Welcome to mirror list, hosted at ThFree Co, Russian Federation.

X3DReader.py « X3DReader « plugins - github.com/Ultimaker/Cura.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: e4a59dcdaa58ad6a4f18369dcfaf50ac60483a0e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
# Contributed by Seva Alekseyev <sevaa@nih.gov> with National Institutes of Health, 2016
# Cura is released under the terms of the LGPLv3 or higher.

from math import pi, sin, cos, sqrt

import numpy

from UM.Job import Job
from UM.Logger import Logger
from UM.Math.Matrix import Matrix
from UM.Math.Vector import Vector
from UM.Mesh.MeshBuilder import MeshBuilder
from UM.Mesh.MeshReader import MeshReader
from UM.Scene.SceneNode import SceneNode

MYPY = False
try:
    if not MYPY:
        import xml.etree.cElementTree as ET
except ImportError:
    import xml.etree.ElementTree as ET
    
# TODO: preserve the structure of scenes that contain several objects
# Use CADPart, for example, to distinguish between separate objects    
    
DEFAULT_SUBDIV = 16 # Default subdivision factor for spheres, cones, and cylinders
EPSILON = 0.000001

class Shape:
    
    # Expects verts in MeshBuilder-ready format, as a n by 3 mdarray
    # with vertices stored in rows
    def __init__(self, verts, faces, index_base, name):
        self.verts = verts
        self.faces = faces
        # Those are here for debugging purposes only
        self.index_base = index_base 
        self.name = name
        
class X3DReader(MeshReader):
    def __init__(self):
        super().__init__()
        self._supported_extensions = [".x3d"]
        self._namespaces = {}
    
    # Main entry point
    # Reads the file, returns a SceneNode (possibly with nested ones), or None
    def read(self, file_name):
        try:
            self.defs = {}
            self.shapes = []
            
            tree = ET.parse(file_name)
            xml_root = tree.getroot()
            
            if xml_root.tag != "X3D":
                return None

            scale = 1000 # Default X3D unit it one meter, while Cura's is one millimeters            
            if xml_root[0].tag == "head":
                for head_node in xml_root[0]:
                    if head_node.tag == "unit" and head_node.attrib.get("category") == "length":
                        scale *= float(head_node.attrib["conversionFactor"])
                        break 
                xml_scene = xml_root[1]
            else:
                xml_scene = xml_root[0]
                
            if xml_scene.tag != "Scene":
                return None
            
            self.transform = Matrix()
            self.transform.setByScaleFactor(scale)
            self.index_base = 0
            
            # Traverse the scene tree, populate the shapes list
            self.processChildNodes(xml_scene)
            
            if self.shapes:
                builder = MeshBuilder()
                builder.setVertices(numpy.concatenate([shape.verts for shape in self.shapes]))
                builder.setIndices(numpy.concatenate([shape.faces for shape in self.shapes]))
                builder.calculateNormals()
                builder.setFileName(file_name)
                mesh_data = builder.build()

                # Manually try and get the extents of the mesh_data. This should prevent nasty NaN issues from
                # leaving the reader.
                mesh_data.getExtents()

                node = SceneNode()
                node.setMeshData(mesh_data)
                node.setSelectable(True)
                node.setName(file_name)

            else:
                return None
            
        except Exception:
            Logger.logException("e", "Exception in X3D reader")
            return None

        return node
    
    # ------------------------- XML tree traversal
  
    def processNode(self, xml_node):
        xml_node =  self.resolveDefUse(xml_node)
        if xml_node is None:
            return
        
        tag = xml_node.tag
        if tag in ("Group", "StaticGroup", "CADAssembly", "CADFace", "CADLayer", "Collision"):
            self.processChildNodes(xml_node)
        if tag == "CADPart":
            self.processTransform(xml_node) # TODO: split the parts
        elif tag == "LOD":
            self.processNode(xml_node[0])
        elif tag == "Transform":
            self.processTransform(xml_node)
        elif tag == "Shape":
            self.processShape(xml_node)
            
            
    def processShape(self, xml_node):
        # Find the geometry and the appearance inside the Shape
        geometry = appearance = None
        for sub_node in xml_node:
            if sub_node.tag == "Appearance" and not appearance:
                appearance = self.resolveDefUse(sub_node)
            elif sub_node.tag in self.geometry_importers and not geometry:
                geometry = self.resolveDefUse(sub_node)
        
        # TODO: appearance is completely ignored. At least apply the material color...        
        if not geometry is None:
            try:
                self.verts = self.faces = [] # Safeguard 
                self.geometry_importers[geometry.tag](self, geometry)
                m = self.transform.getData()
                verts = m.dot(self.verts)[:3].transpose()
                
                self.shapes.append(Shape(verts, self.faces, self.index_base, geometry.tag))
                self.index_base += len(verts)
                
            except Exception:
                Logger.logException("e", "Exception in X3D reader while reading %s", geometry.tag)
        
    # Returns the referenced node if the node has USE, the same node otherwise.
    # May return None is USE points at a nonexistent node
    # In X3DOM, when both DEF and USE are in the same node, DEF is ignored.
    # Big caveat: XML element objects may evaluate to boolean False!!!
    # Don't ever use "if node:", use "if not node is None:" instead
    def resolveDefUse(self, node):
        USE = node.attrib.get("USE")
        if USE:
            return self.defs.get(USE, None)

        DEF = node.attrib.get("DEF")            
        if DEF:
            self.defs[DEF] = node 
        return node
    
    def processChildNodes(self, node):
        for c in node:
            self.processNode(c)
            Job.yieldThread()
    
    # Since this is a grouping node, will recurse down the tree.
    # According to the spec, the final transform matrix is:
    # T * C * R * SR * S * -SR * -C
    # Where SR corresponds to the rotation matrix to scaleOrientation
    # C and SR are rather exotic. S, slightly less so. 
    def processTransform(self, node):
        rot = readRotation(node, "rotation", (0, 0, 1, 0)) # (angle, axisVactor) tuple
        trans = readVector(node, "translation", (0, 0, 0)) # Vector
        scale = readVector(node, "scale", (1, 1, 1)) # Vector
        center = readVector(node, "center", (0, 0, 0)) # Vector
        scale_orient = readRotation(node, "scaleOrientation", (0, 0, 1, 0)) # (angle, axisVactor) tuple
        
        # Store the previous transform; in Cura, the default matrix multiplication is in place        
        prev = Matrix(self.transform.getData()) # It's deep copy, I've checked
        
        # The rest of transform manipulation will be applied in place
        got_center = (center.x != 0 or center.y != 0 or center.z != 0)
        
        T = self.transform
        if trans.x != 0 or trans.y != 0 or trans.z !=0:
            T.translate(trans)
        if got_center:
            T.translate(center)
        if rot[0] != 0:
            T.rotateByAxis(*rot)
        if scale.x != 1 or scale.y != 1 or scale.z != 1:
            got_scale_orient = scale_orient[0] != 0
            if got_scale_orient:
                T.rotateByAxis(*scale_orient)
            # No scale by vector in place operation in UM
            S = Matrix()
            S.setByScaleVector(scale)
            T.multiply(S)
            if got_scale_orient:
                T.rotateByAxis(-scale_orient[0], scale_orient[1])
        if got_center:
            T.translate(-center)
            
        self.processChildNodes(node)
        self.transform = prev
    
    # ------------------------- Geometry importers
    # They are supposed to fill the self.verts and self.faces arrays, the caller will do the rest
    
    # Primitives

    def processGeometryBox(self, node):
        (dx, dy, dz) = readFloatArray(node, "size", [2, 2, 2])
        dx /= 2
        dy /= 2
        dz /= 2
        self.reserveFaceAndVertexCount(12, 8)

        # xz plane at +y, ccw
        self.addVertex(dx, dy, dz)
        self.addVertex(-dx, dy, dz)
        self.addVertex(-dx, dy, -dz)
        self.addVertex(dx, dy, -dz)
        # xz plane at -y
        self.addVertex(dx, -dy, dz)
        self.addVertex(-dx, -dy, dz)
        self.addVertex(-dx, -dy, -dz)
        self.addVertex(dx, -dy, -dz)
        
        self.addQuad(0, 1, 2, 3)   # +y
        self.addQuad(4, 0, 3, 7)   # +x
        self.addQuad(7, 3, 2, 6)   # -z
        self.addQuad(6, 2, 1, 5)   # -x
        self.addQuad(5, 1, 0, 4)   # +z
        self.addQuad(7, 6, 5, 4)  # -y
    
    # The sphere is subdivided into nr rings and ns segments
    def processGeometrySphere(self, node):
        r = readFloat(node, "radius", 0.5)
        subdiv = readIntArray(node, "subdivision", None)
        if subdiv:
            if len(subdiv) == 1:
                nr = ns = subdiv[0]
            else:
                (nr, ns) = subdiv
        else:
            nr = ns = DEFAULT_SUBDIV
            
        lau = pi / nr  # Unit angle of latitude (rings) for the given tesselation
        lou = 2 * pi / ns  # Unit angle of longitude (segments)
        
        self.reserveFaceAndVertexCount(ns*(nr*2 - 2), 2 + (nr - 1)*ns)
        
        # +y and -y poles
        self.addVertex(0, r, 0)
        self.addVertex(0, -r, 0)
        
        # The non-polar vertices go from x=0, negative z plane counterclockwise -
        # to -x, to +z, to +x, back to -z
        for ring in range(1, nr):
            for seg in range(ns):
                self.addVertex(-r*sin(lou * seg) * sin(lau * ring),
                          r*cos(lau * ring),
                          -r*cos(lou * seg) * sin(lau * ring))
                
        vb = 2 + (nr - 2) * ns  # First vertex index for the bottom cap
    
        # Faces go in order: top cap, sides, bottom cap.
        # Sides go by ring then by segment.
    
        # Caps
        # Top cap face vertices go in order: down right up
        # (starting from +y pole)
        # Bottom cap goes: up left down (starting from -y pole)
        for seg in range(ns):
            self.addTri(0, seg + 2, (seg + 1) % ns + 2)
            self.addTri(1, vb + (seg + 1) % ns, vb + seg)
    
        # Sides
        # Side face vertices go in order:  down right upleft, downright up left
        for ring in range(nr - 2):
            tvb = 2 + ring * ns
            # First vertex index for the top edge of the ring
            bvb = tvb + ns
            # First vertex index for the bottom edge of the ring
            for seg in range(ns):
                nseg = (seg + 1) % ns
                self.addQuad(tvb + seg, bvb + seg, bvb + nseg, tvb + nseg)
        
    def processGeometryCone(self, node):
        r = readFloat(node, "bottomRadius", 1)
        height = readFloat(node, "height", 2)
        bottom = readBoolean(node, "bottom", True)
        side = readBoolean(node, "side", True)
        n = readInt(node, "subdivision", DEFAULT_SUBDIV)
        
        d = height / 2
        angle = 2 * pi / n
    
        self.reserveFaceAndVertexCount((n if side else 0) + (n-2 if bottom else 0), n+1)
    
        # Vertex 0 is the apex, vertices 1..n are the bottom
        self.addVertex(0, d, 0)
        for i in range(n):
            self.addVertex(-r * sin(angle * i), -d, -r * cos(angle * i))
                    
        # Side face vertices go: up down right
        if side:
            for i in range(n):
                self.addTri(1 + (i + 1) % n, 0, 1 + i)
        if bottom:
            for i in range(2, n):
                self.addTri(1, i, i+1)
    
    def processGeometryCylinder(self, node):
        r = readFloat(node, "radius", 1)
        height = readFloat(node, "height", 2)
        bottom = readBoolean(node, "bottom", True)
        side = readBoolean(node, "side", True)
        top = readBoolean(node, "top", True)
        n = readInt(node, "subdivision", DEFAULT_SUBDIV)
        
        nn = n * 2
        angle = 2 * pi / n
        hh = height/2
        
        self.reserveFaceAndVertexCount((nn if side else 0) + (n - 2 if top else 0) + (n - 2 if bottom else 0), nn)
        
        # The seam is at x=0, z=-r, vertices go ccw -
        # to pos x, to neg z, to neg x, back to neg z
        for i in range(n):
            rs = -r * sin(angle * i)
            rc = -r * cos(angle * i)
            self.addVertex(rs, hh, rc)
            self.addVertex(rs, -hh, rc)
        
        if side:
            for i in range(n):
                ni = (i + 1) % n
                self.addQuad(ni * 2 + 1, ni * 2, i * 2, i * 2 + 1)
            
        for i in range(2, nn-3, 2):
            if top:
                self.addTri(0, i, i+2)
            if bottom:
                self.addTri(1, i+1, i+3)
    
    # Semi-primitives

    def processGeometryElevationGrid(self, node):
        dx = readFloat(node, "xSpacing", 1)
        dz = readFloat(node, "zSpacing", 1)
        nx = readInt(node, "xDimension", 0)
        nz = readInt(node, "zDimension", 0)
        height = readFloatArray(node, "height", False)
        ccw = readBoolean(node, "ccw", True)
        
        if nx <= 0 or nz <= 0 or len(height) < nx*nz:
            return # That's weird, the wording of the standard suggests grids with zero quads are somehow valid
        
        self.reserveFaceAndVertexCount(2*(nx-1)*(nz-1), nx*nz)
        
        for z in range(nz):
            for x in range(nx):
                self.addVertex(x * dx, height[z*nx + x], z * dz)
                
        for z in range(1, nz):
            for x in range(1, nx):
                self.addTriFlip((z - 1)*nx + x - 1, z*nx + x, (z - 1)*nx + x, ccw)
                self.addTriFlip((z - 1)*nx + x - 1, z*nx + x - 1, z*nx + x, ccw)
    
    def processGeometryExtrusion(self, node):
        ccw = readBoolean(node, "ccw", True)
        begin_cap = readBoolean(node, "beginCap", True)
        end_cap = readBoolean(node, "endCap", True)
        cross = readFloatArray(node, "crossSection", (1, 1, 1, -1, -1, -1, -1, 1, 1, 1))
        cross = [(cross[i], cross[i+1]) for i in range(0, len(cross), 2)]
        spine = readFloatArray(node, "spine", (0, 0, 0, 0, 1, 0))
        spine = [(spine[i], spine[i+1], spine[i+2]) for i in range(0, len(spine), 3)]
        orient = readFloatArray(node, "orientation", None)
        if orient:
            # This converts X3D's axis/angle rotation to a 3x3 numpy matrix
            def toRotationMatrix(rot):
                (x, y, z) = rot[:3]
                a = rot[3]  
                s = sin(a)
                c = cos(a)
                t = 1-c
                return numpy.array((
                    (x * x * t + c,  x * y * t - z*s, x * z * t + y * s),
                    (x * y * t + z*s, y * y * t + c, y * z * t - x * s),
                    (x * z * t - y * s, y * z * t + x * s, z * z * t + c)))   
            
            orient = [toRotationMatrix(orient[i:i+4]) if orient[i+3] != 0 else None for i in range(0, len(orient), 4)]
            
        scale = readFloatArray(node, "scale", None)
        if scale:
            scale = [numpy.array(((scale[i], 0, 0), (0, 1, 0), (0, 0, scale[i+1])))
                     if scale[i] != 1 or scale[i+1] != 1 else None for i in range(0, len(scale), 2)]
        
        
        # Special treatment for the closed spine and cross section.
        # Let's save some memory by not creating identical but distinct vertices;
        # later we'll introduce conditional logic to link the last vertex with
        # the first one where necessary.
        crossClosed = cross[0] == cross[-1]
        if crossClosed:
            cross = cross[:-1]
        nc = len(cross)
        cross = [numpy.array((c[0], 0, c[1])) for c in cross]
        ncf = nc if crossClosed else nc - 1
        # Face count along the cross; for closed cross, it's the same as the
        # respective vertex count
    
        spine_closed = spine[0] == spine[-1]
        if spine_closed:
            spine = spine[:-1]
        ns = len(spine)
        spine = [Vector(*s) for s in spine]
        nsf = ns if spine_closed else ns - 1
    
        # This will be used for fallback, where the current spine point joins
        # two collinear spine segments. No need to recheck the case of the
        # closed spine/last-to-first point juncture; if there's an angle there,
        # it would kick in on the first iteration of the main loop by spine.
        def findFirstAngleNormal():
            for i in range(1, ns - 1):
                spt = spine[i]
                z = (spine[i + 1] - spt).cross(spine[i - 1] - spt)
                if z.length() > EPSILON:
                    return z
            # All the spines are collinear. Fallback to the rotated source
            # XZ plane.
            # TODO: handle the situation where the first two spine points match
            if len(spine) < 2:
                return Vector(0, 0, 1)
            v = spine[1] - spine[0]
            orig_y = Vector(0, 1, 0)
            orig_z = Vector(0, 0, 1)
            if v.cross(orig_y).length() > EPSILON:
                # Spine at angle with global y - rotate the z accordingly
                a = v.cross(orig_y) # Axis of rotation to get to the Z
                (x, y, z) = a.normalized().getData()  
                s = a.length()/v.length()
                c = sqrt(1-s*s)
                t = 1-c
                m = numpy.array((
                    (x * x * t + c,  x * y * t + z*s, x * z * t - y * s),
                    (x * y * t - z*s, y * y * t + c, y * z * t + x * s),
                    (x * z * t + y * s, y * z * t - x * s, z * z * t + c)))
                orig_z = Vector(*m.dot(orig_z.getData()))
            return orig_z
    
        self.reserveFaceAndVertexCount(2*nsf*ncf + (nc - 2 if begin_cap else 0) + (nc - 2 if end_cap else 0), ns*nc)

        z = None
        for i, spt in enumerate(spine):
            if (i > 0 and i < ns - 1) or spine_closed:
                snext = spine[(i + 1) % ns]
                sprev = spine[(i - 1 + ns) % ns]
                y = snext - sprev
                vnext = snext - spt
                vprev = sprev - spt
                try_z = vnext.cross(vprev)
                # Might be zero, then all kinds of fallback
                if try_z.length() > EPSILON:
                    if z is not None and try_z.dot(z) < 0:
                        try_z = -try_z
                    z = try_z
                elif not z:  # No z, and no previous z.
                    # Look ahead, see if there's at least one point where
                    # spines are not collinear.
                    z = findFirstAngleNormal()
            elif i == 0:  # And non-crossed
                snext = spine[i + 1]
                y = snext - spt
                z = findFirstAngleNormal()
            else:  # last point and not crossed
                sprev = spine[i - 1]
                y = spt - sprev
                # If there's more than one point in the spine, z is already set.
                # One point in the spline is an error anyway.
    
            z = z.normalized()
            y = y.normalized()
            x = y.cross(z) # Already normalized
            m = numpy.array(((x.x, y.x, z.x), (x.y, y.y, z.y), (x.z, y.z, z.z)))
            
            # Columns are the unit vectors for the xz plane for the cross-section
            if orient:
                mrot = orient[i] if len(orient) > 1 else orient[0]
                if not mrot is None:
                    m = m.dot(mrot)  # Tested against X3DOM, the result matches, still not sure :(
                    
            if scale:
                mscale = scale[i] if len(scale) > 1 else scale[0]
                if not mscale is None:
                    m = m.dot(mscale)
                    
            # First the cross-section 2-vector is scaled,
            # then rotated (which may make it a 3-vector),
            # then applied to the xz plane unit vectors
                    
            sptv3 = numpy.array(spt.getData()[:3])
            for cpt in cross:
                v = sptv3 + m.dot(cpt)
                self.addVertex(*v)
    
        if begin_cap:
            self.addFace([x for x in range(nc - 1, -1, -1)], ccw)
    
        # Order of edges in the face: forward along cross, forward along spine,
        # backward along cross, backward along spine, flipped if now ccw.
        # This order is assumed later in the texture coordinate assignment;
        # please don't change without syncing.
    
        for s in range(ns - 1):
            for c in range(ncf):
                self.addQuadFlip(s * nc + c, s * nc + (c + 1) % nc,
                    (s + 1) * nc + (c + 1) % nc, (s + 1) * nc + c, ccw)
    
        if spine_closed:
            # The faces between the last and the first spine points
            b = (ns - 1) * nc
            for c in range(ncf):
                self.addQuadFlip(b + c, b + (c + 1) % nc,
                    (c + 1) % nc, c, ccw)
                        
        if end_cap:
            self.addFace([(ns - 1) * nc + x for x in range(0, nc)], ccw)
    
# Triangle meshes

    # Helper for numerous nodes with a Coordinate subnode holding vertices
    # That all triangle meshes and IndexedFaceSet
    # num_faces can be a function, in case the face count is a function of vertex count 
    def startCoordMesh(self, node, num_faces):
        ccw = readBoolean(node, "ccw", True)
        self.readVertices(node) # This will allocate and fill the vertex array
        if hasattr(num_faces, "__call__"):
            num_faces = num_faces(self.getVertexCount())
        self.reserveFaceCount(num_faces)
            
        return ccw
        

    def processGeometryIndexedTriangleSet(self, node):
        index = readIntArray(node, "index", [])
        num_faces = len(index) // 3
        ccw = int(self.startCoordMesh(node, num_faces))
        
        for i in range(0, num_faces*3, 3):
            self.addTri(index[i + 1 - ccw], index[i + ccw], index[i+2])
    
    def processGeometryIndexedTriangleStripSet(self, node):
        strips = readIndex(node, "index")
        ccw = int(self.startCoordMesh(node, sum([len(strip) - 2 for strip in strips])))
            
        for strip in strips:
            sccw = ccw # Running CCW value, reset for each strip
            for i in range(len(strip) - 2):
                self.addTri(strip[i + 1 - sccw], strip[i + sccw], strip[i+2])
                sccw = 1 - sccw
    
    def processGeometryIndexedTriangleFanSet(self, node):
        fans = readIndex(node, "index")
        ccw = int(self.startCoordMesh(node, sum([len(fan) - 2 for fan in fans])))
        
        for fan in fans:
            for i in range(1, len(fan) - 1):
                self.addTri(fan[0], fan[i + 1 - ccw], fan[i + ccw])
   
    def processGeometryTriangleSet(self, node):
        ccw = int(self.startCoordMesh(node, lambda num_vert: num_vert // 3))
        for i in range(0, self.getVertexCount(), 3):
            self.addTri(i + 1 - ccw, i + ccw, i+2)
    
    def processGeometryTriangleStripSet(self, node):
        strips = readIntArray(node, "stripCount", [])
        ccw = int(self.startCoordMesh(node, sum([n-2 for n in strips])))
            
        vb = 0
        for n in strips:
            sccw = ccw
            for i in range(n-2): 
                self.addTri(vb + i + 1 - sccw, vb + i + sccw, vb + i + 2)
                sccw = 1 - sccw
            vb += n
    
    def processGeometryTriangleFanSet(self, node):
        fans = readIntArray(node, "fanCount", [])
        ccw = int(self.startCoordMesh(node, sum([n-2 for n in fans])))
        
        vb = 0
        for n in fans:
            for i in range(1, n-1): 
                self.addTri(vb, vb + i + 1 - ccw, vb + i + ccw)
            vb += n
            
    # Quad geometries from the CAD module, might be relevant for printing
    
    def processGeometryQuadSet(self, node):
        ccw = self.startCoordMesh(node, lambda num_vert: 2*(num_vert // 4))
        for i in range(0, self.getVertexCount(), 4):
            self.addQuadFlip(i, i+1, i+2, i+3, ccw)
            
    def processGeometryIndexedQuadSet(self, node):
        index = readIntArray(node, "index", [])
        num_quads = len(index) // 4
        ccw = self.startCoordMesh(node, num_quads*2)
        
        for i in range(0, num_quads*4, 4):
            self.addQuadFlip(index[i], index[i+1], index[i+2], index[i+3], ccw)
            
    # 2D polygon geometries
    # Won't work for now, since Cura expects every mesh to have a nontrivial convex hull
    # The only way around that is merging meshes.
    
    def processGeometryDisk2D(self, node):
        innerRadius = readFloat(node, "innerRadius", 0)
        outerRadius = readFloat(node, "outerRadius", 1)
        n = readInt(node, "subdivision", DEFAULT_SUBDIV)
        
        angle = 2 * pi / n
        
        self.reserveFaceAndVertexCount(n*4 if innerRadius else n-2, n*2 if innerRadius else n)
            
        for i in range(n):
            s = sin(angle * i)
            c = cos(angle * i)
            self.addVertex(outerRadius*c, outerRadius*s, 0)
            if innerRadius:
                self.addVertex(innerRadius*c, innerRadius*s, 0)
                ni = (i+1) % n
                self.addQuad(2*i, 2*ni, 2*ni+1, 2*i+1)
                
        if not innerRadius:
            for i in range(2, n):
                self.addTri(0, i-1, i)
                
    def processGeometryRectangle2D(self, node):
        (x, y) = readFloatArray(node, "size", (2, 2))
        self.reserveFaceAndVertexCount(2, 4)
        self.addVertex(-x/2, -y/2, 0)
        self.addVertex(x/2, -y/2, 0)
        self.addVertex(x/2, y/2, 0)
        self.addVertex(-x/2, y/2, 0)
        self.addQuad(0, 1, 2, 3)
        
    def processGeometryTriangleSet2D(self, node):
        verts = readFloatArray(node, "vertices", ())
        num_faces = len(verts) // 6;
        verts = [(verts[i], verts[i+1], 0) for i in range(0, 6 * num_faces, 2)]
        self.reserveFaceAndVertexCount(num_faces, num_faces * 3)
        for vert in verts:
            self.addVertex(*vert)
        
        # The front face is on the +Z side, so CCW is a variable
        for i in range(0, num_faces*3, 3):
            a = Vector(*verts[i+2]) - Vector(*verts[i])
            b = Vector(*verts[i+1]) - Vector(*verts[i])
            self.addTriFlip(i, i+1, i+2, a.x*b.y > a.y*b.x)
    
    # General purpose polygon mesh

    def processGeometryIndexedFaceSet(self, node):
        faces = readIndex(node, "coordIndex")
        ccw = self.startCoordMesh(node, sum([len(face) - 2 for face in faces]))
            
        for face in faces:
            if len(face) == 3:
                self.addTriFlip(face[0], face[1], face[2], ccw)
            elif len(face) > 3:
                self.addFace(face, ccw)
                
    geometry_importers = {
        "IndexedFaceSet": processGeometryIndexedFaceSet,
        "IndexedTriangleSet": processGeometryIndexedTriangleSet,
        "IndexedTriangleStripSet": processGeometryIndexedTriangleStripSet,
        "IndexedTriangleFanSet": processGeometryIndexedTriangleFanSet,
        "TriangleSet": processGeometryTriangleSet,
        "TriangleStripSet": processGeometryTriangleStripSet,
        "TriangleFanSet": processGeometryTriangleFanSet,
        "QuadSet": processGeometryQuadSet,
        "IndexedQuadSet": processGeometryIndexedQuadSet,
        "TriangleSet2D": processGeometryTriangleSet2D,
        "Rectangle2D": processGeometryRectangle2D,
        "Disk2D": processGeometryDisk2D,
        "ElevationGrid": processGeometryElevationGrid,
        "Extrusion": processGeometryExtrusion,
        "Sphere": processGeometrySphere,
        "Box": processGeometryBox,
        "Cylinder": processGeometryCylinder,
        "Cone": processGeometryCone
    }
    
    # Parses the Coordinate.@point field, fills the verts array.
    def readVertices(self, node):
        for c in node:
            if c.tag == "Coordinate":
                c = self.resolveDefUse(c)
                if not c is None:
                    pt = c.attrib.get("point")
                    if pt:
                        # allow the list of float values in 'point' attribute to 
                        # be separated by commas or whitespace as per spec of 
                        # XML encoding of X3D 
                        # Ref  ISO/IEC 19776-1:2015 : Section 5.1.2
                        co = [float(x) for vec in pt.split(',') for x in vec.split()]
                        num_verts = len(co) // 3
                        self.verts = numpy.empty((4, num_verts), dtype=numpy.float32)
                        self.verts[3,:] = numpy.ones((num_verts), dtype=numpy.float32)
                        # Group by three
                        for i in range(num_verts):
                            self.verts[:3,i] = co[3*i:3*i+3]
    
    # Mesh builder helpers
    
    def reserveFaceAndVertexCount(self, num_faces, num_verts):
        # Unlike the Cura MeshBuilder, we use 4-vectors stored as columns for easier transform
        self.verts = numpy.zeros((4, num_verts), dtype=numpy.float32)
        self.verts[3,:] = numpy.ones((num_verts), dtype=numpy.float32)
        self.num_verts = 0
        self.reserveFaceCount(num_faces)
        
    def reserveFaceCount(self, num_faces):
        self.faces = numpy.zeros((num_faces, 3), dtype=numpy.int32)
        self.num_faces = 0
        
    def getVertexCount(self):
        return self.verts.shape[1]
        
    def addVertex(self, x, y, z):
        self.verts[0, self.num_verts] = x
        self.verts[1, self.num_verts] = y
        self.verts[2, self.num_verts] = z
        self.num_verts += 1
    
    # Indices are 0-based for this shape, but they won't be zero-based in the merged mesh
    def addTri(self, a, b, c):
        self.faces[self.num_faces, 0] = self.index_base + a
        self.faces[self.num_faces, 1] = self.index_base + b
        self.faces[self.num_faces, 2] = self.index_base + c
        self.num_faces += 1
        
    def addTriFlip(self, a, b, c, ccw):
        if ccw:
            self.addTri(a, b, c)
        else:
            self.addTri(b, a, c)
        
    # Needs to be convex, but not necessaily planar
    # Assumed ccw, cut along the ac diagonal
    def addQuad(self, a, b, c, d):
        self.addTri(a, b, c)
        self.addTri(c, d, a)
        
    def addQuadFlip(self, a, b, c, d, ccw):
        if ccw:
            self.addTri(a, b, c)
            self.addTri(c, d, a)
        else:
            self.addTri(a, c, b)
            self.addTri(c, a, d)    
    
    
    # Arbitrary polygon triangulation.
    # Doesn't assume convexity and doesn't check the "convex" flag in the file.
    # Works by the "cutting of ears" algorithm:
    # - Find an outer vertex with the smallest angle and no vertices inside its adjacent triangle
    # - Remove the triangle at that vertex
    # - Repeat until done
    # Vertex coordinates are supposed to be already set
    def addFace(self, indices, ccw):
        # Resolve indices to coordinates for faster math
        face = [Vector(data=self.verts[0:3, i]) for i in indices]
        
        # Need a normal to the plane so that we can know which vertices form inner angles
        normal = findOuterNormal(face)
            
        if not normal: # Couldn't find an outer edge, non-planar polygon maybe?
            return
        
        # Find the vertex with the smallest inner angle and no points inside, cut off. Repeat until done
        n = len(face)
        vi = [i for i in range(n)] # We'll be using this to kick vertices from the face
        while n > 3:
            max_cos = EPSILON # We don't want to check anything on Pi angles
            i_min = 0 # max cos corresponds to min angle
            for i in range(n):
                inext = (i + 1) % n
                iprev = (i + n - 1) % n
                v = face[vi[i]]
                next = face[vi[inext]] - v
                prev = face[vi[iprev]] - v
                nextXprev = next.cross(prev)
                if nextXprev.dot(normal) > EPSILON: # If it's an inner angle
                    cos = next.dot(prev) / (next.length() * prev.length())
                    if cos > max_cos:
                        # Check if there are vertices inside the triangle
                        no_points_inside = True
                        for j in range(n):
                            if j != i and j != iprev and j != inext:
                                vx = face[vi[j]] - v
                                if pointInsideTriangle(vx, next, prev, nextXprev):
                                    no_points_inside = False
                                    break
                                
                        if no_points_inside:
                            max_cos = cos
                            i_min = i
                            
            self.addTriFlip(indices[vi[(i_min + n - 1) % n]], indices[vi[i_min]], indices[vi[(i_min + 1) % n]], ccw)
            vi.pop(i_min)
            n -= 1
        self.addTriFlip(indices[vi[0]], indices[vi[1]], indices[vi[2]], ccw)

    
# ------------------------------------------------------------
# X3D field parsers
# ------------------------------------------------------------
def readFloatArray(node, attr, default):
    s = node.attrib.get(attr)
    if not s:
        return default
    return [float(x) for x in s.split()]

def readIntArray(node, attr, default):
    s = node.attrib.get(attr)
    if not s:
        return default
    return [int(x, 0) for x in s.split()]

def readFloat(node, attr, default):
    s = node.attrib.get(attr)
    if not s:
        return default
    return float(s)

def readInt(node, attr, default):
    s = node.attrib.get(attr)
    if not s:
        return default
    return int(s, 0)
     
def readBoolean(node, attr, default):
    s = node.attrib.get(attr)
    if not s:
        return default
    return s.lower() == "true"

def readVector(node, attr, default):
    v = readFloatArray(node, attr, default)
    return Vector(v[0], v[1], v[2])

def readRotation(node, attr, default):
    v = readFloatArray(node, attr, default)
    return (v[3], Vector(v[0], v[1], v[2]))

# Returns the -1-separated runs
def readIndex(node, attr):
    v = readIntArray(node, attr, [])
    chunks = []
    chunk = []
    for i in range(len(v)):
        if v[i] == -1:
            if chunk:
                chunks.append(chunk)
                chunk = []
        else:
            chunk.append(v[i])
    if chunk:
        chunks.append(chunk)
    return chunks  
  
# Given a face as a sequence of vectors, returns a normal to the polygon place that forms a right triple
# with a vector along the polygon sequence and a vector backwards
def findOuterNormal(face):
    n = len(face)
    for i in range(n):
        for j in range(i+1, n):
            edge = face[j] - face[i]
            if edge.length() > EPSILON:
                edge = edge.normalized()
                prev_rejection = Vector()
                is_outer = True
                for k in range(n):
                    if k != i and k != j:
                        pt = face[k] - face[i]
                        pte = pt.dot(edge)
                        rejection = pt - edge*pte
                        if rejection.dot(prev_rejection) < -EPSILON: # points on both sides of the edge - not an outer one
                            is_outer = False
                            break
                        elif rejection.length() > prev_rejection.length(): # Pick a greater rejection for numeric stability 
                            prev_rejection = rejection
                        
                if is_outer: # Found an outer edge, prev_rejection is the rejection inside the face. Generate a normal.
                    return edge.cross(prev_rejection)

    return False

# Given two *collinear* vectors a and b, returns the coefficient that takes b to a.    
# No error handling.
# For stability, taking the ration between the biggest coordinates would be better...   
def ratio(a, b):
    if b.x > EPSILON or b.x < -EPSILON:
        return a.x / b.x
    elif b.y > EPSILON or b.y < -EPSILON:
        return a.y / b.y
    else:
        return a.z / b.z    
    
def pointInsideTriangle(vx, next, prev, nextXprev):
    vxXprev = vx.cross(prev)
    r = ratio(vxXprev, nextXprev)
    if r < 0:
        return False
    vxXnext = vx.cross(next);
    s = -ratio(vxXnext, nextXprev)
    return s > 0 and (s + r) < 1