Welcome to mirror list, hosted at ThFree Co, Russian Federation.

TreeSupport.cpp « src - github.com/Ultimaker/CuraEngine.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 278cd3e16b7376e20101784567ef0a6595d507a7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
//Copyright (c) 2021 Ultimaker B.V.
//CuraEngine is released under the terms of the AGPLv3 or higher.

#include "Application.h" //To get settings.
#include "ExtruderTrain.h"
#include "Slice.h"
#include "sliceDataStorage.h"
#include "TreeSupport.h"
#include "progress/Progress.h"
#include "settings/EnumSettings.h"
#include "settings/types/Angle.h" //Creating the correct branch angles.
#include "settings/types/Ratio.h"
#include "utils/algorithm.h"
#include "utils/IntPoint.h" //To normalize vectors.
#include "utils/logoutput.h"
#include "utils/math.h" //For round_up_divide and PI.
#include "utils/MinimumSpanningTree.h" //For connecting the correct nodes together to form an efficient tree.
#include "utils/polygon.h" //For splitting polygons into parts.
#include "utils/polygonUtils.h" //For moveInside.

#include <mutex>

#define SQRT_2 1.4142135623730950488 //Square root of 2.
#define CIRCLE_RESOLUTION 10 //The number of vertices in each circle.

//The various stages of the process can be weighted differently in the progress bar.
//These weights are obtained experimentally.
#define PROGRESS_WEIGHT_DROPDOWN 50 //Dropping down support.
#define PROGRESS_WEIGHT_AREAS 1 //Creating support areas.

namespace cura
{

TreeSupport::TreeSupport(const SliceDataStorage& storage) :
    volumes_(storage, Application::getInstance().current_slice->scene.current_mesh_group->settings)
{
}

void TreeSupport::generateSupportAreas(SliceDataStorage& storage)
{
    const Settings& group_settings = Application::getInstance().current_slice->scene.current_mesh_group->settings;
    const bool global_use_tree_support =
        group_settings.get<bool>("support_enable")&&
        group_settings.get<ESupportStructure>("support_structure") == ESupportStructure::TREE;

    if (!(global_use_tree_support ||
          std::any_of(storage.meshes.cbegin(),
                      storage.meshes.cend(),
                      [](const SliceMeshStorage& m) {
                          return m.settings.get<bool>("support_enable") &&
                                 m.settings.get<ESupportStructure>("support_structure") == ESupportStructure::TREE;
                      })))
    {
        return;
    }

    std::vector<std::vector<Node*>> contact_nodes(storage.support.supportLayers.size()); //Generate empty layers to store the points in.
    for (SliceMeshStorage& mesh : storage.meshes)
    {
        if (mesh.settings.get<ESupportStructure>("support_structure") == ESupportStructure::TREE)
        {
            generateContactPoints(mesh, contact_nodes);
        }
    }

    //Drop nodes to lower layers.
    dropNodes(contact_nodes);

    //Generate support areas.
    drawCircles(storage, contact_nodes);

    for (auto& layer : contact_nodes)
    {
        for (Node* p_node : layer)
        {
            delete p_node;
        }
        layer.clear();
    }
    contact_nodes.clear();

    storage.support.generated = true;
}

void TreeSupport::drawCircles(SliceDataStorage& storage, const std::vector<std::vector<Node*>>& contact_nodes)
{
    const Settings& mesh_group_settings = Application::getInstance().current_slice->scene.current_mesh_group->settings;
    const coord_t branch_radius = mesh_group_settings.get<coord_t>("support_tree_branch_diameter") / 2;
    const size_t wall_count = mesh_group_settings.get<size_t>("support_wall_count");
    Polygon branch_circle = PolygonUtils::makeCircle(Point(0, 0), branch_radius, TAU / CIRCLE_RESOLUTION); //Pre-generate a circle with correct diameter so that we don't have to recompute those (co)sines every time.
    const coord_t circle_side_length = 2 * branch_radius * sin(M_PI / CIRCLE_RESOLUTION); //Side length of a regular polygon.
    const coord_t z_distance_bottom = mesh_group_settings.get<coord_t>("support_bottom_distance");
    const coord_t layer_height = mesh_group_settings.get<coord_t>("layer_height");
    const size_t z_distance_bottom_layers = round_up_divide(z_distance_bottom, layer_height) > 0 ? round_up_divide(z_distance_bottom, layer_height) : 1;
    const double diameter_angle_scale_factor = sin(mesh_group_settings.get<AngleRadians>("support_tree_branch_diameter_angle")) * layer_height / branch_radius; //Scale factor per layer to produce the desired angle.
    const coord_t line_width = mesh_group_settings.get<coord_t>("support_line_width");
    const coord_t minimum_tip_radius = line_width / 2 * 1.5; //End up slightly wider than 1 line width in the tip.
    const size_t tip_layers = (branch_radius - minimum_tip_radius) / layer_height; //The number of layers to be shrinking the circle to create a tip. This produces a 45 degree angle.
    const coord_t resolution = mesh_group_settings.get<coord_t>("support_tree_collision_resolution");

    std::atomic<size_t> completed = 0; //To track progress in a multi-threaded environment.
    std::mutex critical_sections;
    cura::parallel_for<size_t>(0, contact_nodes.size(), 1, [&](const size_t layer_nr)
    {
        Polygons support_layer;
        Polygons& roof_layer = storage.support.supportLayers[layer_nr].support_roof;

        //Draw the support areas and add the roofs appropriately to the support roof instead of normal areas.
        for (const Node* p_node : contact_nodes[layer_nr])
        {
            const Node& node = *p_node;

            Polygon circle;
            //Scale linearly between branch radius and 1 line width.
            //At the tip we want to end up at 1 line width diameter so that the tip still prints if you have 1 support wall.
            const double ratio_to_tip = static_cast<double>(node.distance_to_top) / tip_layers;
            const double scale = (minimum_tip_radius + ratio_to_tip * (branch_radius - minimum_tip_radius)) / branch_radius;
            for (Point corner : branch_circle)
            {
                if (node.distance_to_top < tip_layers) //We're in the tip.
                {
                    const int mul = node.skin_direction ? 1 : -1;
                    corner = Point(corner.X * (0.5 + scale / 2) + mul * corner.Y * (0.5 - scale / 2),
                                   mul * corner.X * (0.5 - scale / 2) + corner.Y * (0.5 + scale / 2));
                }
                else
                {
                    corner = corner * (1 + static_cast<double>(node.distance_to_top - tip_layers) * diameter_angle_scale_factor);
                }
                circle.add(node.position + corner);
            }
            if (node.support_roof_layers_below > 0)
            {
                roof_layer.add(circle);
            }
            else
            {
                support_layer.add(circle);
            }
        }
        support_layer = support_layer.unionPolygons();
        roof_layer = roof_layer.unionPolygons();
        const size_t z_collision_layer = static_cast<size_t>(std::max(0, static_cast<int>(layer_nr) - static_cast<int>(z_distance_bottom_layers) + 1)); //Layer to test against to create a Z-distance.
        support_layer = support_layer.difference(volumes_.getCollision(0, z_collision_layer)); //Subtract the model itself (sample 0 is with 0 diameter but proper X/Y offset).
        roof_layer = roof_layer.difference(volumes_.getCollision(0, z_collision_layer));
        support_layer = support_layer.difference(roof_layer);
        //We smooth this support as much as possible without altering single circles. So we remove any line less than the side length of those circles.
        const double diameter_angle_scale_factor_this_layer = static_cast<double>(storage.support.supportLayers.size() - layer_nr - tip_layers) * diameter_angle_scale_factor; //Maximum scale factor.
        support_layer.simplify(circle_side_length * (1 + diameter_angle_scale_factor_this_layer), resolution); //Don't deviate more than the collision resolution so that the lines still stack properly.

        //Subtract support floors.
        if (mesh_group_settings.get<bool>("support_bottom_enable"))
        {
            Polygons& floor_layer = storage.support.supportLayers[layer_nr].support_bottom;
            const coord_t support_interface_resolution = mesh_group_settings.get<coord_t>("support_interface_skip_height");
            const size_t support_interface_skip_layers = round_up_divide(support_interface_resolution, layer_height);
            const coord_t support_bottom_height = mesh_group_settings.get<coord_t>("support_bottom_height");
            const size_t support_bottom_height_layers = round_up_divide(support_bottom_height, layer_height);
            for(size_t layers_below = 0; layers_below < support_bottom_height_layers; layers_below += support_interface_skip_layers)
            {
                const size_t sample_layer = static_cast<size_t>(std::max(0, static_cast<int>(layer_nr) - static_cast<int>(layers_below) - static_cast<int>(z_distance_bottom_layers)));
                constexpr bool no_support = false;
                constexpr bool no_prime_tower = false;
                floor_layer.add(support_layer.intersection(storage.getLayerOutlines(sample_layer, no_support, no_prime_tower)));
            }
            { //One additional sample at the complete bottom height.
                const size_t sample_layer = static_cast<size_t>(std::max(0, static_cast<int>(layer_nr) - static_cast<int>(support_bottom_height_layers) - static_cast<int>(z_distance_bottom_layers)));
                constexpr bool no_support = false;
                constexpr bool no_prime_tower = false;
                floor_layer.add(support_layer.intersection(storage.getLayerOutlines(sample_layer, no_support, no_prime_tower)));
            }
            floor_layer = floor_layer.unionPolygons();
            support_layer = support_layer.difference(floor_layer.offset(10)); //Subtract the support floor from the normal support.
        }

        std::vector<PolygonsPart> support_layer_parts = support_layer.splitIntoParts();
        for (PolygonsPart& part : support_layer_parts) //Convert every part into a PolygonsPart for the support.
        {
            storage.support.supportLayers[layer_nr].support_infill_parts.emplace_back(part, line_width, wall_count);
        }

        {
            std::lock_guard<std::mutex> critical_section_support_max_layer_nr(critical_sections);

            if (!storage.support.supportLayers[layer_nr].support_infill_parts.empty() || !storage.support.supportLayers[layer_nr].support_roof.empty())
            {
                storage.support.layer_nr_max_filled_layer = std::max(storage.support.layer_nr_max_filled_layer, static_cast<int>(layer_nr));
            }
        }

        ++completed;

        {
            std::lock_guard<std::mutex> critical_section_progress(critical_sections);

            const double progress_contact_nodes = contact_nodes.size() * PROGRESS_WEIGHT_DROPDOWN;
            const double progress_current = completed * PROGRESS_WEIGHT_AREAS;
            const double progress_total = completed * PROGRESS_WEIGHT_AREAS;
            Progress::messageProgress(Progress::Stage::SUPPORT, progress_contact_nodes + progress_current, progress_contact_nodes + progress_total);
        }
    });
}

void TreeSupport::dropNodes(std::vector<std::vector<Node*>>& contact_nodes)
{
    const Settings& mesh_group_settings = Application::getInstance().current_slice->scene.current_mesh_group->settings;
    //Use Minimum Spanning Tree to connect the points on each layer and move them while dropping them down.
    const coord_t layer_height = mesh_group_settings.get<coord_t>("layer_height");
    const auto support_xy_distance = mesh_group_settings.get<coord_t>("support_xy_distance");
    const double angle = mesh_group_settings.get<AngleRadians>("support_tree_angle");
    const coord_t maximum_move_distance = angle < 90 ? static_cast<coord_t>(tan(angle) * layer_height) : std::numeric_limits<coord_t>::max();
    const coord_t branch_radius = mesh_group_settings.get<coord_t>("support_tree_branch_diameter") / 2;
    const size_t tip_layers = branch_radius / layer_height; //The number of layers to be shrinking the circle to create a tip. This produces a 45 degree angle.
    const double diameter_angle_scale_factor = sin(mesh_group_settings.get<AngleRadians>("support_tree_branch_diameter_angle")) * layer_height / branch_radius; //Scale factor per layer to produce the desired angle.
    const coord_t radius_sample_resolution = mesh_group_settings.get<coord_t>("support_tree_collision_resolution");
    const bool support_rests_on_model = mesh_group_settings.get<ESupportType>("support_type") == ESupportType::EVERYWHERE;

    std::unordered_set<Node*> to_free_node_set;

    for (size_t layer_nr = contact_nodes.size() - 1; layer_nr > 0; layer_nr--) //Skip layer 0, since we can't drop down the vertices there.
    {
        auto& layer_contact_nodes = contact_nodes[layer_nr];
        std::deque<std::pair<size_t, Node*>> unsupported_branch_leaves; // All nodes that are leaves on this layer that would result in unsupported ('mid-air') branches.

        //Group together all nodes for each part.
        std::vector<PolygonsPart> parts = volumes_.getAvoidance(support_xy_distance, layer_nr).splitIntoParts();
        std::vector<std::unordered_map<Point, Node*>> nodes_per_part;
        nodes_per_part.emplace_back(); //All nodes that aren't inside a part get grouped together in the 0th part.
        for (size_t part_index = 0; part_index < parts.size(); part_index++)
        {
            nodes_per_part.emplace_back();
        }
        for (Node* p_node : layer_contact_nodes)
        {
            const Node& node = *p_node;

            if (!support_rests_on_model && !node.to_buildplate) //Can't rest on model and unable to reach the build plate. Then we must drop the node and leave parts unsupported.
            {
                unsupported_branch_leaves.push_front({ layer_nr, p_node });
                continue;
            }
            if (node.to_buildplate || parts.empty()) //It's outside, so make it go towards the build plate.
            {
                nodes_per_part[0][node.position] = p_node;
                continue;
            }
            /* Find which part this node is located in and group the nodes in
             * the same part together. Since nodes have a radius and the
             * avoidance areas are offset by that radius, the set of parts may
             * be different per node. Here we consider a node to be inside the
             * part that is closest. The node may be inside a bigger part that
             * is actually two parts merged together due to an offset. In that
             * case we may incorrectly keep two nodes separate, but at least
             * every node falls into some group.
             */
            coord_t closest_part_distance2 = std::numeric_limits<coord_t>::max();
            size_t closest_part = -1;
            for (size_t part_index = 0; part_index < parts.size(); part_index++)
            {
                constexpr bool border_result = true;
                if (parts[part_index].inside(node.position, border_result)) //If it's inside, the distance is 0 and this part is considered the best.
                {
                    closest_part = part_index;
                    closest_part_distance2 = 0;
                    break;
                }
                const ClosestPolygonPoint closest_point = PolygonUtils::findClosest(node.position, parts[part_index]);
                const coord_t distance2 = vSize2(node.position - closest_point.location);
                if (distance2 < closest_part_distance2)
                {
                    closest_part_distance2 = distance2;
                    closest_part = part_index;
                }
            }
            //Put it in the best one.
            nodes_per_part[closest_part + 1][node.position] = p_node; //Index + 1 because the 0th index is the outside part.

        }
        //Create a MST for every part.
        std::vector<MinimumSpanningTree> spanning_trees;
        for (const std::unordered_map<Point, Node*>& group : nodes_per_part)
        {
            std::vector<Point> points_to_buildplate;
            for (const std::pair<const Point, Node*>& entry : group)
            {
                points_to_buildplate.emplace_back(entry.first); //Just the position of the node.
            }
            spanning_trees.emplace_back(points_to_buildplate);
        }

        for (size_t group_index = 0; group_index < nodes_per_part.size(); group_index++)
        {
            const MinimumSpanningTree& mst = spanning_trees[group_index];
            //In the first pass, merge all nodes that are close together.
            std::unordered_set<Node*> to_delete;
            for (const std::pair<const Point, Node*>& entry : nodes_per_part[group_index])
            {
                Node* p_node = entry.second;
                Node& node = *p_node;
                if (to_delete.find(p_node) != to_delete.end())
                {
                    continue; //Delete this node (don't create a new node for it on the next layer).
                }
                const std::vector<Point>& neighbours = mst.adjacentNodes(node.position);
                if (neighbours.size() == 1 && vSize2(neighbours[0] - node.position) < maximum_move_distance * maximum_move_distance && mst.adjacentNodes(neighbours[0]).size() == 1) //We have just two nodes left, and they're very close!
                {
                    //Insert a completely new node and let both original nodes fade.
                    Point next_position = (node.position + neighbours[0]) / 2; //Average position of the two nodes.

                    const coord_t branch_radius_node = [&]() -> coord_t
                    {
                        if ((node.distance_to_top + 1) > tip_layers)
                        {
                             return branch_radius + branch_radius * (node.distance_to_top + 1) * diameter_angle_scale_factor;
                        }
                        else
                        {
                             return branch_radius * (node.distance_to_top + 1) / tip_layers;
                        }
                    }();
                    if (group_index == 0)
                    {
                        //Avoid collisions.
                        const coord_t maximum_move_between_samples = maximum_move_distance + radius_sample_resolution + 100; //100 micron extra for rounding errors.
                        PolygonUtils::moveOutside(volumes_.getAvoidance(branch_radius_node, layer_nr - 1), next_position, radius_sample_resolution + 100, maximum_move_between_samples * maximum_move_between_samples); //Some extra offset to prevent rounding errors with the sample resolution.
                    }

                    Node* neighbour = nodes_per_part[group_index][neighbours[0]];
                    size_t new_distance_to_top = std::max(node.distance_to_top, neighbour->distance_to_top) + 1;
                    size_t new_support_roof_layers_below = std::max(node.support_roof_layers_below, neighbour->support_roof_layers_below) - 1;

                    const bool to_buildplate = !volumes_.getAvoidance(branch_radius_node, layer_nr - 1).inside(next_position);
                    Node* next_node = new Node(next_position, new_distance_to_top, node.skin_direction, new_support_roof_layers_below, to_buildplate, p_node);
                    insertDroppedNode(contact_nodes[layer_nr - 1], next_node); //Insert the node, resolving conflicts of the two colliding nodes.

                    // Make sure the next pass doesn't drop down either of these (since that already happened).
                    node.merged_neighbours.push_front(neighbour);
                    to_delete.insert(neighbour);
                    to_delete.insert(p_node);
                }
                else if (neighbours.size() > 1) //Don't merge leaf nodes because we would then incur movement greater than the maximum move distance.
                {
                    //Remove all neighbours that are too close and merge them into this node.
                    for (const Point& neighbour : neighbours)
                    {
                        if (vSize2(neighbour - node.position) < maximum_move_distance * maximum_move_distance)
                        {
                            Node* neighbour_node = nodes_per_part[group_index][neighbour];
                            node.distance_to_top = std::max(node.distance_to_top, neighbour_node->distance_to_top);
                            node.support_roof_layers_below = std::max(node.support_roof_layers_below, neighbour_node->support_roof_layers_below);
                            node.merged_neighbours.push_front(neighbour_node);
                            node.merged_neighbours.insert_after(node.merged_neighbours.end(), neighbour_node->merged_neighbours.begin(), neighbour_node->merged_neighbours.end());
                            to_delete.insert(neighbour_node);
                        }
                    }
                }
            }
            //In the second pass, move all middle nodes.
            for (const std::pair<const Point, Node*>& entry : nodes_per_part[group_index])
            {
                Node* p_node = entry.second;
                const Node& node = *p_node;
                if (to_delete.find(p_node) != to_delete.end())
                {
                    continue;
                }
                //If the branch falls completely inside a collision area (the entire branch would be removed by the X/Y offset), delete it.
                if (group_index > 0 && volumes_.getCollision(0, layer_nr).inside(node.position))
                {
                    const coord_t branch_radius_node = [&]() -> coord_t
                    {
                        if (node.distance_to_top > tip_layers)
                        {
                            return branch_radius + branch_radius * node.distance_to_top * diameter_angle_scale_factor;
                        }
                        else
                        {
                            return branch_radius * node.distance_to_top / tip_layers;
                        }
                    }();
                    const ClosestPolygonPoint to_outside = PolygonUtils::findClosest(node.position, volumes_.getCollision(0, layer_nr));
                    if (vSize2(node.position - to_outside.location) >= branch_radius_node * branch_radius_node) //Too far inside.
                    {
                        if (! support_rests_on_model)
                        {
                            unsupported_branch_leaves.push_front({ layer_nr, p_node });
                        }
                        continue;
                    }
                }
                Point next_layer_vertex = node.position;
                const std::vector<Point> neighbours = mst.adjacentNodes(node.position);
                if (neighbours.size() > 1 || (neighbours.size() == 1 && vSize2(neighbours[0] - node.position) >= maximum_move_distance * maximum_move_distance)) //Only nodes that aren't about to collapse.
                {
                    //Move towards the average position of all neighbours.
                    Point sum_direction(0, 0);
                    for (const Point& neighbour : neighbours)
                    {
                        sum_direction += neighbour - node.position;
                    }
                    if(vSize2(sum_direction) <= maximum_move_distance * maximum_move_distance)
                    {
                        next_layer_vertex += sum_direction;
                    }
                    else
                    {
                        next_layer_vertex += normal(sum_direction, maximum_move_distance);
                    }
                }

                const coord_t branch_radius_node = [&]() -> coord_t
                {
                    if ((node.distance_to_top + 1) > tip_layers)
                    {
                        return branch_radius + branch_radius * (node.distance_to_top + 1) * diameter_angle_scale_factor;
                    }
                    else
                    {
                        return branch_radius * (node.distance_to_top + 1) / tip_layers;
                    }
                }();
                if (group_index == 0)
                {
                    //Avoid collisions.
                    const coord_t maximum_move_between_samples = maximum_move_distance + radius_sample_resolution + 100; //100 micron extra for rounding errors.
                    PolygonUtils::moveOutside(volumes_.getAvoidance(branch_radius_node, layer_nr - 1), next_layer_vertex, radius_sample_resolution + 100, maximum_move_between_samples * maximum_move_between_samples); //Some extra offset to prevent rounding errors with the sample resolution.
                }

                const bool to_buildplate = !volumes_.getAvoidance(branch_radius_node, layer_nr - 1).inside(next_layer_vertex);
                Node* next_node = new Node(next_layer_vertex, node.distance_to_top + 1, node.skin_direction, node.support_roof_layers_below - 1, to_buildplate, p_node);
                insertDroppedNode(contact_nodes[layer_nr - 1], next_node);
            }
        }

        // Prune all branches that couldn't find support on either the model or the buildplate (resulting in 'mid-air' branches).
        for (;! unsupported_branch_leaves.empty(); unsupported_branch_leaves.pop_back())
        {
            const auto& entry = unsupported_branch_leaves.back();
            Node* i_node = entry.second;
            for (size_t i_layer = entry.first; i_node != nullptr; ++i_layer, i_node = i_node->parent)
            {
                std::vector<Node*>::iterator to_erase = std::find(contact_nodes[i_layer].begin(), contact_nodes[i_layer].end(), i_node);
                if (to_erase != contact_nodes[i_layer].end())
                {
                    to_free_node_set.insert(*to_erase);
                    contact_nodes[i_layer].erase(to_erase);
                    to_free_node_set.insert(i_node);

                    for (Node* neighbour : i_node->merged_neighbours)
                    {
                        unsupported_branch_leaves.push_front({ i_layer, neighbour });
                    }
                }
            }
        }

        const double progress_current = (contact_nodes.size() - layer_nr) * PROGRESS_WEIGHT_DROPDOWN;
        const double progress_total = contact_nodes.size() * PROGRESS_WEIGHT_DROPDOWN + contact_nodes.size() * PROGRESS_WEIGHT_AREAS;
        Progress::messageProgress(Progress::Stage::SUPPORT, progress_current, progress_total);
    }

    for (Node *node : to_free_node_set)
    {
        delete node;
    }
    to_free_node_set.clear();
}

void TreeSupport::generateContactPoints(const SliceMeshStorage& mesh, std::vector<std::vector<TreeSupport::Node*>>& contact_nodes)
{
    const coord_t point_spread = mesh.settings.get<coord_t>("support_tree_branch_distance");

    //First generate grid points to cover the entire area of the print.
    AABB bounding_box = mesh.bounding_box.flatten();
    // We want to create the grid pattern at an angle, so compute the bounding
    // box required to cover that angle.
    // Rotation of 22 degrees provides better support of diagonal lines.
    constexpr double rotate_angle = 22.0 / 180.0 * M_PI;
    const Point bounding_box_size = bounding_box.max - bounding_box.min;

    // Store center of AABB so we can relocate the generated points
    const Point center = bounding_box.getMiddle();
    const double sin_angle = std::sin(rotate_angle);
    const double cos_angle = std::cos(rotate_angle);
    // Calculate the dimensions of the AABB of the mesh AABB after being rotated
    // by `rotate_angle`. Halve the dimensions since we'll be using it as a +-
    // offset from the centre of `bounding_box`.
    // This formulation will only work with rotation angles <90 degrees. If the
    // rotation angle becomes a user-configurable value then this will need to
    // be changed
    const Point rotated_dims = Point(
        bounding_box_size.X * cos_angle + bounding_box_size.Y * sin_angle,
        bounding_box_size.X * sin_angle + bounding_box_size.Y * cos_angle) / 2;

    std::vector<Point> grid_points;
    for (auto x = -rotated_dims.X; x <= rotated_dims.X; x += point_spread)
    {
        for (auto y = -rotated_dims.Y; y <= rotated_dims.Y; y += point_spread)
        {
            // Construct a point as an offset from the mesh AABB center, rotated
            // about the mesh AABB center
            const Point pt = rotate(Point(x, y), rotate_angle) + center;
            // Only add to grid points if we have a chance to collide with the
            // mesh
            if (bounding_box.contains(pt))
            {
                grid_points.push_back(pt);
            }
        }
    }


    const coord_t layer_height = mesh.settings.get<coord_t>("layer_height");
    const coord_t z_distance_top = mesh.settings.get<coord_t>("support_top_distance");
    const size_t z_distance_top_layers = round_up_divide(z_distance_top, layer_height) + 1; //Support must always be 1 layer below overhang.
    const size_t support_roof_layers = [&]() -> size_t
    {
        if (mesh.settings.get<bool>("support_roof_enable"))
        {
            return round_divide(mesh.settings.get<coord_t>("support_roof_height"), mesh.settings.get<coord_t>("layer_height")); //How many roof layers, if roof is enabled.
        }
        else
        {
            return 0;
        }
    }();
    const coord_t half_overhang_distance = tan(mesh.settings.get<AngleRadians>("support_angle")) * layer_height / 2;
    for (size_t layer_nr = 1; static_cast<int>(layer_nr) < static_cast<int>(mesh.overhang_areas.size()) - static_cast<int>(z_distance_top_layers); layer_nr++)
    {
        const Polygons& overhang = mesh.overhang_areas[layer_nr + z_distance_top_layers];
        if (overhang.empty())
        {
            continue;
        }

        for (const ConstPolygonRef overhang_part : overhang)
        {
            AABB overhang_bounds(overhang_part); //Pre-generate the AABB for a quick pre-filter.
            overhang_bounds.expand(half_overhang_distance); //Allow for points to be within half an overhang step of the overhang area.
            bool added = false; //Did we add a point this way?
            for (Point candidate : grid_points)
            {
                if (overhang_bounds.contains(candidate))
                {
                    constexpr coord_t distance_inside = 1; //Move point towards the border of the polygon if it is closer than half the overhang distance: Catch points that fall between overhang areas on constant surfaces.
                    PolygonUtils::moveInside(overhang_part, candidate, distance_inside, half_overhang_distance * half_overhang_distance);
                    constexpr bool border_is_inside = true;
                    if (overhang_part.inside(candidate, border_is_inside) && !volumes_.getCollision(0, layer_nr).inside(candidate, border_is_inside))
                    {
                        constexpr size_t distance_to_top = 0;
                        constexpr bool to_buildplate = true;
                        Node* contact_node = new Node(candidate, distance_to_top, (layer_nr + z_distance_top_layers) % 2, support_roof_layers, to_buildplate, Node::NO_PARENT);
                        contact_nodes[layer_nr].emplace_back(contact_node);
                        added = true;
                    }
                }
            }
            if (!added) //If we didn't add any points due to bad luck, we want to add one anyway such that loose parts are also supported.
            {
                Point candidate = bounding_box.getMiddle();
                PolygonUtils::moveInside(overhang_part, candidate);
                constexpr size_t distance_to_top = 0;
                constexpr bool to_buildplate = true;
                Node* contact_node = new Node(candidate, distance_to_top, layer_nr % 2, support_roof_layers, to_buildplate, Node::NO_PARENT);
                contact_nodes[layer_nr].emplace_back(contact_node);
            }
        }
        for (const ConstPolygonRef overhang_part : overhang)
        {
            if (overhang_part.area() < 0)
            {
                for (auto iter = contact_nodes[layer_nr].begin(); iter != contact_nodes[layer_nr].end(); )
                {
                    if (overhang_part.inside((*iter)->position))
                    {
                        iter = contact_nodes[layer_nr].erase(iter);
                    }
                    else
                    {
                        ++iter;
                    }
                }
            }
        }
    }
}

void TreeSupport::insertDroppedNode(std::vector<Node*>& nodes_layer, Node* p_node)
{
    std::vector<Node*>::iterator conflicting_node_it = std::find(nodes_layer.begin(), nodes_layer.end(), p_node);
    if (conflicting_node_it == nodes_layer.end()) //No conflict.
    {
        nodes_layer.emplace_back(p_node);
        return;
    }

    Node* conflicting_node = *conflicting_node_it;
    conflicting_node->distance_to_top = std::max(conflicting_node->distance_to_top, p_node->distance_to_top);
    conflicting_node->support_roof_layers_below = std::max(conflicting_node->support_roof_layers_below, p_node->support_roof_layers_below);
}

} //namespace cura