Welcome to mirror list, hosted at ThFree Co, Russian Federation.

rate.h « src - github.com/alexmarsev/soxr.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: fc2395caed7bd84947c57bea8ed34e1a9add036f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
/* SoX Resampler Library      Copyright (c) 2007-13 robs@users.sourceforge.net
 * Licence for this file: LGPL v2.1                  See LICENCE for details. */

#include <math.h>
#include <assert.h>
#include <string.h>
#include <stdlib.h>

#include "filter.h"

#if defined SOXR_LIB
#include "internal.h"

typedef void (* fn_t)(void);
extern fn_t RDFT_CB[11];

#define rdft_forward_setup    (*(void * (*)(int))RDFT_CB[0])
#define rdft_backward_setup   (*(void * (*)(int))RDFT_CB[1])
#define rdft_delete_setup     (*(void (*)(void *))RDFT_CB[2])
#define rdft_forward          (*(void (*)(int, void *, sample_t *, sample_t *))RDFT_CB[3])
#define rdft_oforward         (*(void (*)(int, void *, sample_t *, sample_t *))RDFT_CB[4])
#define rdft_backward         (*(void (*)(int, void *, sample_t *, sample_t *))RDFT_CB[5])
#define rdft_obackward        (*(void (*)(int, void *, sample_t *, sample_t *))RDFT_CB[6])
#define rdft_convolve         (*(void (*)(int, void *, sample_t *, sample_t const *))RDFT_CB[7])
#define rdft_convolve_portion (*(void (*)(int, sample_t *, sample_t const *))RDFT_CB[8])
#define rdft_multiplier       (*(int (*)(void))RDFT_CB[9])
#define rdft_reorder_back     (*(void (*)(int, void *, sample_t *, sample_t *))RDFT_CB[10])

#endif

#if RATE_SIMD /* Align for SIMD: */
  #include "simd.h"
#if 0 /* Not using this yet. */
  #define RATE_SIMD_POLY 1
  #define num_coefs4 ((num_coefs + 3) & ~3)
  #define coefs4_check(i) ((i) < num_coefs)
#else
  #define RATE_SIMD_POLY 0
  #define num_coefs4 num_coefs
  #define coefs4_check(i) 1
#endif

  #define aligned_free    _soxr_simd_aligned_free
  #define aligned_malloc  _soxr_simd_aligned_malloc
  #define aligned_calloc  _soxr_simd_aligned_calloc
#if 0
  #define FIFO_REALLOC    aligned_realloc
  #define FIFO_MALLOC     aligned_malloc
  #define FIFO_FREE       aligned_free

  static void * aligned_realloc(void * q, size_t nb_bytes, size_t copy_bytes) {
    void * p = aligned_malloc(nb_bytes);
    if (p) memcpy(p, q, copy_bytes);
    aligned_free(q);
    return p;
  }
#endif
#else
  #define RATE_SIMD_POLY 0
  #define num_coefs4 num_coefs
  #define coefs4_check(i) 1

  #define aligned_free    free
  #define aligned_malloc  malloc
  #define aligned_calloc  calloc
#endif

#define  FIFO_SIZE_T int
#include "fifo.h"

typedef union { /* Int64 in parts */
  #if WORDS_BIGENDIAN
  struct {int32_t ms; uint32_t ls;} parts;
  #else
  struct {uint32_t ls; int32_t ms;} parts;
  #endif
  int64_t all;
} int64p_t;

typedef union { /* Uint64 in parts */
  #if WORDS_BIGENDIAN
  struct {uint32_t ms, ls;} parts;
  #else
  struct {uint32_t ls, ms;} parts;
  #endif
  uint64_t all;
} uint64p_t;

#define FLOAT_HI_PREC_CLOCK 0    /* Non-float hi-prec has ~96 bits. */
#define float_step_t long double /* __float128 is also a (slow) option */

#define coef(coef_p, interp_order, fir_len, phase_num, coef_interp_num, fir_coef_num) coef_p[(fir_len) * ((interp_order) + 1) * (phase_num) + ((interp_order) + 1) * (fir_coef_num) + (interp_order - coef_interp_num)]

#define raw_coef_t double

static sample_t * prepare_coefs(raw_coef_t const * coefs, int num_coefs,
    int num_phases, int interp_order, double multiplier)
{
  int i, j, length = num_coefs4 * num_phases;
  sample_t * result = malloc((size_t)(length * (interp_order + 1)) * sizeof(*result));
  double fm1 = coefs[0], f1 = 0, f2 = 0;

  for (i = num_coefs4 - 1; i >= 0; --i)
    for (j = num_phases - 1; j >= 0; --j) {
      double f0 = fm1, b = 0, c = 0, d = 0; /* = 0 to kill compiler warning */
      int pos = i * num_phases + j - 1;
      fm1 = coefs4_check(i) && pos > 0 ? coefs[pos - 1] * multiplier : 0;
      switch (interp_order) {
        case 1: b = f1 - f0; break;
        case 2: b = f1 - (.5 * (f2+f0) - f1) - f0; c = .5 * (f2+f0) - f1; break;
        case 3: c=.5*(f1+fm1)-f0;d=(1/6.)*(f2-f1+fm1-f0-4*c);b=f1-f0-d-c; break;
        default: if (interp_order) assert(0);
      }
      #define coef_coef(x) \
        coef(result, interp_order, num_coefs4, j, x, num_coefs4 - 1 - i)
      coef_coef(0) = (sample_t)f0;
      if (interp_order > 0) coef_coef(1) = (sample_t)b;
      if (interp_order > 1) coef_coef(2) = (sample_t)c;
      if (interp_order > 2) coef_coef(3) = (sample_t)d;
      #undef coef_coef
      f2 = f1, f1 = f0;
    }
  return result;
}

typedef struct {
  int        dft_length, num_taps, post_peak;
  void       * dft_forward_setup, * dft_backward_setup;
  sample_t   * coefs;
} dft_filter_t;

typedef struct { /* So generated filter coefs may be shared between channels */
  sample_t   * poly_fir_coefs;
  dft_filter_t dft_filter[2];
} rate_shared_t;

typedef enum {
  irrational_stage = 1,
  cubic_stage,
  dft_stage,
  half_stage,
  rational_stage
} stage_type_t;

struct stage;
typedef void (* stage_fn_t)(struct stage * input, fifo_t * output);
#define MULT32 (65536. * 65536.)

typedef union { /* Fixed point arithmetic */
  struct {uint64p_t ls; int64p_t ms;} fix;
  float_step_t flt;
} step_t;

typedef struct stage {
  /* Common to all stage types: */
  stage_type_t type;
  stage_fn_t fn;
  fifo_t     fifo;
  int        pre;       /* Number of past samples to store */
  int        pre_post;  /* pre + number of future samples to store */
  int        preload;   /* Number of zero samples to pre-load the fifo */
  double     out_in_ratio; /* For buffer management. */

  /* For a stage with variable (run-time generated) filter coefs: */
  rate_shared_t * shared;
  unsigned   dft_filter_num; /* Which, if any, of the 2 DFT filters to use */
  sample_t   * dft_scratch, * dft_out;

  /* For a stage with variable L/M: */
  step_t     at, step;
  bool       use_hi_prec_clock;
  int        L, remM;
  int        n, phase_bits, block_len;
  double     mult, phase0;
} stage_t;

#define stage_occupancy(s) max(0, fifo_occupancy(&(s)->fifo) - (s)->pre_post)
#define stage_read_p(s) ((sample_t *)fifo_read_ptr(&(s)->fifo) + (s)->pre)

static void cubic_stage_fn(stage_t * p, fifo_t * output_fifo)
{
  int i, num_in = stage_occupancy(p), max_num_out = 1 + (int)(num_in*p->out_in_ratio);
  sample_t const * input = stage_read_p(p);
  sample_t * output = fifo_reserve(output_fifo, max_num_out);

#define integer  fix.ms.parts.ms
#define fraction fix.ms.parts.ls
#define whole    fix.ms.all
  for (i = 0; p->at.integer < num_in; ++i, p->at.whole += p->step.whole) {
    sample_t const * s = input + p->at.integer;
    double x = p->at.fraction * (1 / MULT32);
    double b = .5*(s[1]+s[-1])-*s, a = (1/6.)*(s[2]-s[1]+s[-1]-*s-4*b);
    double c = s[1]-*s-a-b;
    output[i] = (sample_t)(p->mult * (((a*x + b)*x + c)*x + *s));
  }
  assert(max_num_out - i >= 0);
  fifo_trim_by(output_fifo, max_num_out - i);
  fifo_read(&p->fifo, p->at.integer, NULL);
  p->at.integer = 0;
}

#if RATE_SIMD
  #define dft_out p->dft_out
#else
  #define dft_out output
#endif

static void dft_stage_fn(stage_t * p, fifo_t * output_fifo)
{
  sample_t * output;
  int i, j, num_in = max(0, fifo_occupancy(&p->fifo));
  rate_shared_t const * s = p->shared;
  dft_filter_t const * f = &s->dft_filter[p->dft_filter_num];
  int const overlap = f->num_taps - 1;

  while (p->at.integer + p->L * num_in >= f->dft_length) {
    div_t divd = div(f->dft_length - overlap - p->at.integer + p->L - 1, p->L);
    sample_t const * input = fifo_read_ptr(&p->fifo);
    fifo_read(&p->fifo, divd.quot, NULL);
    num_in -= divd.quot;

    output = fifo_reserve(output_fifo, f->dft_length);

    if (lsx_is_power_of_2(p->L)) { /* F-domain */
      int portion = f->dft_length / p->L;
      memcpy(dft_out, input, (unsigned)portion * sizeof(*dft_out));
      rdft_oforward(portion, f->dft_forward_setup, dft_out, p->dft_scratch);
      for (i = portion + 2; i < (portion << 1); i += 2) /* Mirror image. */
        dft_out[i] = dft_out[(portion << 1) - i],
        dft_out[i+1] = -dft_out[(portion << 1) - i + 1];
      dft_out[portion] = dft_out[1];
      dft_out[portion + 1] = 0;
      dft_out[1] = dft_out[0];

      for (portion <<= 1; i < f->dft_length; i += portion, portion <<= 1) {
        memcpy(dft_out + i, dft_out, (size_t)portion * sizeof(*dft_out));
        dft_out[i + 1] = 0;
      }
      if (p->step.integer > 0)
        rdft_reorder_back(f->dft_length, f->dft_backward_setup, dft_out, p->dft_scratch);
    } else {
      if (p->L == 1)
        memcpy(dft_out, input, (size_t)f->dft_length * sizeof(*dft_out));
      else {
        memset(dft_out, 0, (size_t)f->dft_length * sizeof(*dft_out));
        for (j = 0, i = p->at.integer; i < f->dft_length; ++j, i += p->L)
          dft_out[i] = input[j];
        p->at.integer = p->L - 1 - divd.rem;
      }
      if (p->step.integer > 0)
        rdft_forward(f->dft_length, f->dft_forward_setup, dft_out, p->dft_scratch);
      else
        rdft_oforward(f->dft_length, f->dft_forward_setup, dft_out, p->dft_scratch);
    }

    if (p->step.integer > 0) {
      rdft_convolve(f->dft_length, f->dft_backward_setup, dft_out, f->coefs);
      rdft_backward(f->dft_length, f->dft_backward_setup, dft_out, p->dft_scratch);
#if RATE_SIMD
      if (p->step.integer == 1)
        memcpy(output, dft_out, (size_t)f->dft_length * sizeof(sample_t));
#endif
      if (p->step.integer != 1) {
        for (j = 0, i = p->remM; i < f->dft_length - overlap; ++j,
            i += p->step.integer)
          output[j] = dft_out[i];
        p->remM = i - (f->dft_length - overlap);
        fifo_trim_by(output_fifo, f->dft_length - j);
      }
      else fifo_trim_by(output_fifo, overlap);
    }
    else { /* F-domain */
      int m = -p->step.integer;
      rdft_convolve_portion(f->dft_length >> m, dft_out, f->coefs);
      rdft_obackward(f->dft_length >> m, f->dft_backward_setup, dft_out, p->dft_scratch);
#if RATE_SIMD
      memcpy(output, dft_out, (size_t)(f->dft_length >> m) * sizeof(sample_t));
#endif
      fifo_trim_by(output_fifo, (((1 << m) - 1) * f->dft_length + overlap) >>m);
    }
  }
}

#undef dft_out

/* Set to 4 x nearest power of 2 */
/* or half of that if danger of causing too many cache misses. */
static int set_dft_length(int num_taps, int min, int large)
{
  double d = log((double)num_taps) / log(2.);
  return 1 << range_limit((int)(d + 2.77), min, max((int)(d + 1.77), large));
}

static void dft_stage_init(
    unsigned instance, double Fp, double Fs, double Fn, double att,
    double phase, stage_t * p, int L, int M, double * multiplier,
    int min_dft_size, int large_dft_size)
{
  dft_filter_t * f = &p->shared->dft_filter[instance];
  int num_taps = 0, dft_length = f->dft_length, i;
  bool f_domain_m = abs(3-M) == 1 && Fs <= 1;

  if (!dft_length) {
    int k = phase == 50 && lsx_is_power_of_2(L) && Fn == L? L << 1 : 4;
    double * h = lsx_design_lpf(Fp, Fs, Fn, att, &num_taps, -k, -1.);

    if (phase != 50)
      lsx_fir_to_phase(&h, &num_taps, &f->post_peak, phase);
    else f->post_peak = num_taps / 2;

    dft_length = set_dft_length(num_taps, min_dft_size, large_dft_size);
    f->coefs = aligned_calloc((size_t)dft_length, sizeof(*f->coefs));
    for (i = 0; i < num_taps; ++i)
      f->coefs[(i + dft_length - num_taps + 1) & (dft_length - 1)]
        = (sample_t)(h[i] * ((1. / dft_length) * rdft_multiplier() * L * *multiplier));
    free(h);
  }

#if RATE_SIMD
  p->dft_out = aligned_malloc(sizeof(sample_t) * (size_t)dft_length);
#endif
#if 1 /* In fact, currently, only pffft needs this. */
  p->dft_scratch = aligned_malloc(2 * sizeof(sample_t) * (size_t)dft_length);
#endif

  if (!f->dft_length) {
    void * coef_setup = rdft_forward_setup(dft_length);
    int Lp = lsx_is_power_of_2(L)? L : 1;
    int Mp = f_domain_m? M : 1;
    f->dft_forward_setup = rdft_forward_setup(dft_length / Lp);
    f->dft_backward_setup = rdft_backward_setup(dft_length / Mp);
    if (Mp == 1)
      rdft_forward(dft_length, coef_setup, f->coefs, p->dft_scratch);
    else
      rdft_oforward(dft_length, coef_setup, f->coefs, p->dft_scratch);
    rdft_delete_setup(coef_setup);
    f->num_taps = num_taps;
    f->dft_length = dft_length;
    lsx_debug("fir_len=%i dft_length=%i Fp=%g Fs=%g Fn=%g att=%g %i/%i",
        num_taps, dft_length, Fp, Fs, Fn, att, L, M);
  }
  *multiplier = 1;
  p->out_in_ratio = (double)L / M;
  p->type = dft_stage;
  p->fn = dft_stage_fn;
  p->preload = f->post_peak / L;
  p->at.integer = f->post_peak % L;
  p->L = L;
  p->step.integer = f_domain_m? -M/2 : M;
  p->dft_filter_num = instance;
  p->block_len = f->dft_length - (f->num_taps - 1);
  p->phase0 = p->at.integer / p->L;
}

#include "filters.h"

typedef struct {
  double     factor;
  uint64_t   samples_in, samples_out;
  int        num_stages;
  stage_t    * stages;
} rate_t;

#define pre_stage       p->stages[shift]
#define arb_stage       p->stages[shift + have_pre_stage]
#define post_stage      p->stages[shift + have_pre_stage + have_arb_stage]
#define have_pre_stage  (preM  * preL  != 1)
#define have_arb_stage  (arbM  * arbL  != 1)
#define have_post_stage (postM * postL != 1)

#define TO_3dB(a)       ((1.6e-6*a-7.5e-4)*a+.646)
#define LOW_Q_BW0_PC    (67 + 5 / 8.)

typedef enum {
  rolloff_none, rolloff_small /* <= 0.01 dB */, rolloff_medium /* <= 0.35 dB */
} rolloff_t;


static char const * rate_init(
  /* Private work areas (to be supplied by the client):                       */
  rate_t * p,                /* Per audio channel.                            */
  rate_shared_t * shared,    /* Between channels (undergoing same rate change)*/

  /* Public parameters:                                             Typically */
  double factor,             /* Input rate divided by output rate.            */
  double bits,               /* Required bit-accuracy (pass + stop)  16|20|28 */
  double phase,              /* Linear/minimum etc. filter phase.       50    */
  double bw_pc,              /* Pass-band % (0dB pt.) to preserve.   91.3|98.4*/
  double anti_aliasing_pc,   /* % bandwidth without aliasing            100   */
  rolloff_t rolloff,    /* Pass-band roll-off                    small   */
  bool maintain_3dB_pt,      /*                                        true   */
  double multiplier,         /* Linear gain to apply during conversion.   1   */

  /* Primarily for test/development purposes:                                 */
  bool use_hi_prec_clock,    /* Increase irrational ratio accuracy.   false   */
  int interpolator,          /* Force a particular coef interpolator.   -1    */
  size_t max_coefs_size,     /* k bytes of coefs to try to keep below.  400   */
  bool noSmallIntOpt,        /* Disable small integer optimisations.  false   */
  int log2_min_dft_size,
  int log2_large_dft_size)
{
  double att = (bits + 1) * linear_to_dB(2.), attArb = att;    /* pass + stop */
  double tbw0 = 1 - bw_pc / 100, Fs_a = 2 - anti_aliasing_pc / 100;
  double arbM = factor, tbw_tighten = 1;
  int n = 0, i, preL = 1, preM = 1, shift = 0, arbL = 1, postL = 1, postM = 1;
  bool upsample = false, rational = false, iOpt = !noSmallIntOpt;
  int mode = rolloff > rolloff_small? factor > 1 || bw_pc > LOW_Q_BW0_PC:
    (int)ceil(2 + (bits - 17) / 4);
  stage_t * s;

  assert(factor > 0);
  assert(!bits || (15 <= bits && bits <= 33));
  assert(0 <= phase && phase <= 100);
  assert(53 <= bw_pc && bw_pc <= 100);
  assert(85 <= anti_aliasing_pc && anti_aliasing_pc <= 130);
  assert(bw_pc < 200 - anti_aliasing_pc);

  p->factor = factor;
  if (bits) while (!n++) {                               /* Determine stages: */
    int try, L, M, x, maxL = interpolator > 0? 1 : mode? 2048 :
      (int)ceil((double)max_coefs_size * 1000. / (U100_l * sizeof(sample_t)));
    double d, epsilon = 0, frac;
    upsample = arbM < 1;
    for (i = (int)(arbM * .5), shift = 0; i >>= 1; arbM *= .5, ++shift);
    preM = upsample || (arbM > 1.5 && arbM < 2);
    postM = 1 + (arbM > 1 && preM), arbM /= postM;
    preL = 1 + (!preM && arbM < 2) + (upsample && mode), arbM *= preL;
    if ((frac = arbM - (int)arbM))
      epsilon = fabs((uint32_t)(frac * MULT32 + .5) / (frac * MULT32) - 1);
    for (i = 1, rational = !frac; i <= maxL && !rational; ++i) {
      d = frac * i, try = (int)(d + .5);
      if ((rational = fabs(try / d - 1) <= epsilon)) {    /* No long doubles! */
        if (try == i)
          arbM = ceil(arbM), shift += arbM > 2, arbM /= 1 + (arbM > 2);
        else arbM = i * (int)arbM + try, arbL = i;
      }
    }
    L = preL * arbL, M = (int)(arbM * postM), x = (L|M)&1, L >>= !x, M >>= !x;
    if (iOpt && postL == 1 && (d = preL * arbL / arbM) > 4 && d != 5) {
      for (postL = 4, i = (int)(d / 16); (i >>= 1) && postL < 256; postL <<= 1);
      arbM = arbM * postL / arbL / preL, arbL = 1, n = 0;
    } else if (rational && (max(L, M) < 3 + 2 * iOpt || L * M < 6 * iOpt))
      preL = L, preM = M, arbM = arbL = postM = 1;
    if (!mode && (!rational || !n))
      ++mode, n = 0;
  }

  p->num_stages = shift + have_pre_stage + have_arb_stage + have_post_stage;
  if (!p->num_stages && multiplier != 1) {
    arbL = 0;
    ++p->num_stages;
  }
  p->stages = calloc((size_t)p->num_stages + 1, sizeof(*p->stages));
  for (i = 0; i < p->num_stages; ++i)
    p->stages[i].shared = shared;

  if ((n = p->num_stages) > 1) {                              /* Att. budget: */
    if (have_arb_stage)
      att += linear_to_dB(2.), attArb = att, --n;
    att += linear_to_dB((double)n);
  }

  for (n = 0; (size_t)n + 1 < array_length(half_firs) && att > half_firs[n].att; ++n);
  for (i = 0, s = p->stages; i < shift; ++i, ++s) {
    s->type = half_stage;
    s->fn = half_firs[n].fn;
    s->pre_post = 4 * half_firs[n].num_coefs;
    s->preload = s->pre = s->pre_post >> 1;
  }

  if (have_pre_stage) {
    if (maintain_3dB_pt && have_post_stage) {    /* Trans. bands overlapping. */
      double tbw3 = tbw0 * TO_3dB(att);                /* FFS: consider Fs_a. */
      double x = ((2.1429e-4 - 5.2083e-7 * att) * att - .015863) * att + 3.95;
      x = att * pow((tbw0 - tbw3) / (postM / (factor * postL) - 1 + tbw0), x);
      if (x > .035) {
        tbw_tighten = ((4.3074e-3 - 3.9121e-4 * x) * x - .040009) * x + 1.0014;
        lsx_debug("x=%g tbw_tighten=%g", x, tbw_tighten);
      }
    }
    dft_stage_init(0, 1 - tbw0 * tbw_tighten, Fs_a, preM? max(preL, preM) :
        arbM / arbL, att, phase, &pre_stage, preL, max(preM, 1), &multiplier,
        log2_min_dft_size, log2_large_dft_size);
  }

  if (!bits && have_arb_stage) {                /* Quick and dirty arb stage: */
    arb_stage.type = cubic_stage;
    arb_stage.fn = cubic_stage_fn;
    arb_stage.mult = multiplier, multiplier = 1;
    arb_stage.step.whole = (int64_t)(arbM * MULT32 + .5);
    arb_stage.pre_post = max(3, arb_stage.step.integer);
    arb_stage.preload = arb_stage.pre = 1;
    arb_stage.out_in_ratio = MULT32 / (double)arb_stage.step.whole;
  }
  else if (have_arb_stage) {                     /* Higher quality arb stage: */
    poly_fir_t const * f = &poly_firs[6*(upsample + !!preM) + mode - !upsample];
    int order, num_coefs = (int)f->interp[0].scalar, phase_bits, phases;
    size_t coefs_size;
    double x = .5, at, Fp, Fs, Fn, mult = upsample? 1 : arbL / arbM;
    poly_fir1_t const * f1;

    Fn = !upsample && preM? x = arbM / arbL : 1;
    Fp = !preM? mult : mode? .5 : 1;
    Fs = 2 - Fp;           /* Ignore Fs_a; it would have little benefit here. */
    Fp *= 1 - tbw0;
    if (rolloff > rolloff_small && mode)
      Fp = !preM? mult * .5 - .125 : mult * .05 + .1;
    else if (rolloff == rolloff_small)
      Fp = Fs - (Fs - .148 * x - Fp * .852) * (.00813 * bits + .973);

    i = (interpolator < 0? !rational : max(interpolator, !rational)) - 1;
    do {
      f1 = &f->interp[++i];
      assert(f1->fn);
      if (i)
        arbM /= arbL, arbL = 1, rational = false;
      phase_bits = (int)ceil(f1->scalar + log(mult)/log(2.));
      phases = !rational? (1 << phase_bits) : arbL;
      if (!f->interp[0].scalar) {
        int phases0 = max(phases, 19), n0 = 0;
        lsx_design_lpf(Fp, Fs, -Fn, attArb, &n0, phases0, f->beta);
        num_coefs = n0 / phases0 + 1, num_coefs += num_coefs & !preM;
      }
      if ((num_coefs & 1) && rational && (arbL & 1))
        phases <<= 1, arbL <<= 1, arbM *= 2;
      at = arbL * (arb_stage.phase0 = .5 * (num_coefs & 1));
      order = i + (i && mode > 4);
      coefs_size = (size_t)(num_coefs4 * phases * (order + 1)) * sizeof(sample_t);
    } while (interpolator < 0 && i < 2 && f->interp[i+1].fn &&
        coefs_size / 1000 > max_coefs_size);

    if (!arb_stage.shared->poly_fir_coefs) {
      int num_taps = num_coefs * phases - 1;
      raw_coef_t * coefs = lsx_design_lpf(
          Fp, Fs, Fn, attArb, &num_taps, phases, f->beta);
      arb_stage.shared->poly_fir_coefs = prepare_coefs(
          coefs, num_coefs, phases, order, multiplier);
      lsx_debug("fir_len=%i phases=%i coef_interp=%i size=%.3gk",
          num_coefs, phases, order, (double)coefs_size / 1000.);
      free(coefs);
    }
    multiplier = 1;
    arb_stage.type = rational? rational_stage : irrational_stage;
    arb_stage.fn = f1->fn;
    arb_stage.pre_post = num_coefs4 - 1;
    arb_stage.preload = ((num_coefs - 1) >> 1) + (num_coefs4 - num_coefs);
    arb_stage.n = num_coefs4;
    arb_stage.phase_bits = phase_bits;
    arb_stage.L = arbL;
    arb_stage.use_hi_prec_clock = mode > 1 && use_hi_prec_clock && !rational;
#if FLOAT_HI_PREC_CLOCK
    if (arb_stage.use_hi_prec_clock) {
      arb_stage.at.flt = at;
      arb_stage.step.flt = arbM;
      arb_stage.out_in_ratio = (double)(arbL / arb_stage.step.flt);
    } else
#endif
    {
      arb_stage.at.whole = (int64_t)(at * MULT32 + .5);
#if !FLOAT_HI_PREC_CLOCK
      if (arb_stage.use_hi_prec_clock) {
        arb_stage.at.fix.ls.parts.ms = 0x80000000ul;
        arbM *= MULT32;
        arb_stage.step.whole = (int64_t)arbM;
        arbM -= (double)arb_stage.step.whole;
        arbM *= MULT32 * MULT32;
        arb_stage.step.fix.ls.all = (uint64_t)arbM;
      } else
#endif
        arb_stage.step.whole = (int64_t)(arbM * MULT32 + .5);
      arb_stage.out_in_ratio = MULT32 * arbL / (double)arb_stage.step.whole;
    }
  }

  if (have_post_stage)
    dft_stage_init(1, 1 - (1 - (1 - tbw0) *
        (upsample? factor * postL / postM : 1)) * tbw_tighten, Fs_a,
        (double)max(postL, postM), att, phase, &post_stage, postL, postM,
        &multiplier, log2_min_dft_size, log2_large_dft_size);


  lsx_debug("%g: »%i⋅%i/%i⋅%i/%g⋅%i/%i",
      1/factor, shift, preL, preM, arbL, arbM, postL, postM);
  for (i = 0, s = p->stages; i < p->num_stages; ++i, ++s) {
    fifo_create(&s->fifo, (int)sizeof(sample_t));
    memset(fifo_reserve(&s->fifo, s->preload), 0, sizeof(sample_t) * (size_t)s->preload);
    lsx_debug("%5i|%-5i preload=%i remL=%i o/i=%g",
        s->pre, s->pre_post - s->pre, s->preload, s->at.integer, s->out_in_ratio);
  }
  fifo_create(&s->fifo, (int)sizeof(sample_t));
  return 0;
}

static void rate_process(rate_t * p)
{
  stage_t * stage = p->stages;
  int i;
  for (i = 0; i < p->num_stages; ++i, ++stage)
    stage->fn(stage, &(stage+1)->fifo);
}

static sample_t * rate_input(rate_t * p, sample_t const * samples, size_t n)
{
  p->samples_in += n;
  return fifo_write(&p->stages[0].fifo, (int)n, samples);
}

static sample_t const * rate_output(rate_t * p, sample_t * samples, size_t * n)
{
  fifo_t * fifo = &p->stages[p->num_stages].fifo;
  p->samples_out += *n = min(*n, (size_t)fifo_occupancy(fifo));
  return fifo_read(fifo, (int)*n, samples);
}

static void rate_flush(rate_t * p)
{
  fifo_t * fifo = &p->stages[p->num_stages].fifo;
#if defined _MSC_VER && _MSC_VER == 1200
  uint64_t samples_out = (uint64_t)(int64_t)((double)(int64_t)p->samples_in / p->factor + .5);
#else
  uint64_t samples_out = (uint64_t)((double)p->samples_in / p->factor + .5);
#endif
  size_t remaining = (size_t)(samples_out - p->samples_out);
  sample_t * buff = calloc(1024, sizeof(*buff));

  if (samples_out > p->samples_out) {
    while ((size_t)fifo_occupancy(fifo) < remaining) {
      rate_input(p, buff, 1024);
      rate_process(p);
    }
    fifo_trim_to(fifo, (int)remaining);
    p->samples_in = 0;
  }
  free(buff);
}

static void rate_close(rate_t * p)
{
  rate_shared_t * shared = p->stages[0].shared;
  int i;

  for (i = 0; i <= p->num_stages; ++i) {
    stage_t * s = &p->stages[i];
    aligned_free(s->dft_scratch);
    aligned_free(s->dft_out);
    fifo_delete(&s->fifo);
  }
  if (shared) {
    for (i = 0; i < 2; ++i) {
      dft_filter_t * f= &shared->dft_filter[i];
      aligned_free(f->coefs);
      rdft_delete_setup(f->dft_forward_setup);
      rdft_delete_setup(f->dft_backward_setup);
    }
    free(shared->poly_fir_coefs);
    memset(shared, 0, sizeof(*shared));
  }
  free(p->stages);
}

#if defined SOXR_LIB
static double rate_delay(rate_t * p)
{
#if defined _MSC_VER && _MSC_VER == 1200
  double samples_out = (double)(int64_t)p->samples_in / p->factor;
  return samples_out - (double)(int64_t)p->samples_out;
#else
  double samples_out = (double)p->samples_in / p->factor;
  return samples_out - (double)p->samples_out;
#endif
}

static void rate_sizes(size_t * shared, size_t * channel)
{
  *shared = sizeof(rate_shared_t);
  *channel = sizeof(rate_t);
}

#include "soxr.h"

static char const * rate_create(
    void * channel,
    void * shared,
    double io_ratio,
    soxr_quality_spec_t * q_spec,
    soxr_runtime_spec_t * r_spec,
    double scale)
{
  return rate_init(
      channel, shared,
      io_ratio,
      q_spec->precision,
      q_spec->phase,
      q_spec->bw_pc,
      q_spec->anti_aliasing_pc,
      "\1\2\0"[q_spec->flags & 3],
      !!(q_spec->flags & SOXR_MAINTAIN_3DB_PT),
      scale,
      !!(q_spec->flags & SOXR_HI_PREC_CLOCK),
      (int)(r_spec->flags & 3) - 1,
      r_spec->coef_size_kbytes,
      !!(r_spec->flags & SOXR_NOSMALLINTOPT),
      (int)r_spec->log2_min_dft_size,
      (int)r_spec->log2_large_dft_size);
}

static char const * id(void)
{
  return RATE_ID;
}

fn_t RATE_CB[] = {
  (fn_t)rate_input,
  (fn_t)rate_process,
  (fn_t)rate_output,
  (fn_t)rate_flush,
  (fn_t)rate_close,
  (fn_t)rate_delay,
  (fn_t)rate_sizes,
  (fn_t)rate_create,
  (fn_t)0,
  (fn_t)id,
};
#endif