_idx,
                                          reduction='sum')
            else:
                criterion = nn.NLLLoss(ignore_index=padding_idx,
                                       reduction='sum')

        # if the loss function operates on vectors of raw logits instead
        # of probabilities, only the first part of the generator needs to
        # be passed to the NMTLossCompute. At the moment, the only
        # supported loss function of this kind is the sparsemax loss.
        use_raw_logits = isinstance(criterion, SparsemaxLoss)
        loss_gen = model.generator[0] if use_raw_logits \
            else model.generator

        compute = cls(criterion, loss_gen,
                      normalization=opt.normalization,
                      copy_attn=opt.copy_attn,
                      lambda_coverage=opt.lambda_coverage,
                      lambda_align=opt.lambda_align,
                      tgt_shift_index=tgt_shift_idx,
                      vocab=vocab)
        compute.to(device)

        return compute

    @property
    def padding_idx(self):
        return self.criterion.ignore_index

    def _compute_coverage_loss(self, std_attn, coverage_attn):
        """compute coverage loss"""
        covloss = torch.min(std_attn, coverage_attn).sum()
        covloss *= self.lambda_coverage
        return covloss

    def _compute_alignement_loss(self, align_head, ref_align):
        """Compute loss between 2 partial alignment matrix."""
        # align_head contains value in [0, 1) presenting attn prob,
        # 0 was resulted by the context attention src_pad_mask
        # So, the correspand position in ref_align should also be 0
        # Therefore, clip align_head to > 1e-18 should be bias free.
        align_loss = -align_head.clamp(min=1e-18).log().mul(ref_align).sum()
        align_loss *= self.lambda_align
        return align_loss

    def _compute_copy_loss(self, batch, output, target, align, attns):
        """Compute the copy attention loss.
        Args:
            batch: the current batch.
            output: the predict output from the model.
            target: the validate target to compare output with.
            align:
            attns: dictionary of attention distributions
              `[tgt_len x batch x src_len]`
        Returns:
            A tuple with the loss and a :obj:`onmt.utils.Statistics` instance.
        """
        scores = self.generator(self._bottle(output),
                                self._bottle(attns['copy']),
                                batch['src_map'])
        loss = self.criterion(scores, align, target).sum()

        # this block does not depend on the loss value computed above
        # and is used only for stats
        scores_data = collapse_copy_scores(
            self._unbottle(scores.clone(), len(batch['srclen'])),
            batch, self.vocab, None)
        scores_data = self._bottle(scores_data)
        # Correct target copy token instead of <unk>
        # tgt[i] = align[i] + len(tgt_vocab)
        # for i such that tgt[i] == 0 and align[i] != 0
        target_data = target.clone()
        unk = self.criterion.unk_index
        correct_mask = (target_data == unk) & (align != unk)
        offset_align = align[correct_mask] + len(self.vocab)
        target_data[correct_mask] += offset_align

        # Compute sum of perplexities for stats
        stats = self._stats(len(batch['srclen']), loss.item(),
                            scores_data, target_data)

        return loss, stats

    def _bottle(self, _v):
        return _v.view(-1, _v.size(2))

    def _unbottle(self, _v, batch_size):
        return _v.view(-1, batch_size, _v.size(1))

    def __call__(self, batch, output, attns,
                 trunc_start=0, trunc_size=None):
        """Compute the forward loss, possibly in shards in which case this
        method also runs the backward pass and returns ``None`` as the loss
        value.

        Also supports truncated BPTT for long sequences by taking a
        range in the decoder output sequence to back propagate in.
        Range is from `(trunc_start, trunc_start + trunc_size)`.

        Note sharding is an exact efficiency trick to relieve memory
        required for the generation buffers. Truncation is an
        approximate efficiency trick to relieve the memory required
        in the RNN buffers.

        Args:
          batch (batch) : batch of labeled examples
          output (:obj:`FloatTensor`) :
              output of decoder model `[tgt_len x batch x hidden]`
          attns (dict) : dictionary of attention distributions
              `[tgt_len x batch x src_len]`
          trunc_start (int) : starting position of truncation window
          trunc_size (int) : length of truncation window

        Returns:
            A tuple with the loss and a :obj:`onmt.utils.Statistics` instance.
        """
        if trunc_size is None:
            trunc_size = batch['tgt'].size(0) - trunc_start
        # take into account here the tgt_shift_index (0 / 1 = LM/NMT)
        trunc_range = (trunc_start + self.tgt_shift_index,
                       trunc_start + trunc_size)
        target = batch['tgt'][trunc_range[0]:trunc_range[1],
                              :, 0].view(-1)

        if self.copy_attn:
            align = batch['alignment'][trunc_range[0]:trunc_range[1]].view(-1)
            loss, stats = self._compute_copy_loss(batch, output, target,
                                                  align, attns)
        else:

            scores = self.generator(self._bottle(output))
            loss = self.criterion(scores, target)

            if self.lambda_align != 0.0:
                align_head = attns['align']
                if align_head.dtype != loss.dtype:  # Fix FP16
                    align_head = align_head.to(loss.dtype)
                align_idx = batch['align']
                pad_tgt_size, batch_size, _ = batch['tgt'].size()
                pad_src_size, _, _ = batch['src'].size()
                align_matrix_size = [batch_size, pad_tgt_size, pad_src_size]
                ref_align = onmt.utils.make_batch_align_matrix(
                    align_idx, align_matrix_size, normalize=True
                )
                ref_align = ref_align[:, trunc_range[0]:trunc_range[1], :]
                if ref_align.dtype != loss.dtype:
                    ref_align = ref_align.to(loss.dtype)
                align_loss = self._compute_alignement_loss(
                    align_head=align_head, ref_align=ref_align)
                loss += align_loss

            stats = self._stats(len(batch['srclen']), loss.item(),
                                scores, target)

        if self.lambda_coverage != 0.0:
            coverage_loss = self._compute_coverage_loss(
                std_attn=attns['std'], coverage_attn=attns['coverage'])
            loss += coverage_loss

        if self.normalization == "tokens":
            normfactor = batch['tgt'][:,
                                      :,
                                      0].ne(self.padding_idx).sum()
        elif self.normalization == "sents":
            normfactor = batch['tgt'].size(1)

        return loss / float(normfactor), stats

    def _stats(self, bsz, loss, scores, target):
        """
        Args:
            loss (int): the loss computed by the loss criterion.
            scores (:obj:`FloatTensor`): a score for each possible output
            target (:obj:`FloatTensor`): true targets

        Returns:
            :obj:`onmt.utils.Statistics` : statistics for this batch.
        """
        pred = scores.max(1)[1]
        non_padding = target.ne(self.padding_idx)
        num_correct = pred.eq(target).masked_select(non_padding).sum().item()
        num_non_padding = non_padding.sum().item()
        # in the case criterion reduction is None then we need
        # to sum the loss of each sentence in the batch
        return onmt.utils.Statistics(loss=loss,
                                     n_batchs=1,
                                     n_sents=bsz,
                                     n_words=num_non_padding,
                                     n_correct=num_correct)


class LabelSmoothingLoss(nn.Module):
    """
    With label smoothing,
    KL-divergence between q_{smoothed ground truth prob.}(w)
    and p_{prob. computed by model}(w) is minimized.
    """
    def __init__(self, label_smoothing, tgt_vocab_size, ignore_index=-100):
        assert 0.0 < label_smoothing <= 1.0
        self.ignore_index = ignore_index
        super(LabelSmoothingLoss, self).__init__()

        smoothing_value = label_smoothing / (tgt_vocab_size - 2)
        one_hot = torch.full((tgt_vocab_size,), smoothing_value)
        one_hot[self.ignore_index] = 0
        self.register_buffer('one_hot', one_hot.unsqueeze(0))

        self.confidence = 1.0 - label_smoothing

    def forward(self, output, target):
        """
        output (FloatTensor): batch_size x n_classes
        target (LongTensor): batch_size
        """
        model_prob = self.one_hot.repeat(target.size(0), 1)
        model_prob.scatter_(1, target.unsqueeze(1), self.confidence)
        model_prob.masked_fill_((target == self.ignore_index).unsqueeze(1), 0)

        return F.kl_div(output, model_prob, reduction='sum')