Welcome to mirror list, hosted at ThFree Co, Russian Federation.

util.py « siamesetransquest « sentence_level « algo « transquest - github.com/TharinduDR/TransQuest.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 26dbee90b6c5e698499e45e9751bc427e95d53ec (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import requests
from torch import Tensor, device
from typing import List, Callable
from tqdm.autonotebook import tqdm
import sys
import importlib
import os
import torch
import numpy as np
import queue
import logging


logger = logging.getLogger(__name__)


def pytorch_cos_sim(a: Tensor, b: Tensor):
    """
    Computes the cosine similarity cos_sim(a[i], b[j]) for all i and j.
    :return: Matrix with res[i][j]  = cos_sim(a[i], b[j])
    """
    return cos_sim(a, b)


def cos_sim(a: Tensor, b: Tensor):
    """
    Computes the cosine similarity cos_sim(a[i], b[j]) for all i and j.
    :return: Matrix with res[i][j]  = cos_sim(a[i], b[j])
    """
    if not isinstance(a, torch.Tensor):
        a = torch.tensor(a)

    if not isinstance(b, torch.Tensor):
        b = torch.tensor(b)

    if len(a.shape) == 1:
        a = a.unsqueeze(0)

    if len(b.shape) == 1:
        b = b.unsqueeze(0)

    a_norm = torch.nn.functional.normalize(a, p=2, dim=1)
    b_norm = torch.nn.functional.normalize(b, p=2, dim=1)
    return torch.mm(a_norm, b_norm.transpose(0, 1))


def dot_score(a: Tensor, b: Tensor):
    """
    Computes the dot-product dot_prod(a[i], b[j]) for all i and j.
    :return: Matrix with res[i][j]  = dot_prod(a[i], b[j])
    """
    if not isinstance(a, torch.Tensor):
        a = torch.tensor(a)

    if not isinstance(b, torch.Tensor):
        b = torch.tensor(b)

    if len(a.shape) == 1:
        a = a.unsqueeze(0)

    if len(b.shape) == 1:
        b = b.unsqueeze(0)

    return torch.mm(a, b.transpose(0, 1))


def normalize_embeddings(embeddings: Tensor):
    """
    Normalizes the embeddings matrix, so that each sentence embedding has unit length
    """
    return torch.nn.functional.normalize(embeddings, p=2, dim=1)


def paraphrase_mining(model,
                      sentences: List[str],
                      show_progress_bar: bool = False,
                      batch_size:int = 32,
                      *args,
                      **kwargs):
    """
    Given a list of sentences / texts, this function performs paraphrase mining. It compares all sentences against all
    other sentences and returns a list with the pairs that have the highest cosine similarity score.

    :param model: SentenceTransformer model for embedding computation
    :param sentences: A list of strings (texts or sentences)
    :param show_progress_bar: Plotting of a progress bar
    :param batch_size: Number of texts that are encoded simultaneously by the model
    :param query_chunk_size: Search for most similar pairs for #query_chunk_size at the same time. Decrease, to lower memory footprint (increases run-time).
    :param corpus_chunk_size: Compare a sentence simultaneously against #corpus_chunk_size other sentences. Decrease, to lower memory footprint (increases run-time).
    :param max_pairs: Maximal number of text pairs returned.
    :param top_k: For each sentence, we retrieve up to top_k other sentences
    :param score_function: Funtion for computing scores. By default, cosine similarity.
    :return: Returns a list of triplets with the format [score, id1, id2]
    """

    # Compute embedding for the sentences
    embeddings = model.encode(sentences, show_progress_bar=show_progress_bar, batch_size=batch_size, convert_to_tensor=True)

    return paraphrase_mining_embeddings(embeddings, *args, **kwargs)


def paraphrase_mining_embeddings(embeddings: Tensor,
                      query_chunk_size: int = 5000,
                      corpus_chunk_size: int = 100000,
                      max_pairs: int = 500000,
                      top_k: int = 100,
                      score_function: Callable[[Tensor, Tensor], Tensor] = cos_sim):
    """
    Given a list of sentences / texts, this function performs paraphrase mining. It compares all sentences against all
    other sentences and returns a list with the pairs that have the highest cosine similarity score.

    :param embeddings: A tensor with the embeddings
    :param query_chunk_size: Search for most similar pairs for #query_chunk_size at the same time. Decrease, to lower memory footprint (increases run-time).
    :param corpus_chunk_size: Compare a sentence simultaneously against #corpus_chunk_size other sentences. Decrease, to lower memory footprint (increases run-time).
    :param max_pairs: Maximal number of text pairs returned.
    :param top_k: For each sentence, we retrieve up to top_k other sentences
    :param score_function: Funtion for computing scores. By default, cosine similarity.
    :return: Returns a list of triplets with the format [score, id1, id2]
    """

    top_k += 1  # A sentence has the highest similarity to itself. Increase +1 as we are interest in distinct pairs

    # Mine for duplicates
    pairs = queue.PriorityQueue()
    min_score = -1
    num_added = 0

    for corpus_start_idx in range(0, len(embeddings), corpus_chunk_size):
        for query_start_idx in range(0, len(embeddings), query_chunk_size):
            scores = score_function(embeddings[query_start_idx:query_start_idx+query_chunk_size], embeddings[corpus_start_idx:corpus_start_idx+corpus_chunk_size])

            scores_top_k_values, scores_top_k_idx = torch.topk(scores, min(top_k, len(scores[0])), dim=1, largest=True, sorted=False)
            scores_top_k_values = scores_top_k_values.cpu().tolist()
            scores_top_k_idx = scores_top_k_idx.cpu().tolist()

            for query_itr in range(len(scores)):
                for top_k_idx, corpus_itr in enumerate(scores_top_k_idx[query_itr]):
                    i = query_start_idx + query_itr
                    j = corpus_start_idx + corpus_itr

                    if i != j and scores_top_k_values[query_itr][top_k_idx] > min_score:
                        pairs.put((scores_top_k_values[query_itr][top_k_idx], i, j))
                        num_added += 1

                        if num_added >= max_pairs:
                            entry = pairs.get()
                            min_score = entry[0]

    # Get the pairs
    added_pairs = set()  # Used for duplicate detection
    pairs_list = []
    while not pairs.empty():
        score, i, j = pairs.get()
        sorted_i, sorted_j = sorted([i, j])

        if sorted_i != sorted_j and (sorted_i, sorted_j) not in added_pairs:
            added_pairs.add((sorted_i, sorted_j))
            pairs_list.append([score, i, j])

    # Highest scores first
    pairs_list = sorted(pairs_list, key=lambda x: x[0], reverse=True)
    return pairs_list


def information_retrieval(*args, **kwargs):
    """This function is decprecated. Use semantic_search insted"""
    return semantic_search(*args, **kwargs)


def semantic_search(query_embeddings: Tensor,
                    corpus_embeddings: Tensor,
                    query_chunk_size: int = 100,
                    corpus_chunk_size: int = 500000,
                    top_k: int = 10,
                    score_function: Callable[[Tensor, Tensor], Tensor] = cos_sim):
    """
    This function performs a cosine similarity search between a list of query embeddings  and a list of corpus embeddings.
    It can be used for Information Retrieval / Semantic Search for corpora up to about 1 Million entries.

    :param query_embeddings: A 2 dimensional tensor with the query embeddings.
    :param corpus_embeddings: A 2 dimensional tensor with the corpus embeddings.
    :param query_chunk_size: Process 100 queries simultaneously. Increasing that value increases the speed, but requires more memory.
    :param corpus_chunk_size: Scans the corpus 100k entries at a time. Increasing that value increases the speed, but requires more memory.
    :param top_k: Retrieve top k matching entries.
    :param score_function: Funtion for computing scores. By default, cosine similarity.
    :return: Returns a sorted list with decreasing cosine similarity scores. Entries are dictionaries with the keys 'corpus_id' and 'score'
    """

    if isinstance(query_embeddings, (np.ndarray, np.generic)):
        query_embeddings = torch.from_numpy(query_embeddings)
    elif isinstance(query_embeddings, list):
        query_embeddings = torch.stack(query_embeddings)

    if len(query_embeddings.shape) == 1:
        query_embeddings = query_embeddings.unsqueeze(0)

    if isinstance(corpus_embeddings, (np.ndarray, np.generic)):
        corpus_embeddings = torch.from_numpy(corpus_embeddings)
    elif isinstance(corpus_embeddings, list):
        corpus_embeddings = torch.stack(corpus_embeddings)


    #Check that corpus and queries are on the same device
    if corpus_embeddings.device != query_embeddings.device:
        query_embeddings = query_embeddings.to(corpus_embeddings.device)

    queries_result_list = [[] for _ in range(len(query_embeddings))]

    for query_start_idx in range(0, len(query_embeddings), query_chunk_size):
        # Iterate over chunks of the corpus
        for corpus_start_idx in range(0, len(corpus_embeddings), corpus_chunk_size):
            # Compute cosine similarites
            cos_scores = score_function(query_embeddings[query_start_idx:query_start_idx+query_chunk_size], corpus_embeddings[corpus_start_idx:corpus_start_idx+corpus_chunk_size])

            # Get top-k scores
            cos_scores_top_k_values, cos_scores_top_k_idx = torch.topk(cos_scores, min(top_k, len(cos_scores[0])), dim=1, largest=True, sorted=False)
            cos_scores_top_k_values = cos_scores_top_k_values.cpu().tolist()
            cos_scores_top_k_idx = cos_scores_top_k_idx.cpu().tolist()

            for query_itr in range(len(cos_scores)):
                for sub_corpus_id, score in zip(cos_scores_top_k_idx[query_itr], cos_scores_top_k_values[query_itr]):
                    corpus_id = corpus_start_idx + sub_corpus_id
                    query_id = query_start_idx + query_itr
                    queries_result_list[query_id].append({'corpus_id': corpus_id, 'score': score})

    #Sort and strip to top_k results
    for idx in range(len(queries_result_list)):
        queries_result_list[idx] = sorted(queries_result_list[idx], key=lambda x: x['score'], reverse=True)
        queries_result_list[idx] = queries_result_list[idx][0:top_k]

    return queries_result_list


def http_get(url, path):
    """
    Downloads a URL to a given path on disc
    """
    if os.path.dirname(path) != '':
        os.makedirs(os.path.dirname(path), exist_ok=True)

    req = requests.get(url, stream=True)
    if req.status_code != 200:
        print("Exception when trying to download {}. Response {}".format(url, req.status_code), file=sys.stderr)
        req.raise_for_status()
        return

    download_filepath = path+"_part"
    with open(download_filepath, "wb") as file_binary:
        content_length = req.headers.get('Content-Length')
        total = int(content_length) if content_length is not None else None
        progress = tqdm(unit="B", total=total, unit_scale=True)
        for chunk in req.iter_content(chunk_size=1024):
            if chunk: # filter out keep-alive new chunks
                progress.update(len(chunk))
                file_binary.write(chunk)

    os.rename(download_filepath, path)
    progress.close()


def batch_to_device(batch, target_device: device):
    """
    send a pytorch batch to a device (CPU/GPU)
    """
    for key in batch:
        if isinstance(batch[key], Tensor):
            batch[key] = batch[key].to(target_device)
    return batch


def fullname(o):
    """
    Gives a full name (package_name.class_name) for a class / object in Python. Will
    be used to load the correct classes from JSON files
    """

    module = o.__class__.__module__
    if module is None or module == str.__class__.__module__:
        return o.__class__.__name__  # Avoid reporting __builtin__
    else:
        return module + '.' + o.__class__.__name__


def import_from_string(dotted_path):
    """
    Import a dotted module path and return the attribute/class designated by the
    last name in the path. Raise ImportError if the import failed.
    """
    try:
        module_path, class_name = dotted_path.rsplit('.', 1)
    except ValueError:
        msg = "%s doesn't look like a module path" % dotted_path
        raise ImportError(msg)

    try:
        module = importlib.import_module(dotted_path)
    except:
        module = importlib.import_module(module_path)

    try:
        return getattr(module, class_name)
    except AttributeError:
        msg = 'Module "%s" does not define a "%s" attribute/class' % (module_path, class_name)
        raise ImportError(msg)