Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/aoliverg/TBXTools.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authoraoliverg <aoliverg@uoc.edu>2021-11-24 17:18:21 +0300
committerGitHub <noreply@github.com>2021-11-24 17:18:21 +0300
commit81b0aa7dd9b54a234575ecbfc5c412c54eb37256 (patch)
treeecf2687294968b6ec69e951ae154682d5b92b0f8
parent37137b80c1ece6c3be30a3a5220d41d79b686c5e (diff)
Delete TBXTools.py
-rwxr-xr-xTBXTools.py2370
1 files changed, 0 insertions, 2370 deletions
diff --git a/TBXTools.py b/TBXTools.py
deleted file mode 100755
index 1dc9593..0000000
--- a/TBXTools.py
+++ /dev/null
@@ -1,2370 +0,0 @@
-import os
-import codecs
-import sqlite3
-import xml.etree.cElementTree as etree
-
-import nltk
-from nltk.util import ngrams
-from nltk.probability import FreqDist
-from nltk.collocations import *
-import re
-import pickle
-import gzip
-import operator
-import sys
-import math
-
-import string
-
-#version: 2021/05/1
-# Copyright: Antoni Oliver (2021) - Universitat Oberta de Catalunya - aoliverg@uoc.edu
-# This program is free software: you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation, either version 3 of the License, or
-# (at your option) any later version.
-
-# This program is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-# GNU General Public License for more details.
-
-# You should have received a copy of the GNU General Public License
-# along with this program. If not, see <https://www.gnu.org/licenses/>.
-
-
-class TBXTools:
- '''Class for automatic terminology extraction and terminology management.'''
- def __init__(self):
- self.maxinserts=10000 #controls the maximum number of inserts in memory
- self.sl_lang=""
- self.tl_lang=""
- self.max_id_corpus=0
-
- self.sl_stopwords=[]
- self.tl_stopwords=[]
- self.sl_inner_stopwords=[]
- self.tl_inner_stopwords=[]
- self.sl_exclsions_regexps=[]
- self.tl_exclusion_regexps=[]
- self.sl_morphonorm_rules=[]
- self.tl_morphonorm_rules=[]
- self.evaluation_terms={}
- self.exclusion_terms={}
- self.exclusion_no_terms={}
- self.ngrams={}
- self.tagged_ngrams={}
- self.term_candidates={}
- self.linguistic_patterns={}
-
- self.knownterms=[]
- self.n_min=1
- self.n_max=5
-
- self.punctuation=string.punctuation
- self.sl_stopwords.extend(self.punctuation)
- self.tl_stopwords.extend(self.punctuation)
- self.sl_inner_stopwords.extend(self.punctuation)
- self.tl_inner_stopwords.extend(self.punctuation)
-
-
- def create_project(self,project_name,sl_lang,tl_lang="null",overwrite=False):
- '''Opens a project. If the project already exists, it raises an exception. To avoid the exception use overwrite=True. To open existing projects, use the open_project method.'''
- if os.path.isfile(project_name) and not overwrite:
- raise Exception("This file already exists")
-
- else:
- if os.path.isfile(project_name) and overwrite:
- os.remove(project_name)
- self.sl_lang=sl_lang
- self.tl_lang=tl_lang
- self.conn=sqlite3.connect(project_name)
- self.cur = self.conn.cursor()
- self.cur2 = self.conn.cursor()
- with self.conn:
- self.cur = self.conn.cursor()
- self.cur.execute("CREATE TABLE configuration(id INTEGER PRIMARY KEY, sl_lang TEXT, tl_lang TEXT)")
- self.cur.execute("CREATE TABLE sl_corpus(id INTEGER PRIMARY KEY, segment TEXT)")
- self.cur.execute("CREATE TABLE tl_corpus(id INTEGER PRIMARY KEY, segment TEXT)")
- self.cur.execute("CREATE TABLE sl_tagged_corpus(id INTEGER PRIMARY KEY, tagged_segment TEXT)")
- self.cur.execute("CREATE TABLE tl_tagged_corpus(id INTEGER PRIMARY KEY, tagged_segment TEXT)")
- self.cur.execute("CREATE TABLE sl_stopwords (id INTEGER PRIMARY KEY AUTOINCREMENT, sl_stopword TEXT)")
- self.cur.execute("CREATE TABLE sl_inner_stopwords (id INTEGER PRIMARY KEY AUTOINCREMENT, sl_inner_stopword TEXT)")
- self.cur.execute("CREATE TABLE tl_stopwords (id INTEGER PRIMARY KEY AUTOINCREMENT, tl_stopword TEXT)")
- self.cur.execute("CREATE TABLE tl_inner_stopwords (id INTEGER PRIMARY KEY AUTOINCREMENT, tl_inner_stopword TEXT)")
- self.cur.execute("CREATE TABLE sl_exclusion_regexps (id INTEGER PRIMARY KEY AUTOINCREMENT, sl_exclusion_regexp TEXT)")
- self.cur.execute("CREATE TABLE tl_exclusion_regexps (id INTEGER PRIMARY KEY AUTOINCREMENT, tl_exclusion_regexp TEXT)")
- self.cur.execute("CREATE TABLE sl_morphonorm_rules (id INTEGER PRIMARY KEY AUTOINCREMENT, sl_morphonorm_rule TEXT)")
- self.cur.execute("CREATE TABLE tl_morphonorm_rules (id INTEGER PRIMARY KEY AUTOINCREMENT, tl_morphonorm_rule TEXT)")
- #self.cur.execute("CREATE TABLE sl_patterns (id INTEGER PRIMARY KEY AUTOINCREMENT, sl_pattern TEXT)")
- #self.cur.execute("CREATE TABLE tl_patterns (id INTEGER PRIMARY KEY AUTOINCREMENT, tl_pattern TEXT)")
- self.cur.execute("CREATE TABLE evaluation_terms (id INTEGER PRIMARY KEY AUTOINCREMENT, sl_term TEXT, tl_term TEXT)")
- self.cur.execute("CREATE TABLE exclusion_terms (id INTEGER PRIMARY KEY AUTOINCREMENT, sl_term TEXT, tl_term TEXT)")
- self.cur.execute("CREATE TABLE exclusion_noterms (id INTEGER PRIMARY KEY AUTOINCREMENT, sl_term TEXT, tl_term TEXT)")
- self.cur.execute("CREATE TABLE tokens (id INTEGER PRIMARY KEY AUTOINCREMENT, token TEXT, frequency INTEGER)")
- self.cur.execute("CREATE TABLE ngrams (id INTEGER PRIMARY KEY AUTOINCREMENT, ngram TEXT, n INTEGER, frequency INTEGER)")
- self.cur.execute("CREATE TABLE tagged_ngrams (id INTEGER PRIMARY KEY AUTOINCREMENT, ngram TEXT, tagged_ngram TEXT, n INTEGER, frequency INTEGER)")
-
- self.cur.execute("CREATE INDEX indextaggedngram on tagged_ngrams (ngram);")
-
-
- self.cur.execute("CREATE TABLE term_candidates (id INTEGER PRIMARY KEY AUTOINCREMENT, candidate TEXT, n INTEGER, frequency INTEGER, measure TEXT, value FLOAT)")
- self.cur.execute("CREATE TABLE index_pt(id INTEGER PRIMARY KEY AUTOINCREMENT, source TEXT, target TEXT, probability FLOAT)")
- self.cur.execute("CREATE INDEX index_index_pt on index_pt (source);")
- self.cur.execute("CREATE TABLE linguistic_patterns (id INTEGER PRIMARY KEY AUTOINCREMENT, linguistic_pattern TEXT)")
-
- self.cur.execute("INSERT INTO configuration (id, sl_lang, tl_lang) VALUES (?,?,?)",[0,self.sl_lang,self.tl_lang])
- self.conn.commit()
-
- def open_project(self,project_name):
- '''Opens an existing project. If the project doesn't exist it raises an exception.'''
- if not os.path.isfile(project_name):
- raise Exception("Project not found")
- else:
- self.conn=sqlite3.connect(project_name)
- self.cur = self.conn.cursor()
- self.cur2 = self.conn.cursor()
- self.maxsc=0
- self.maxtc=0
- with self.conn:
- self.cur.execute('SELECT sl_lang from configuration where id=0')
- self.sl_lang=self.cur.fetchone()[0]
- self.cur.execute('SELECT tl_lang from configuration where id=0')
- self.tl_lang=self.cur.fetchone()[0]
- #Maximum position in corpora
- self.maxpositions=[]
- self.cur.execute('SELECT max(id) from sl_corpus')
- self.qresult=self.cur.fetchone()[0]
- if not self.qresult==None:
- self.maxpositions.append(self.qresult)
- else:
- self.maxpositions.append(0)
- self.cur.execute('SELECT max(id) from tl_corpus')
- self.qresult=self.cur.fetchone()[0]
- if not self.qresult==None:
- self.maxpositions.append(self.qresult)
- else:
- self.maxpositions.append(0)
- self.cur.execute('SELECT max(id) from sl_tagged_corpus')
- self.qresult=self.cur.fetchone()[0]
- if not self.qresult==None:
- self.maxpositions.append(self.qresult)
- else:
- self.maxpositions.append(0)
- self.cur.execute('SELECT max(id) from tl_tagged_corpus')
- self.qresult=self.cur.fetchone()[0]
- if not self.qresult==None:
- self.maxpositions.append(self.qresult)
- else:
- self.maxpositions.append(0)
- self.max_id_corpus=max(self.maxpositions)
-
-
- #loading of stopwords
- self.cur.execute('SELECT sl_stopword from sl_stopwords')
- self.data=self.cur.fetchall()
- for self.d in self.data:
- self.sl_stopwords.append(self.d[0])
-
- self.cur.execute('SELECT tl_stopword from tl_stopwords')
- self.data=self.cur.fetchall()
- for self.d in self.data:
- self.tl_stopwords.append(self.d[0])
-
- self.cur.execute('SELECT sl_inner_stopword from sl_inner_stopwords')
- self.data=self.cur.fetchall()
- for self.d in self.data:
- self.sl_inner_stopwords.append(self.d[0])
-
- self.cur.execute('SELECT tl_inner_stopword from tl_inner_stopwords')
- self.data=self.cur.fetchall()
- for self.d in self.data:
- self.tl_inner_stopwords.append(self.d[0])
-
- self.cur.execute('SELECT sl_exclusion_regexp from sl_exclusion_regexps')
- self.data=self.cur.fetchall()
- for self.d in self.data:
- self.sl_exclusion_regexps.append(self.d[0])
-
- self.cur.execute('SELECT tl_exclusion_regexp from tl_exclusion_regexps')
- self.data=self.cur.fetchall()
- for self.d in self.data:
- self.tl_exclusion_regexps.append(self.d[0])
-
- self.cur.execute('SELECT sl_morphonorm_rule from sl_morphonorm_rules')
- self.data=self.cur.fetchall()
- for self.d in self.data:
- self.sl_morphonorm_rules.append(self.d[0])
-
- self.cur.execute('SELECT tl_morphonorm_rule from tl_morphonorm_rules')
- self.data=self.cur.fetchall()
- for self.d in self.data:
- self.tl_morphonorm_rules.append(self.d[0])
-
- self.cur.execute('SELECT sl_term,tl_term from evaluation_terms')
- self.data=self.cur.fetchall()
- for self.d in self.data:
- self.evaluation_terms[self.d[0]]=self.d[1]
-
-
- #METODES DELETES
- def delete_sl_corpus(self):
- '''Deletes de source language corpus.'''
- with self.conn:
- self.cur.execute('DELETE FROM sl_corpus')
- self.conn.commit()
-
- def delete_tl_corpus(self):
- '''Deletes de target language corpus.'''
- with self.conn:
- self.cur.execute('DELETE FROM tl_corpus')
- self.conn.commit()
-
- def delete_sl_tagged_corpus(self):
- '''Deletes the source language tagged corpus.'''
- with self.conn:
- self.cur.execute('DELETE FROM sl_tagged_corpus')
- self.conn.commit()
-
- def delete_tl_tagged_corpus(self):
- '''Deletes the target language tagged corpu.'''
- with self.conn:
- self.cur.execute('DELETE FROM tl_tagged_corpus')
- self.conn.commit()
-
- def delete_sl_stopwords(self):
- '''Deletes the stop-words for the source language.'''
- self.sl_stopwords=[]
- with self.conn:
- self.cur.execute('DELETE FROM sl_stopwords')
- self.conn.commit()
-
- def delete_tl_stopwords(self):
- '''Deletes the stop-words fot the target language.'''
- self.tl_stopwords=[]
- with self.conn:
- self.cur.execute('DELETE FROM tl_stopwords')
- self.conn.commit()
-
- def delete_sl_inner_stopwords(self):
- '''Deletes the inner stop-words for the source language.'''
- self.sl_inner_stopwords=[]
- with self.conn:
- self.cur.execute('DELETE FROM sl_inner_stopwords')
- self.conn.commit()
-
- def delete_tl_inner_stopwords(self):
- '''Deletes the innter stop-words for the target language.'''
- self.tl_inner_stopwords=[]
- with self.conn:
- self.cur.execute('DELETE FROM tl_inner_stopwords')
- self.conn.commit()
-
- def delete_sl_exclusion_regexps(self):
- '''Deletes the exclusion regular expressions for the source language.'''
- self.sl_exclusion_regexps=[]
- with self.conn:
- self.cur.execute('DELETE FROM sl_exclusion_regexps')
- self.conn.commit()
-
- def delete_tl_exclusion_regexps(self):
- '''Deletes the exclusion regular expressions for the target language.'''
- self.tl_exclusion_regexps=[]
- with self.conn:
- self.cur.execute('DELETE FROM tl_exclusion_regexps')
- self.conn.commit()
-
- def delete_sl_morphonorm_rules(self):
- '''Deletes the morphological normalisation rules for the source language.'''
- self.sl_morphonorm_rules=[]
- with self.conn:
- self.cur.execute('DELETE FROM sl_morphonorm_rules')
- self.conn.commit()
-
- def delete_tl_morphonorm_rules(self):
- '''Deletes the morphological normalisation rules for the target language.'''
- self.tl_morphonorm_rules=[]
- with self.conn:
- self.cur.execute('DELETE FROM tl_morphonorm_rules')
- self.conn.commit()
-
- def delete_evaluation_terms(self):
- '''Deletes the evaluation terms.'''
- self.evaluation_terms={}
- with self.conn:
- self.cur.execute('DELETE FROM evaluation_terms')
- self.conn.commit()
-
- def delete_exclusion_terms(self):
- '''Deletes the exclusion terms.'''
- self.exclusion_terms={}
- with self.conn:
- self.cur.execute('DELETE FROM exclusion_terms')
- self.conn.commit()
-
- def delete_exclusion_no_terms(self):
- '''Deletes the exclusion no terms.'''
- self.exclusion_terms={}
- with self.conn:
- self.cur.execute('DELETE FROM exclusion_terms')
- self.conn.commit()
-
- def delete_linguistic_patterns(self):
- '''Deletes the linguistic patterns for linguistic terminology extraction.'''
- self.exclusion_terms={}
- with self.conn:
- self.cur.execute('DELETE FROM exclusion_terms')
- self.conn.commit()
-
- def delete_tokens(self):
- '''Deletes the tokens,'''
- self.ngrams={}
- with self.conn:
- self.cur.execute('DELETE FROM tokens')
- self.conn.commit()
-
- def delete_ngrams(self):
- '''Deletes the ngrams.'''
- self.ngrams={}
- with self.conn:
- self.cur.execute('DELETE FROM ngrams')
- self.conn.commit()
-
- def delete_tagged_ngrams(self):
- '''Deletes the tagged ngrams.'''
- self.tagged_ngrams={}
- with self.conn:
- self.cur.execute('DELETE FROM tagged_ngrams')
- self.conn.commit()
-
- def delete_term_candidates(self):
- '''Deletes the term candidates.'''
- self.term_candidates={}
- with self.conn:
- self.cur.execute('DELETE FROM term_candidates')
- self.conn.commit()
-
-
- def load_sl_corpus(self,corpusfile, encoding="utf-8"):
- '''Loads a monolingual corpus for the source language. It's recommended, but not compulsory, that the corpus is segmented (one segment per line). Use TBXTools external tools to segment the corpus. A plain text corpus (not segmented), can be aslo used.'''
- self.cf=codecs.open(corpusfile,"r",encoding=encoding,errors="ignore")
- self.data=[]
- self.continserts=0
- for self.line in self.cf:
-
- self.continserts+=1
- self.max_id_corpus+=1
- self.record=[]
- self.line=self.line.rstrip()
- self.record.append(self.max_id_corpus)
- self.record.append(self.line)
- self.data.append(self.record)
- if self.continserts==self.maxinserts:
- self.cur.executemany("INSERT INTO sl_corpus (id, segment) VALUES (?,?)",self.data)
- self.data=[]
- self.continserts=0
- with self.conn:
- self.cur.executemany("INSERT INTO sl_corpus (id, segment) VALUES (?,?)",self.data)
- self.conn.commit()
-
- def load_sl_tl_corpus(self,slcorpusfile, tlcorpusfile, encoding="utf-8"):
- '''Loads a bilingual corpus in Moses format (that is, in two independent files. It expects one segment per line.'''
- self.slcf=codecs.open(slcorpusfile,"r",encoding=encoding)
- self.tlcf=codecs.open(tlcorpusfile,"r",encoding=encoding)
- self.sl_data=[]
- self.tl_data=[]
- self.continserts=0
- while 1:
- self.sl_segment=self.slcf.readline()
- if not self.sl_segment:
- break
- self.tl_segment=self.tlcf.readline()
- self.continserts+=1
- self.max_id_corpus+=1
- self.sl_record=[]
- self.tl_record=[]
- self.sl_segment=self.sl_segment.rstrip()
- self.tl_segment=self.tl_segment.rstrip()
-
- self.sl_record.append(self.max_id_corpus)
- self.tl_record.append(self.max_id_corpus)
- self.sl_record.append(self.sl_segment)
- self.tl_record.append(self.tl_segment)
- self.sl_data.append(self.sl_record)
- self.tl_data.append(self.tl_record)
- if self.continserts==self.maxinserts:
- self.cur.executemany("INSERT INTO sl_corpus (id, segment) VALUES (?,?)",self.sl_data)
- self.cur.executemany("INSERT INTO tl_corpus (id, segment) VALUES (?,?)",self.tl_data)
- self.sl_data=[]
- self.tl_data=[]
- self.continserts=0
- with self.conn:
- self.cur.executemany("INSERT INTO sl_corpus (id, segment) VALUES (?,?)",self.sl_data)
- self.cur.executemany("INSERT INTO tl_corpus (id, segment) VALUES (?,?)",self.tl_data)
- self.conn.commit()
-
- def load_tmx(self,tmx_file, sl_code=None, tl_code= None):
- '''Loads a parallel corpus from a TMX file. Source and target language codes should be given. The codes must be the exactly the same as in the TMX file. In no codes are provided, the codes used in the TBXTools project will be used.'''
- self.continserts=0
- if sl_code==None:
- self.sl_code=self.sl_lang
- else:
- self.sl_code=sl_code
- if tl_code==None:
- self.tl_code=self.tl_lang
- else:
- self.tl_code=tl_code
- self.data1=[]
- self.data2=[]
- self.sl_segment=""
- self.tl_segment=""
- self.current_lang=""
- for self.event, self.elem in etree.iterparse(tmx_file,events=("start","end")):
- if self.event=='start':
- if self.elem.tag=="tu" and not self.sl_segment=="" and not self.tl_segment=="":
- self.continserts+=1
- self.max_id_corpus+=1
- self.record1=[]
- self.record2=[]
- self.record1.append(self.max_id_corpus)
- self.record1.append(self.sl_segment)
- self.data1.append(self.record1)
-
- self.record2.append(self.max_id_corpus)
- self.record2.append(self.tl_segment)
- self.data2.append(self.record2)
- self.sl_segment=""
- self.tl_segment=""
- if self.continserts==self.maxinserts:
- self.cur.executemany("INSERT INTO sl_corpus (id, segment) VALUES (?,?)",self.data1)
- self.cur.executemany("INSERT INTO tl_corpus (id, segment) VALUES (?,?)",self.data2)
- self.data1=[]
- self.data2=[]
- self.continserts=0
- self.conn.commit()
- elif self.elem.tag=="tuv":
- self.current_lang=self.elem.attrib['{http://www.w3.org/XML/1998/namespace}lang']
- elif self.elem.tag=="seg":
- if self.elem.text:
- self.segmentext=self.elem.text
- else:
- self.segmentext=""
- if self.current_lang==sl_code:
- self.sl_segment=self.segmentext
- if self.current_lang==tl_code:
- self.tl_segment=self.segmentext
-
-
- def load_sl_tagged_corpus(self,corpusfile,format="TBXTools",encoding="utf-8"):
- '''Loads the source language tagged corpus. 3 formats are allowed:
- - TBXTools: The internal format used by TBXTools. One tagged segment per line.
- f1|l1|t1|p1 f2|l2|t2|p2 ... fn|ln|tn|pn
- - Freeling: One token per line and segments separated by blank lines
- f1 l1 t1 p1
- f2 l2 t2 p2
- ...
- fn ln tn pn
- - Conll: One of the output formats guiven by the Standford Core NLP analyzer. On token per line and segments separated by blank lines
- id1 f1 l1 t1 ...
- id2 f2 l2 t2 ...
- ...
- idn fn ln tn ...
- '''
- self.validformarts=["TBXTools","freeling","conll"]
- #TODO: Raise exception if not a valid format.
- self.cf=codecs.open(corpusfile,"r",encoding=encoding)
- if format=="TBXTools":
-
- self.data=[]
- self.continserts=0
- for self.line in self.cf:
- self.continserts+=1
- self.max_id_corpus+=1
- self.record=[]
- self.line=self.line.rstrip()
- self.record.append(self.max_id_corpus)
- self.record.append(self.line)
- self.data.append(self.record)
- if self.continserts==self.maxinserts:
- self.cur.executemany("INSERT INTO sl_tagged_corpus (id, tagged_segment) VALUES (?,?)",self.data)
- self.data=[]
- self.continserts=0
-
- with self.conn:
- self.cur.executemany("INSERT INTO sl_tagged_corpus (id, tagged_segment) VALUES (?,?)",self.data)
- self.conn.commit()
- elif format=="freeling":
- self.data=[]
- self.continserts=0
- self.segment=[]
- for self.line in self.cf:
- self.line=self.line.rstrip()
- if self.line=="":
- self.continserts+=1
- self.max_id_corpus+=1
- self.record=[]
- self.record.append(self.max_id_corpus)
- self.record.append(" ".join(self.segment))
- print(" ".join(self.segment))
- self.data.append(self.record)
- if self.continserts==self.maxinserts:
- self.cur.executemany("INSERT INTO sl_tagged_corpus (id, tagged_segment) VALUES (?,?)",self.data)
- self.data=[]
- self.continserts=0
- self.data=[]
- self.conn.commit()
- self.segment=[]
-
- else:
- self.camps=self.line.split(" ")
- self.token=self.camps[0]+"|"+self.camps[1]+"|"+self.camps[2]
-
- self.segment.append(self.token)
- with self.conn:
- self.cur.executemany("INSERT INTO sl_tagged_corpus (id, tagged_segment) VALUES (?,?)",self.data)
- self.conn.commit()
-
-
-
- elif format=="conll":
- self.data=[]
- self.continserts=0
- self.segment=[]
- for self.line in self.cf:
- self.line=self.line.rstrip()
- if self.line=="":
- self.continserts+=1
- self.max_id_corpus+=1
- self.record=[]
- self.record.append(self.max_id_corpus)
- self.record.append(" ".join(self.segment))
- self.data.append(self.record)
- if self.continserts==self.maxinserts:
- self.cur.executemany("INSERT INTO sl_tagged_corpus (id, tagged_segment) VALUES (?,?)",self.data)
- self.data=[]
- self.continserts=0
- self.data=[]
- self.conn.commit()
- self.segment=[]
-
- else:
- self.camps=self.line.split("\t")
- self.token=self.camps[1]+"|"+self.camps[2]+"|"+self.camps[3]
- self.segment.append(self.token)
-
-
-
- with self.conn:
- self.cur.executemany("INSERT INTO sl_tagged_corpus (id, tagged_segment) VALUES (?,?)",self.data)
- self.conn.commit()
-
-
-
-
-
- def load_sl_stopwords(self,fitxer,encoding="utf-8"):
- '''Loads the stopwords for the source language.'''
- self.fc=codecs.open(fitxer,"r",encoding)
- self.data=[]
- self.record=[]
- while 1:
- self.linia=self.fc.readline()
- if not self.linia:
- break
- self.linia=self.linia.rstrip()
- self.sl_stopwords.append(self.linia)
- self.record.append(self.linia)
- self.data.append(self.record)
- self.record=[]
-
- for self.punct in self.punctuation:
- self.record.append(self.punct)
- self.data.append(self.record)
- self.record=[]
- with self.conn:
- self.cur.executemany("INSERT INTO sl_stopwords (sl_stopword) VALUES (?)",self.data)
-
- def load_tl_stopwords(self,fitxer,encoding="utf-8"):
- '''Loads the stopwords for the target language.'''
- self.fc=codecs.open(fitxer,"r",encoding)
- self.data=[]
- self.record=[]
- while 1:
- self.linia=self.fc.readline()
- if not self.linia:
- break
- self.linia=self.linia.rstrip()
- self.tl_stopwords.append(self.linia)
- self.record.append(self.linia)
- self.data.append(self.record)
- self.record=[]
-
- for self.punct in self.punctuation:
- self.record.append(self.punct)
- self.data.append(self.record)
- self.record=[]
- with self.conn:
- self.cur.executemany("INSERT INTO tl_stopwords (tl_stopword) VALUES (?)",self.data)
-
- def load_sl_inner_stopwords(self,fitxer,encoding="utf-8"):
- '''Loads the stopwords for the source language.'''
- self.fc=codecs.open(fitxer,"r",encoding)
- self.data=[]
- self.record=[]
- while 1:
- self.linia=self.fc.readline()
- if not self.linia:
- break
- self.linia=self.linia.rstrip()
- self.sl_inner_stopwords.append(self.linia)
- self.record.append(self.linia)
- self.data.append(self.record)
- self.record=[]
-
- for self.punct in self.punctuation:
- self.record.append(self.punct)
- self.data.append(self.record)
- self.record=[]
- with self.conn:
- self.cur.executemany("INSERT INTO sl_inner_stopwords (sl_inner_stopword) VALUES (?)",self.data)
-
- def load_tl_inner_stopwords(self,fitxer,encoding="utf-8"):
- '''Loads the inner stopwords for the target language.'''
- self.fc=codecs.open(fitxer,"r",encoding)
- self.data=[]
- self.record=[]
- while 1:
- self.linia=self.fc.readline()
- if not self.linia:
- break
- self.linia=self.linia.rstrip()
- self.tl_inner_stopwords.append(self.linia)
- self.record.append(self.linia)
- self.data.append(self.record)
- self.record=[]
-
- for self.punct in self.punctuation:
- self.record.append(self.punct)
- self.data.append(self.record)
- self.record=[]
- with self.conn:
- self.cur.executemany("INSERT INTO tl_inner_stopwords (tl_inner_stopword) VALUES (?)",self.data)
-
- def load_evaluation_terms(self,arxiu,encoding="utf-8",nmin=0,nmax=1000):
- '''Loads the evaluation terms from a tabulated text'''
- #TODO Load from TBX
-
- self.cf=codecs.open(arxiu,"r",encoding=encoding)
- self.data=[]
- self.continserts=0
- for self.line in self.cf:
-
- self.line=self.line.rstrip()
- self.continserts+=1
- self.record=[]
- self.line=self.line.rstrip()
- self.camps=self.line.split("\t")
- if len(self.camps)==1:
- if len(self.camps[0].split(" "))>=nmin and len(self.camps[0].split(" "))<=nmax:
-
- self.record.append(self.camps[0])
- self.record.append("_")
- self.evaluation_terms[self.camps[0]]="_"
- self.data.append(self.record)
- elif len(self.camps)>1:
- if len(self.camps[0].split(" "))>=nmin and len(self.camps[0].split(" "))<=nmax:
- self.record.append(self.camps[0])
- self.record.append(self.camps[1])
- self.evaluation_terms[self.camps[0]]=self.camps[1]
- self.data.append(self.record)
- if self.continserts==self.maxinserts:
-
- self.cur.executemany("INSERT INTO evaluation_terms (sl_term,tl_term) VALUES (?,?)",self.data)
- self.data=[]
- self.continserts=0
- with self.conn:
- self.cur.executemany("INSERT INTO evaluation_terms (sl_term,tl_term) VALUES (?,?)",self.data)
-
- self.conn.commit()
-
- def load_exclusion_terms(self,arxiu,encoding="utf-8",nmin=0,nmax=1000):
- '''Loads the exclusion terms from a tabulated text. The terms in the exclusion terms will be deleted from the term candidates. It is useful to store already known terms, and/or term candidates already evaluated either as correct or as incorrect.'''
- self.cf=codecs.open(arxiu,"r",encoding=encoding)
- self.data=[]
- self.continserts=0
- for self.line in self.cf:
- self.line=self.line.rstrip()
- self.continserts+=1
- self.record=[]
- self.line=self.line.rstrip()
- self.camps=self.line.split("\t")
- if len(self.camps)==1:
- self.record.append(self.camps[0])
- self.record.append("_")
- self.evaluation_terms[self.camps[0]]="_"
- elif len(self.camps)>1:
- self.record.append(self.camps[0])
- self.record.append(self.camps[1])
- self.evaluation_terms[self.camps[0]]=self.camps[1]
- self.data.append(self.record)
- if self.continserts==self.maxinserts:
- self.cur.executemany("INSERT INTO exclusion_terms (sl_term,tl_term) VALUES (?,?)",self.data)
- self.data=[]
- self.continserts=0
- with self.conn:
- self.cur.executemany("INSERT INTO exclusion_terms (sl_term,tl_term) VALUES (?,?)",self.data)
-
- self.conn.commit()
-
- def load_sl_exclusion_regexps(self,arxiu,encoding="utf-8"):
- '''Loads the exclusionregular expressions for the source language.'''
- self.cf=codecs.open(arxiu,"r",encoding=encoding)
- self.data=[]
- for self.line in self.cf:
- self.line=self.line.rstrip()
- self.record=[]
- self.record.append(self.line)
- self.data.append(self.record)
-
- with self.conn:
- self.cur.executemany('INSERT INTO sl_exclusion_regexps (sl_exclusion_regexp) VALUES (?)',self.data)
-
- def load_tl_exclusion_regexps(self,arxiu,encoding="utf-8"):
- '''Loads the exclusionregular expressions for the target language.'''
- self.cf=codecs.open(arxiu,"r",encoding=encoding)
- self.data=[]
- for self.line in self.cf:
- self.line=self.line.rstrip()
- self.record=[]
- self.record.append(self.line)
- self.data.append(self.record)
-
- with self.conn:
- self.cur.executemany('INSERT INTO tl_exclusion_regexps (sl_exclusion_regexp) VALUES (?)',self.data)
-
-
- def show_term_candidates(self,limit=-1,minfreq=2, minmeasure=-1, show_frequency=True, show_measure=False, mark_eval=False, verbose=False):
- '''Shows in screen the term candidates.'''
- self.measure=0
-
- with self.conn:
- self.cur.execute("SELECT sl_term FROM exclusion_terms")
- for self.s in self.cur.fetchall():
- self.knownterms.append(self.s[0])
- with self.conn:
- self.cur.execute("SELECT frequency,measure,n,candidate FROM term_candidates order by frequency desc limit "+str(limit))
- for self.s in self.cur.fetchall():
- self.frequency=self.s[0]
- if self.s[1]==None:
- self.measure==0
- else:
- self.measure=self.s[1]
- self.n=self.s[2]
- self.candidate=self.s[3]
- if self.n>=self.n_min and self.n<=self.n_max and not self.candidate in self.knownterms:
- if mark_eval:
- if self.candidate in self.evaluation_terms:
- self.candidate="*"+self.candidate
- if show_frequency:
- self.cadena=str(self.frequency)+"\t"+self.candidate
- else:
- self.cadena=self.candidate
- print(self.cadena)
-
- def select_unigrams(self,file,position=-1,verbose=True):
- sunigrams=codecs.open(file,"w",encoding="utf-8")
- self.unigrams={}
- self.cur.execute("SELECT frequency,candidate FROM term_candidates order by value desc, frequency desc, random()")
- #self.cur.execute("SELECT frequency,value,n,candidate FROM term_candidates order by n desc limit "+str(limit))
- for self.s in self.cur.fetchall():
- self.frequency=self.s[0]
- self.candidate=self.s[1].split(" ")[position]
- if self.candidate in self.unigrams:
- self.unigrams[self.candidate]+=self.frequency
- else:
- self.unigrams[self.candidate]=self.frequency
- #for self.candidate in self.unigrams:
- # print(self.unigrams[self.candidate],self.candidate)
-
- for self.candidate in sorted(self.unigrams, key=self.unigrams.get, reverse=True):
- if verbose:
- cadena=str(self.unigrams[self.candidate])+"\t"+self.candidate
- print(cadena)
- sunigrams.write(cadena+"\n")
-
-
- def save_term_candidates(self,outfile,limit=-1,minfreq=2, minmeasure=-1, show_frequency=True, show_measure=False, mark_eval=False, verbose=False):
- '''Saves the term candidates in a file.'''
- self.sortida=codecs.open(outfile,"w",encoding="utf-8")
- self.measure=0
- self.knownterms=[]
- with self.conn:
- self.cur.execute("SELECT sl_term FROM exclusion_terms")
- for self.s in self.cur.fetchall():
- self.knownterms.append(self.s[0])
- with self.conn:
- self.cur.execute("SELECT frequency,value,n,candidate FROM term_candidates order by value desc, frequency desc, random() limit "+str(limit))
- #self.cur.execute("SELECT frequency,value,n,candidate FROM term_candidates order by n desc limit "+str(limit))
- for self.s in self.cur.fetchall():
- self.frequency=self.s[0]
- if self.s[1]==None:
- self.measure==0
- else:
- self.measure=self.s[1]
- self.n=self.s[2]
- self.candidate=self.s[3]
- if self.n>=self.n_min and self.n<=self.n_max and not self.candidate in self.knownterms:
- if mark_eval:
- if self.candidate in self.evaluation_terms:
- self.candidate="*"+self.candidate
- if show_measure and not show_frequency:
- self.cadena=str(self.measure)+"\t"+self.candidate
- elif show_frequency and not show_measure:
- self.cadena=str(self.frequency)+"\t"+self.candidate
- elif show_frequency and show_measure:
- self.cadena=str(self.frequency)+"\t"+str(self.measure)+"\t"+self.candidate
- else:
- self.cadena=self.candidate
- if verbose:
- print(self.cadena)
- self.sortida.write(self.cadena+"\n")
-
- #STATISTICAL TERM EXTRACTION
-
- def ngram_calculation (self,nmin,nmax,minfreq=2):
- '''Performs the calculation of ngrams.'''
- self.ngrams=FreqDist()
- self.tokens=FreqDist()
- self.n_nmin=nmin
- self.n_max=nmax
-
- with self.conn:
- self.cur.execute('SELECT segment from sl_corpus')
-
- for self.s in self.cur.fetchall():
- self.segment=self.s[0]
- for self.n in range(nmin,nmax+2): #we calculate one order bigger in order to detect nested candidates
- #self.ngs=ngrams(self.sl_tokenizer.tokenize(self.segment), self.n)
- self.ngs=ngrams(self.segment.split(), self.n)
- for self.ng in self.ngs:
- self.ngrams[self.ng]+=1
- #for self.token in self.sl_tokenizer.tokenize(self.segment):
- for self.token in self.segment.split(" "):
- self.tokens[self.token]+=1
-
- self.data=[]
- for self.c in self.ngrams.most_common():
- if self.c[1]>=minfreq:
- self.record=[]
- self.record.append(" ".join(self.c[0]))
- self.record.append(len(self.c[0]))
- self.record.append(self.c[1])
- self.data.append(self.record)
- with self.conn:
- self.cur.executemany("INSERT INTO ngrams (ngram, n, frequency) VALUES (?,?,?)",self.data)
- self.conn.commit()
-
- self.data=[]
- for self.c in self.tokens.most_common():
- self.record=[]
- self.record.append(self.c[0])
- self.record.append(self.c[1])
- self.data.append(self.record)
- with self.conn:
- self.cur.executemany("INSERT INTO tokens (token, frequency) VALUES (?,?)",self.data)
- self.conn.commit()
-
- def statistical_term_extraction(self,minfreq=2):
- '''Performs an statistical term extraction using the extracted ngrams (ngram_calculation should be executed first) Loading stop-words is advisable. '''
- self.cur.execute("DELETE FROM term_candidates")
- self.conn.commit()
- self.cur.execute("SELECT ngram, n, frequency FROM ngrams order by frequency desc")
- self.results=self.cur.fetchall()
- self.data=[]
- for self.a in self.results:
- self.ng=self.a[0].split(" ")
- self.include=True
- if self.ng[0].lower() in self.sl_stopwords: self.include=False
- if self.ng[-1].lower() in self.sl_stopwords: self.include=False
- for self.i in range(1,len(self.ng)):
- if self.ng[self.i].lower() in self.sl_inner_stopwords:
- self.include=False
- if self.include:
- self.record=[]
- self.record.append(self.a[0])
- self.record.append(self.a[1])
- self.record.append(self.a[2])
- self.record.append("freq")
- self.record.append(self.a[2])
- self.data.append(self.record)
- if self.a[2]<minfreq:
- break
-
- with self.conn:
- self.cur.executemany("INSERT INTO term_candidates (candidate, n, frequency, measure, value) VALUES (?,?,?,?,?)",self.data)
- self.conn.commit()
-
-
- def case_normalization(self,verbose=False):
- '''
- Performs case normalization. If a capitalized term exists as non-capitalized, the capitalized one will be deleted and the frequency of the non-capitalized one will be increased by the frequency of the capitalized.
- '''
- self.cur.execute("SELECT candidate,frequency FROM term_candidates")
- self.results=self.cur.fetchall()
- self.auxiliar={}
- for self.r in self.results:
- self.auxiliar[self.r[0]]=self.r[1]
- for self.a in self.results:
- if not self.a[0]==self.a[0].lower() and self.a[0].lower() in self.auxiliar:
- #self.term_candidates.inc(c[0].lower(),self.term_candidates[c[0]])
- #self.term_candidates[c[0].lower()]+=self.term_candidates[c[0]]
- #self.term_candidates.pop(c[0])
- self.terma=self.a[0]
- self.termb=self.a[0].lower()
- self.freqa=self.a[1]
- self.freqb=self.auxiliar[self.termb]
-
- self.n=len(self.termb.split(" "))
- self.freqtotal=self.freqa+self.freqb
- if verbose:
- print(self.terma,self.freqa,"-->",self.termb,self.freqb,"-->",self.freqtotal)
- self.cur.execute('DELETE FROM term_candidates WHERE candidate=?', (self.terma,))
- self.cur.execute('DELETE FROM term_candidates WHERE candidate=?', (self.termb,))
- #self.cur.execute("INSERT INTO term_candidates (candidate, n, frequency) VALUES (?,?,?)",(self.termb,self.n,self.freqtotal,))
- self.cur.execute("INSERT INTO term_candidates (candidate, n, frequency, measure, value) VALUES (?,?,?,?,?)",(self.termb,self.n,self.freqtotal,"freq",self.freqtotal))
- self.conn.commit()
-
- def nest_normalization(self,percent=10,verbose=False):
- '''
- Performs a normalization of nested term candidates. If an n-gram candidate A is contained in a n+1 candidate B and freq(A)==freq(B) or they are close values (determined by the percent parameter, A is deleted B remains as it is)
- '''
- self.cur.execute("SELECT candidate,frequency,n FROM term_candidates order by frequency desc")
- self.results=self.cur.fetchall()
- for self.a in self.results:
-
- self.ta=self.a[0]
- self.fa=self.a[1]
- self.na=self.a[2]
- self.nb=self.na+1
- self.fmax=self.fa+self.fa*percent/100
- self.fmin=self.fa-self.fa*percent/100
- self.cur.execute("SELECT candidate,frequency FROM term_candidates where frequency <="+str(self.fmax)+" and frequency>="+str(self.fmin)+" and n ="+str(self.nb)+ " and n<="+str(self.n_max))
- self.results2=self.cur.fetchall()
- for self.b in self.results2:
- self.tb=self.b[0]
- self.fb=self.b[1]
- #if abs(self.fa-self.fb)<=max(self.fa,self.fb)/percent:
- if not self.ta==self.tb and not self.tb.find(self.ta)==-1:
-
- self.cur.execute('DELETE FROM term_candidates WHERE candidate=?', (self.ta,))
- if verbose:
- print(str(self.fa),self.ta,"-->",str(self.fb),self.tb)
-
- self.conn.commit()
-
- def regexp_exclusion(self,verbose=False):
- '''Deletes term candidates matching a set of regular expresions loaded with the load_sl_exclusion_regexps method.'''
- self.cur.execute("SELECT sl_exclusion_regexp FROM sl_exclusion_regexps")
- self.results=self.cur.fetchall()
- for self.r in self.results:
- self.nregexp=len(self.r[0].split(" "))
- self.exreg=self.r[0]
- self.cur.execute("SELECT candidate FROM term_candidates where n<="+str(self.n_max))
- self.results=self.cur.fetchall()
- self.cexreg=re.compile(self.exreg)
- for self.a in self.results:
- self.candidate=self.a[0]
- self.ncandidate=len(self.candidate.split(" "))
- self.match=re.match(self.cexreg,self.candidate)
- #self.match=re.match(r'\W+$',self.candidate)
-
- if not self.match==None and self.nregexp==self.ncandidate:
- self.cur.execute('DELETE FROM term_candidates WHERE candidate=?', (self.candidate,))
- if verbose:
- print(self.exreg,"-->",self.candidate)
- self.conn.commit()
-
- #EVALUATION
-
-
-
- def evaluate_pos(self,limit,order="desc",iterations=1000,ignore_case=True):
- '''Performs the evaluation of the term candidates using the evaluation_terms loaded with the load_evaluation_terms method.'''
- self.correct=0
- self.total=0
- with self.conn:
- for i in range(0,iterations):
- if order=="desc":
- self.cur.execute("SELECT candidate from term_candidates where n<="+str(self.n_max)+" order by value desc, frequency desc, random() limit "+str(limit))
- elif order=="asc":
- self.cur.execute("SELECT candidate from term_candidates where n<="+str(self.n_max)+" order by value asc, frequency desc, random() limit "+str(limit))
- else:
- raise NameError('Order must be desc (decending) or asc (ascending). Defaulf value: desc')
- #self.cur.execute("SELECT candidate from term_candidates order by id limit "+str(limit))
- for self.s in self.cur.fetchall():
- self.total+=1
- self.candidate=self.s[0]
- if ignore_case:
- if self.candidate in self.evaluation_terms:
- self.correct+=1
- elif self.candidate.lower() in self.evaluation_terms:
- self.correct+=1
- else:
- if self.candidate in self.evaluation_terms:
- self.correct+=1
- self.correct=self.correct/iterations
- self.total=self.total/iterations
-
- try:
- self.precisio=100*self.correct/self.total
- self.recall=100*self.correct/len(self.evaluation_terms)
- self.f1=2*self.precisio*self.recall/(self.precisio+self.recall)
- return(limit,self.correct,self.total,self.precisio,self.recall,self.f1)
- except:
- return(limit,0,0,0,0,0)
-
- def association_measures(self,measure="raw_freq",n=2):
- self.measurename=measure
- self.bigram_measures = myBigramAssocMeasures()
- self.trigram_measures = myTrigramAssocMeasures()
- self.fd_tokens=nltk.FreqDist()
- self.fd_bigrams=nltk.FreqDist()
- self.fd_trigrams=nltk.FreqDist()
- self.wildcard_fd=nltk.FreqDist()
- self.cur.execute("SELECT token,frequency from tokens")
- for self.s in self.cur.fetchall():
- self.aux=(self.s[0])
- self.fd_tokens[self.aux]+=self.s[1]
-
- self.textcorpus=[]
- self.cur.execute("SELECT segment from sl_corpus")
- for self.segment in self.cur.fetchall():
- #self.textcorpus.extend(self.sl_tokenizer.tokenize(self.segment[0]))
- self.textcorpus.extend(self.segment[0].split(" "))
-
- #BIGRAMS
- if n==2:
- self.cur.execute("SELECT ngram,frequency from ngrams where n=2")
- for self.s in self.cur.fetchall():
- self.aux=(self.s[0].split(" ")[0],self.s[0].split(" ")[1])
- self.fd_bigrams[self.aux]+=self.s[1]
- #self.bigram_finder=BigramCollocationFinder(self.fd_tokens, self.fd_bigrams)
- self.bigram_finder=BigramCollocationFinder.from_words(self.textcorpus)
- if measure=="chi_sq":
- self.bigram_measure=self.bigram_finder.score_ngrams(self.bigram_measures.chi_sq)
- elif measure=="chi_sq_2g":
- self.bigram_measure=self.bigram_finder.score_ngrams(self.bigram_measures.chi_sq_2g)
- elif measure=="fisher":
- self.bigram_measure=self.bigram_finder.score_ngrams(self.bigram_measures.fisher)
- elif measure=="phi_sq":
- self.bigram_measure=self.bigram_finder.score_ngrams(self.bigram_measures.phi_sq)
- elif measure=="phi_sq_2g":
- self.bigram_measure=self.bigram_finder.score_ngrams(self.bigram_measures.phi_sq_2g)
- elif measure=="dice":
- self.bigram_measure=self.bigram_finder.score_ngrams(self.bigram_measures.dice)
- elif measure=="dice_2g":
- self.bigram_measure=self.bigram_finder.score_ngrams(self.bigram_measures.dice_2g)
- elif measure=="my_dice":
- self.bigram_measure=self.bigram_finder.score_ngrams(self.bigram_measures.my_dice)
- elif measure=="jaccard":
- self.bigram_measure=self.bigram_finder.score_ngrams(self.bigram_measures.jaccard)
- elif measure=="jaccard_2g":
- self.bigram_measure=self.bigram_finder.score_ngrams(self.bigram_measures.jaccard_2g)
- elif measure=="likelihood_ratio":
- self.bigram_measure=self.bigram_finder.score_ngrams(self.bigram_measures.likelihood_ratio)
- elif measure=="loglikelihood_2g":
- self.bigram_measure=self.bigram_finder.score_ngrams(self.bigram_measures.loglikelihood_2g)
- elif measure=="pmi":
- self.bigram_measure=self.bigram_finder.score_ngrams(self.bigram_measures.pmi)
- elif measure=="pmi_2g":
- self.bigram_measure=self.bigram_finder.score_ngrams(self.bigram_measures.pmi_2g)
- elif measure=="poisson_stirling":
- self.bigram_measure=self.bigram_finder.score_ngrams(self.bigram_measures.poisson_stirling)
- elif measure=="poisson_stirling_2g":
- self.bigram_measure=self.bigram_finder.score_ngrams(self.bigram_measures.poisson_stirling_2g)
- elif measure=="student_t":
- self.bigram_measure=self.bigram_finder.score_ngrams(self.bigram_measures.student_t)
- elif measure=="t_score_2g":
- self.bigram_measure=self.bigram_finder.score_ngrams(self.bigram_measures.t_score_2g)
- elif measure=="mi_like":
- self.bigram_measure=self.bigram_finder.score_ngrams(self.bigram_measures.mi_like)
- elif measure=="raw_freq":
- self.bigram_measure=self.bigram_finder.score_ngrams(self.bigram_measures.raw_freq)
-
- elif measure=="tmi_2g":
- self.bigram_measure=self.bigram_finder.score_ngrams(self.bigram_measures.tmi_2g)
-
- elif measure=="odds_2g":
- self.bigram_measure=self.bigram_finder.score_ngrams(self.bigram_measures.odds_2g)
-
- elif measure=="MI":
- self.bigram_measure=self.bigram_finder.score_ngrams(self.bigram_measures.MI)
- elif measure=="MI2":
- self.bigram_measure=self.bigram_finder.score_ngrams(self.bigram_measures.MI2)
- elif measure=="MI3":
- self.bigram_measure=self.bigram_finder.score_ngrams(self.bigram_measures.MI3)
-
- elif measure=="my_dice":
- self.bigram_measure=self.bigram_finder.score_ngrams(self.bigram_measures.my_dice)
- elif measure=="t_score":
- self.bigram_measure=self.bigram_finder.score_ngrams(self.bigram_measures.t_score)
- elif measure=="log_likelihood_ratio":
- self.bigram_measure=self.bigram_finder.score_ngrams(self.bigram_measures.log_likelihood_ratio)
-
- elif measure=="log_likelihood_ratio_TEXTNSP":
- self.bigram_measure=self.bigram_finder.score_ngrams(self.bigram_measures.log_likelihood_ratio_TEXTNSP)
- elif measure=="tmi":
- self.bigram_measure=self.bigram_finder.score_ngrams(self.bigram_measures.tmi)
-
-
- elif measure=="poisson_stirling_TEXTNSP":
- self.bigram_measure=self.bigram_finder.score_ngrams(self.bigram_measures.poisson_stirling_TEXTNSP)
-
-
- elif measure=="chi_squared":
- self.bigram_measure=self.bigram_finder.score_ngrams(self.bigram_measures.chi_squared)
-
- elif measure=="jaccard_TEXTNSP":
- self.bigram_measure=self.bigram_finder.score_ngrams(self.bigram_measures.jaccard_TEXTNSP)
-
- elif measure=="pmi_TEXTNSP":
- self.bigram_measure=self.bigram_finder.score_ngrams(self.bigram_measures.pmi_TEXTNSP)
-
-
- elif measure=="phi_sq_TEXTNSP":
- self.bigram_measure=self.bigram_finder.score_ngrams(self.bigram_measures.phi_sq_TEXTNSP)
-
-
- else:
- print(sys.exc_info()[0])
- raise NameError('Association measure not implemented')
- self.data=[]
- for self.nose in self.bigram_measure:
- self.record=[]
- self.term_candidate=" ".join(self.nose[0])
-
- self.mvalue=self.nose[1]
- self.record.append(measure)
- self.record.append(self.mvalue)
- self.record.append(self.term_candidate)
- self.data.append(self.record)
- elif n==3:
-
- #TRIGRAMS
- self.cur.execute("SELECT ngram,frequency from ngrams where n=2")
- for self.s in self.cur.fetchall():
- self.aux=(self.s[0].split(" ")[0],self.s[0].split(" ")[1])
- self.fd_bigrams[self.aux]+=self.s[1]
-
- self.cur.execute("SELECT ngram,frequency from ngrams where n=3")
- for self.s in self.cur.fetchall():
- self.wild=(self.s[0].split(" ")[0],self.s[0].split(" ")[2])
- self.aux=(self.s[0].split(" ")[0],self.s[0].split(" ")[1],self.s[0].split(" ")[2])
- self.fd_trigrams[self.aux]+=self.s[1]
- self.wildcard_fd[self.wild]+=self.s[1]
-
- #self.trigram_finder=TrigramCollocationFinder(self.fd_tokens, self.fd_bigrams, self.wildcard_fd, self.fd_trigrams)
-
- '''Construct a TrigramCollocationFinder, given FreqDists for
- appearances of words, bigrams, two words with any word between them,
- and trigrams.'''
- self.trigram_finder=TrigramCollocationFinder.from_words(self.textcorpus)
- if self.measurename=="chi_sq":
- self.trigram_measure=self.trigram_finder.score_ngrams(self.trigram_measures.chi_sq)
-
- elif self.measurename=="jaccard":
- self.trigram_measure=self.trigram_finder.score_ngrams(self.trigram_measures.jaccard)
- elif self.measurename=="likelihood_ratio":
- self.trigram_measure=self.trigram_finder.score_ngrams(self.trigram_measures.likelihood_ratio)
- elif self.measurename=="pmi":
- self.trigram_measure=self.trigram_finder.score_ngrams(self.trigram_measures.pmi)
- elif self.measurename=="poisson_stirling":
- self.trigram_measure=self.trigram_finder.score_ngrams(self.trigram_measures.poisson_stirling)
- elif self.measurename=="student_t":
- self.trigram_measure=self.trigram_finder.score_ngrams(self.trigram_measures.student_t)
- elif self.measurename=="mi_like":
- self.trigram_measure=self.trigram_finder.score_ngrams(self.trigram_measures.mi_like)
- elif self.measurename=="raw_freq":
- self.trigram_measure=self.trigram_finder.score_ngrams(self.trigram_measures.raw_freq)
-
- elif measure=="pmi_3g":
- self.trigram_measure=self.trigram_finder.score_ngrams(self.trigram_measures.pmi_3g)
-
- elif measure=="poisson_stirling_3g":
- self.trigram_measure=self.trigram_finder.score_ngrams(self.trigram_measures.poisson_stirling_3g)
-
- elif measure=="tmi_3g":
- self.trigram_measure=self.trigram_finder.score_ngrams(self.trigram_measures.tmi_3g)
-
- elif measure=="loglikelihood_3g":
- self.trigram_measure=self.trigram_finder.score_ngrams(self.trigram_measures.loglikelihood_3g)
- else:
- raise NameError('Association measure not implemented')
- self.data=[]
- for self.nose in self.trigram_measure:
- self.record=[]
- self.term_candidate=" ".join(self.nose[0])
- self.mvalue=self.nose[1]
- self.record.append(self.measurename)
- self.record.append(self.mvalue)
- self.record.append(self.term_candidate)
- self.data.append(self.record)
-
-
-
-
- self.conn.executemany("UPDATE term_candidates SET measure=?,value=? where candidate=?",self.data)
- self.conn.commit()
-
-
-
- def index_phrase_table(self,phrasetable):
- '''Indexes a phrase table from Moses.'''
- self.entrada=gzip.open(phrasetable, mode='rt')
-
- self.pt={}
- self.continserts=0
- self.record=[]
- self.data=[]
- while 1:
- self.linia=self.entrada.readline()
- if not self.linia:
- break
- self.linia=self.linia.rstrip()
- self.camps=self.linia.split(" ||| ")
- self.source=self.camps[0].strip()
- self.trad=self.camps[1].strip()
- self.probs=self.camps[2].split(" ")
- try:
- if not self.trad[0] in self.punctuation and not self.source[0] in self.punctuation and not self.trad[-1] in self.punctuation and not self.source[-1] in self.punctuation:
- #Currently, four different phrase translation scores are computed:
- #0 inverse phrase translation probability φ(f|e)
- #1 inverse lexical weighting lex(f|e)
- #2 direct phrase translation probability φ(e|f)
- #3 direct lexical weighting lex(e|f)
- #self.probtrad=float(self.probs[1])
- self.probtrad=(float(self.probs[2])*float(self.probs[3]))
- #print(self.source,self.trad,self.probtrad)
- self.record=[]
- self.record.append(self.source)
- self.record.append(self.trad)
- self.record.append(self.probtrad)
- self.data.append(self.record)
- self.continserts+=1
- if self.continserts==self.maxinserts:
- self.cur.executemany("INSERT INTO index_pt (source, target, probability) VALUES (?,?,?)",self.data)
- self.data=[]
- self.continserts=0
- self.conn.commit()
- except:
- pass
- with self.conn:
- self.cur.executemany("INSERT INTO index_pt (source, target, probability) VALUES (?,?,?)",self.data)
- self.conn.commit()
-
-
- def find_translation_ptable(self,sourceterm,maxdec=1,maxinc=1,ncandidates=5,separator=":"):
- '''Finds translation equivalents in an indexed phrase table table. Requires an indexed phrase table and a a list of terms separated by ":".
- The number of translation candidates can be fixed, as well as the maximum decrement and increment of the number of tokens of the translation candidate'''
- #select target from index_pt where source="international conflict";
- self.cur.execute('SELECT target,probability FROM index_pt where source =?',(sourceterm,))
- self.results=self.cur.fetchall()
- self.targetcandidates={}
- for self.a in self.results:
- self.targetterm=self.a[0]
- self.probability=float(self.a[1])
- self.tttokens=self.targetterm.split(" ")
-
- if not self.tttokens[0] in self.tl_stopwords and not self.tttokens[-1] in self.tl_stopwords and len(self.tttokens)>=len(sourceterm.split(" "))-maxdec and len(self.tttokens)<=len(sourceterm.split(" "))+maxinc:
- self.targetcandidates[self.targetterm]=self.probability
- self.sorted_x = sorted(self.targetcandidates.items(), key=operator.itemgetter(1),reverse=True)
- self.results=[]
- for self.s in self.sorted_x:
- self.results.append(self.s[0].replace(":",";"))
- return(separator.join(self.results[0:ncandidates]))
-
-
-
- def start_freeling_api(self,freelingpath, LANG):
-
- if not freelingpath.endswith("/"):freelingpath=freelingpath+"/"
- try:
- sys.path.append(freelingpath+"APIs/python3/")
- import pyfreeling
- except:
- #pass
- print("No Freeling API available. Verify Freeling PATH: "+freelingpath+"freeling/APIs/python3/")
-
- pyfreeling.util_init_locale("default");
-
- # create language analyzer
- self.la1=pyfreeling.lang_ident(freelingpath+"common/lang_ident/ident.dat");
-
- # create options set for maco analyzer. Default values are Ok, except for data files.
- self.op1= pyfreeling.maco_options(LANG);
- self.op1.set_data_files( "",
- freelingpath + "common/punct.dat",
- freelingpath+ LANG + "/dicc.src",
- freelingpath + LANG + "/afixos.dat",
- "",
- freelingpath + LANG + "/locucions.dat",
- freelingpath + LANG + "/np.dat",
- freelingpath + LANG + "/quantities.dat",
- freelingpath + LANG + "/probabilitats.dat");
-
- # create analyzers
- self.tk1=pyfreeling.tokenizer(freelingpath+LANG+"/tokenizer.dat");
- self.sp1=pyfreeling.splitter(freelingpath+LANG+"/splitter.dat");
- self.sid1=self.sp1.open_session();
- self.mf1=pyfreeling.maco(self.op1);
-
- # activate mmorpho odules to be used in next call
- self.mf1.set_active_options(False, True, True, False, # select which among created
- True, True, False, True, # submodules are to be used.
- True, False, True, True ); # default: all created submodules are used
-
- # create tagger, sense anotator, and parsers
- self.tg1=pyfreeling.hmm_tagger(freelingpath+LANG+"/tagger.dat",True,2);
-
- def tag_freeling_api(self,corpus="source"):
- with self.conn:
- self.data=[]
- if corpus=="source":
- self.cur.execute('SELECT id,segment from sl_corpus')
- elif corpus=="target":
- self.cur.execute('SELECT id,segment from tl_corpus')
- for self.s in self.cur.fetchall():
- self.id=self.s[0]
- self.segment=self.s[1]
- self.l1 = self.tk1.tokenize(self.segment);
- self.ls1 = self.sp1.split(self.sid1,self.l1,True);
- self.ls1 = self.mf1.analyze(self.ls1);
- self.ls1 = self.tg1.analyze(self.ls1);
- self.ttsentence=[]
- for self.s in self.ls1 :
- self.ws = self.s.get_words();
- for self.w in self.ws :
- self.form=self.w.get_form()
- self.lemma=self.w.get_lemma()
- self.tag=self.w.get_tag()
- self.ttsentence.append(self.form+"|"+self.lemma+"|"+self.tag)
- self.ttsentence=" ".join(self.ttsentence)
- self.record=[]
- self.record.append(self.id)
- self.record.append(self.ttsentence)
- self.data.append(self.record)
- if self.continserts==self.maxinserts:
- if corpus=="source":
- self.cur.executemany("INSERT INTO sl_tagged_corpus (id, tagged_segment) VALUES (?,?)",self.data)
- if corpus=="target":
- self.cur.executemany("INSERT INTO tl_tagged_corpus (id, tagged_segment) VALUES (?,?)",self.data)
- self.data=[]
- self.continserts=0
- with self.conn:
- if corpus=="source":
- self.cur.executemany("INSERT INTO sl_tagged_corpus (id, tagged_segment) VALUES (?,?)",self.data)
- if corpus=="target":
- self.cur.executemany("INSERT INTO tl_tagged_corpus (id, tagged_segment) VALUES (?,?)",self.data)
- def save_sl_tagged_corpus(self,outputfile,encoding="utf-8"):
- self.sortida=codecs.open(outputfile,"w",encoding=encoding)
- self.cur.execute('SELECT tagged_segment from sl_tagged_corpus')
- for self.s in self.cur.fetchall():
- self.tagged_segment=self.s[0]
- self.sortida.write(self.tagged_segment+"\n")
-
-
- def tagged_ngram_calculation (self,nmin=2,nmax=3,minfreq=2):
- '''Calculates the tagged ngrams.'''
- self.ngrams=FreqDist()
- self.n_nmin=nmin
- self.n_max=nmax
- with self.conn:
- self.data=[]
- self.record=[]
- self.record.append(self.n_min)
- self.data.append(self.record)
- #self.conn.executemany("UPDATE configuration SET n_min=? where id=0",self.data)
- self.data=[]
- self.record=[]
- self.record.append(self.n_max)
- self.data.append(self.record)
- #self.conn.executemany("UPDATE configuration SET n_max=? where id=0",self.data)
- #cur.execute("UPDATE Contacts SET FirstName = ? WHERE LastName = ?", (Fname, Lname))
-
- self.conn.commit()
-
- with self.conn:
- self.cur.execute('SELECT tagged_segment from sl_tagged_corpus')
-
- for self.s in self.cur.fetchall():
- self.segment=self.s[0]
-
- for self.n in range(nmin,nmax+1):
- self.ngs=ngrams(self.segment.split(), self.n)
- for self.ng in self.ngs:
- self.ngrams[self.ng]+=1
-
- self.data=[]
- for self.c in self.ngrams.most_common():
- if self.c[1]>=minfreq:
- self.candidate=[]
- for self.ngt in self.c[0]:
- self.candidate.append(self.ngt.split("|")[0])
- self.candidate=" ".join(self.candidate)
- self.record=[]
- self.record.append(self.candidate)
- self.record.append(" ".join(self.c[0]))
- self.record.append(len(self.c[0]))
- self.record.append(self.c[1])
- self.data.append(self.record)
- with self.conn:
- self.cur.executemany("INSERT INTO tagged_ngrams (ngram, tagged_ngram, n, frequency) VALUES (?,?,?,?)",self.data)
- self.conn.commit()
-
- def translate_linguistic_pattern(self,pattern):
-
- self.aux=[]
- for self.ptoken in pattern.split(" "):
- self.auxtoken=[]
- self.ptoken=self.ptoken.replace(".*","[^\s]+") #ATENCIÓ AIXÓ ÉS NOU, VERIFICAR SI CAL
- for self.pelement in self.ptoken.split("|"):
- if self.pelement=="#":
- self.auxtoken.append("([^\s]+?)")
- elif self.pelement=="":
- self.auxtoken.append("[^\s]+?")
- else:
- if self.pelement.startswith("#"):
- self.auxtoken.append("("+self.pelement.replace("#","")+")")
- else:
- self.auxtoken.append(self.pelement)
- self.aux.append("\|".join(self.auxtoken))
- self.tp="("+" ".join(self.aux)+")"
- #self.tpatterns.append(self.tp)
- return(self.tp)
-
- def load_linguistic_patterns(self,file, encoding="utf-8"):
- '''Loads the linguistic patterns to use with linguistic terminology extraction.'''
- self.entrada=codecs.open(file,"r",encoding=encoding)
- self.linguistic_patterns=[]
- self.data=[]
- self.record=[]
- for self.linia in self.entrada:
- self.linia=self.linia.rstrip()
- self.pattern=self.translate_linguistic_pattern(self.linia)
- self.record.append(self.pattern)
- self.data.append(self.record)
- self.record=[]
- with self.conn:
- self.cur.executemany("INSERT INTO linguistic_patterns (linguistic_pattern) VALUES (?)",self.data)
-
-
-
- def linguistic_term_extraction(self,minfreq=2):
- '''Performs an linguistic term extraction using the extracted tagged ngrams (tagged_ngram_calculation should be executed first). '''
- self.linguistics_patterns=[]
- self.controlpatterns=[]
- with self.conn:
- self.cur.execute("SELECT linguistic_pattern from linguistic_patterns")
- for self.lp in self.cur.fetchall():
- self.linguistic_pattern=self.lp[0]
- self.transformedpattern="^"+self.linguistic_pattern+"$"
- if not self.transformedpattern in self.controlpatterns:
- self.linguistic_patterns.append(self.transformedpattern)
- self.controlpatterns.append(self.transformedpattern)
-
-
- self.cur.execute("SELECT tagged_ngram, n, frequency FROM tagged_ngrams order by frequency desc")
- self.results=self.cur.fetchall()
- self.data=[]
-
- for self.a in self.results:
- self.include=True
- self.ng=self.a[0]
- self.n=self.a[1]
- self.frequency=self.a[2]
- if self.ng.split(" ")[0].split("|")[1].lower() in self.sl_stopwords: self.include=False
- if self.ng.split(" ")[-1].split("|")[1].lower() in self.sl_stopwords: self.include=False
- if self.frequency<minfreq:
- break
- if self.include:
- for self.pattern in self.linguistic_patterns:
- self.match=re.search(self.pattern,self.ng)
- if self.match:
- if self.match.group(0)==self.ng:
- self.candidate=" ".join(self.match.groups()[1:])
- self.record=[]
- self.record.append(self.candidate)
- self.record.append(self.n)
- self.record.append(self.frequency)
- self.record.append("freq")
- self.record.append(self.frequency)
- self.data.append(self.record)
- break
-
- with self.conn:
- #self.cur.executemany("INSERT INTO term_candidates (candidate, n, frequency) VALUES (?,?,?)",self.data)
- self.cur.executemany("INSERT INTO term_candidates (candidate, n, frequency, measure, value) VALUES (?,?,?,?,?)",self.data)
- self.conn.commit()
-
- #eliminem candidats repetits
- self.cur.execute("SELECT candidate, n, frequency FROM term_candidates")
- self.results=self.cur.fetchall()
- self.tcaux={}
- for self.a in self.results:
- if not self.a[0] in self.tcaux:
- self.tcaux[self.a[0]]=self.a[2]
- else:
- self.tcaux[self.a[0]]+=self.a[2]
-
- self.cur.execute("DELETE FROM term_candidates")
- self.conn.commit()
- self.data=[]
- for self.tc in self.tcaux:
- self.record=[]
- self.record.append(self.tc)
- self.record.append(len(self.tc.split(" ")))
- self.record.append(self.tcaux[self.tc])
- self.record.append("freq")
- self.record.append(self.tcaux[self.tc])
- self.data.append(self.record)
- with self.conn:
- #self.cur.executemany("INSERT INTO term_candidates (candidate, n, frequency) VALUES (?,?,?)",self.data)
- self.cur.executemany("INSERT INTO term_candidates (candidate, n, frequency, measure, value) VALUES (?,?,?,?,?)",self.data)
- self.conn.commit()
-
-
- def learn_linguistic_patterns(self,outputfile,showfrequencies=False,encoding="utf-8",verbose=True,representativity=100):
- self.learntpatterns={}
- self.sortida=codecs.open(outputfile,"w",encoding=encoding)
- self.acufreq=0
- with self.conn:
- self.cur.execute("SELECT sl_term FROM evaluation_terms")
- for self.s in self.cur.fetchall():
- self.cur.execute("SELECT tagged_ngram, n, frequency FROM tagged_ngrams WHERE ngram= ?", (self.s[0],))
- self.results=self.cur.fetchall()
-
- if len(self.results)>0:
- for self.a in self.results:
- self.ng=self.a[0]
- self.n=self.a[1]
- self.frequency=self.a[2]
- self.candidate=[]
- self.ngtokenstag=self.ng.split(" ")
- for self.ngt in self.ngtokenstag:
- self.candidate.append(self.ngt.split("|")[0])
- self.candidate=" ".join(self.candidate)
- self.t2=self.ng.split(" ")
- self.t1=self.candidate.split(" ")
- self.patternbrut=[]
- for self.position in range(0,self.n):
- self.t2f=self.t2[self.position].split("|")[0]
- self.t2l=self.t2[self.position].split("|")[1]
- self.t2t=self.t2[self.position].split("|")[2]
- self.patternpart=""
- if self.t1[self.position]==self.t2l:
- self.patternpart="|#|"+self.t2t
- elif self.t1[self.position]==self.t2f:
- self.patternpart="#||"+self.t2t
- self.patternbrut.append(self.patternpart)
- self.pattern=" ".join(self.patternbrut)
- if self.pattern in self.learntpatterns:
- self.learntpatterns[self.pattern]+=self.n
- self.acufreq+=self.n
- else:
- self.learntpatterns[self.pattern]=self.n
- self.acufreq+=self.n
- self.sorted_x = sorted(self.learntpatterns.items(), key=operator.itemgetter(1),reverse=True)
- self.results=[]
- self.acufreq2=0
- for self.s in self.sorted_x:
- self.percent=100*self.acufreq2/self.acufreq
- if self.percent>representativity:
- break
- self.acufreq2+=self.s[1]
- if showfrequencies:
- cadena=str(self.s[1])+"\t"+self.s[0]
- else:
- cadena=self.s[0]
- self.sortida.write(cadena+"\n")
- if verbose:
- print(cadena)
-
- def find_translation_pcorpus(self,slterm,maxdec=1,maxinc=1,ncandidates=5,separator=":"):
- self.nmin=len(slterm.split(" "))-maxdec
- self.nmax=len(slterm.split(" "))+maxinc
- self.tlngrams=FreqDist()
- with self.conn:
- self.cur.execute('SELECT id, segment from sl_corpus')
-
- for self.s in self.cur.fetchall():
- self.segment=self.s[1]
- self.id=self.s[0]
-
- if self.segment.find(slterm)>-1:
- self.cur2.execute('SELECT segment from tl_corpus where id="'+str(self.id)+'"')
- for self.s2 in self.cur2.fetchall():
- self.tl_segment=self.s2[0]
- for self.n in range(self.nmin,self.nmax+1):
- #self.tlngs=ngrams(self.tl_tokenizer.tokenize(self.tl_segment), self.n)
- self.tlngs=ngrams(self.tl_segment.split(" "), self.n)
- for self.tlng in self.tlngs:
- if not self.tlng[0] in self.tl_stopwords and not self.tlng[-1] in self.tl_stopwords:
- self.tlngrams[self.tlng]+=1
- self.resultlist=[]
- for self.c in self.tlngrams.most_common(ncandidates):
- self.resultlist.append(" ".join(self.c[0]))
-
- return(separator.join(self.resultlist))
-
-
-#TSR
-
- def tsr(self,termsfile,encoding="utf-8", type="strict",max_iterations=10000000000): #IMPLEMENTED ONLY FOR BIGRAMS
- self.component={}
- self.firstcomponent={}
- self.middlecomponent={}
- self.lastcomponent={}
- self.entrada=codecs.open(termsfile,"r",encoding=encoding)
- for self.linia in self.entrada:
- self.linia=self.linia.rstrip()
- self.camps=self.linia.split(" ")
- if len(self.camps)==1: #UNIGRAMS
- self.firstcomponent[self.camps[0]]=1
- self.lastcomponent[self.camps[0]]=1
- if len(self.camps)>=2:
- self.firstcomponent[self.camps[0]]=1
- self.lastcomponent[self.camps[-1]]=1
- self.component[self.camps[0]]=1
- self.component[self.camps[-1]]=1
- if len(self.camps)>=3:
- for self.i in range(1,len(self.camps)):
- self.middlecomponent[self.camps[self.i]]=1
- self.component[self.camps[self.i]]=1
- self.new=True
- self.newcandidates={} #candidate-frequency
- self.hashmeasure={}
- self.hashvalue={}
-
- self.newcandidatestempstric={} #candidate-frequency
- self.hashmeasuretempstrict={}
- self.hashvaluetempstric={}
-
- self.newcandidatestempflexible={} #candidate-frequency
- self.hashmeasuretempflexible={}
- self.hashvaluetempflexible={}
-
- self.newcandidatestempcombined={} #candidate-frequency
- self.hashmeasuretempcombined={}
- self.hashvaluetempcombined={}
-
- self.iterations=0
- while self.new:
- self.iterations+=1
- print("ITERATION",self.iterations)
- self.new=False
- self.cur.execute("SELECT candidate,n,frequency,measure,value FROM term_candidates")
- self.results=self.cur.fetchall()
- self.auxiliar={}
- for self.r in self.results:
- self.candidate=self.r[0]
- self.n=self.r[1]
- self.frequency=self.r[2]
- self.measure="tsr"#self.r[3]
- self.value=max_iterations-self.iterations#self.r[4]
- self.rcamps=self.candidate.split(" ")
- if type=="strict":
- if self.rcamps[0] in self.firstcomponent and self.rcamps[-1] in self.lastcomponent:
- if not self.candidate in self.newcandidates:
- #print(self.r)
- self.newcandidates[self.candidate]=self.frequency
- self.hashmeasure[self.candidate]=self.measure
- self.hashvalue[self.candidate]=self.value
- self.new=True
- self.firstcomponent[self.rcamps[0]]=1
- self.lastcomponent[self.rcamps[-1]]=1
- elif type=="flexible":
- if self.rcamps[0] in self.firstcomponent or self.rcamps[-1] in self.lastcomponent:
- if not self.candidate in self.newcandidates:
- self.newcandidates[self.candidate]=self.frequency
- self.hashmeasure[self.candidate]=self.measure
- self.hashvalue[self.candidate]=self.value
- self.new=True
- self.firstcomponent[self.rcamps[0]]=1
- self.lastcomponent[self.rcamps[-1]]=1
- self.component[self.rcamps[0]]=1
- self.component[self.rcamps[-1]]=1
- elif type=="combined":
- if self.iterations==1:
- if self.rcamps[0] in self.firstcomponent and self.rcamps[-1] in self.lastcomponent:
- if not self.candidate in self.newcandidates:
- self.newcandidates[self.candidate]=self.frequency
- self.hashmeasure[self.candidate]=self.measure
- self.hashvalue[self.candidate]=self.value
- self.new=True
- self.firstcomponent[self.rcamps[0]]=1
- self.lastcomponent[self.rcamps[-1]]=1
- self.component[self.rcamps[0]]=1
- self.component[self.rcamps[-1]]=1
- else:
- if self.rcamps[0] in self.firstcomponent or self.rcamps[-1] in self.lastcomponent:
- if not self.candidate in self.newcandidates:
- self.newcandidatestempcombined[self.candidate]=self.frequency
- self.hashmeasuretempcombined[self.candidate]=self.measure
- self.hashvaluetempcombined[self.candidate]=self.value
- self.new=True
- self.firstcomponent[self.rcamps[0]]=1
- self.lastcomponent[self.rcamps[-1]]=1
- self.component[self.rcamps[0]]=1
- self.component[self.rcamps[-1]]=1
-
-
- if self.iterations>=max_iterations:
- break
- print(self.iterations,self.new)
- with self.conn:
- self.cur.execute('DELETE FROM term_candidates')
- self.conn.commit()
-
-
- data=[]
- for self.c in self.newcandidates:
- self.termb=self.c
- self.n=len(self.c.split(" "))
- self.freqtotal=self.newcandidates[self.c]
- self.measure=self.hashmeasure[self.c]
- self.value=self.hashvalue[self.c]
- record=[]
- record.append(self.termb)
- record.append(self.n)
- record.append(self.freqtotal)
- record.append(self.measure)
- record.append(self.value)
- data.append(record)
- with self.conn:
- self.cur.executemany("INSERT INTO term_candidates (candidate, n, frequency, measure, value) VALUES (?,?,?,?,?)",data)
-
- self.conn.commit()
-
-def L_LLR(a,b,c):
- '''Auxiliar function to calculate Log Likelihood Ratio'''
- L=(c**a)*((1-c)**(b-a))
- return(L)
-
-class myBigramAssocMeasures(nltk.collocations.BigramAssocMeasures):
- """
- A collection of bigram association measures. Each association measure
- is provided as a function with three arguments::
-
- bigram_score_fn(n_ii, (n_ix, n_xi), n_xx)
-
- The arguments constitute the marginals of a contingency table, counting
- the occurrences of particular events in a corpus. The letter i in the
- suffix refers to the appearance of the word in question, while x indicates
- the appearance of any word. Thus, for example:
-
- n_ii counts (w1, w2), i.e. the bigram being scored
- n_ix counts (w1, *)
- n_xi counts (*, w2)
- n_xx counts (*, *), i.e. any bigram
-
- This may be shown with respect to a contingency table::
-
- w1 ~w1
- ------ ------
- w2 | n_ii | n_oi | = n_xi
- ------ ------
- ~w2 | n_io | n_oo |
- ------ ------
- = n_ix TOTAL = n_xx
-
- Amb la terminologia de Pazienza
-
- w1 ~w1
- ------ ------
- w2 | n_ii O11| n_oi O12| = n_xi
- ------ ------
- ~w2 | n_io O21| n_oo O22|
- ------ ------
- = n_ix TOTAL = n_xx
-
- N=O11+O12+O21+O22= n_xx
- R1=O11+O12 = n_xi
- R2=O21+O22
- C1=O11+O21=n_ix
- C2=O12+O22= n_oi+n_oo
-
- TENIM: n_ii, n_ix_xi_tuple, n_xx
- n_io=n_ix-n_ii
- n_oi=n_xi-n_ii
- n_oo=n_xx-n_ix-n_xi
- """
- #NOVES
-
- def chi_sq_2g(self,n_ii, n_ix_xi_tuple, n_xx):
- '''chi_sq - Pearson's chi-squared according to NSP'''
- (n_ix, n_xi) = n_ix_xi_tuple
- n_oo=n_xx-n_ix-n_xi
- n_io=n_ix-n_ii
- n_oi=n_xi-n_ii
- n_oo=n_xx-n_ix-n_xi
-
- n11=n_ii
- n12=n_io
- n21=n_oi
- n22=n_oo
- n1p=n11+n12
- np1=n11+n21
- n2p=n21+n22
- np2=n12+n22
- npp=n_xx
-
- m11 = (n1p*np1/npp)
- m12 = (n1p*np2/npp)
- m21 = (np1*n2p/npp)
- m22 = (n2p*np2/npp)
-
- x2 = 2 * (((n11 - m11)/m11)**2 + ((n12 - m12)/m12)**2 + ((n21 - m21)/m21)**2 + ((n22 -m22)/m22)**2)
- return(x2)
- def phi_sq_2g(self,n_ii, n_ix_xi_tuple, n_xx):
- '''chi_sq - Pearson's chi-squared according to NSP'''
- (n_ix, n_xi) = n_ix_xi_tuple
- n_oo=n_xx-n_ix-n_xi
- n_io=n_ix-n_ii
- n_oi=n_xi-n_ii
- n_oo=n_xx-n_ix-n_xi
-
- n11=n_ii
- n12=n_io
- n21=n_oi
- n22=n_oo
- n1p=n11+n12
- np1=n11+n21
- n2p=n21+n22
- np2=n12+n22
- npp=n_xx
-
- m11 = (n1p*np1/npp)
- m12 = (n1p*np2/npp)
- m21 = (np1*n2p/npp)
- m22 = (n2p*np2/npp)
-
- PHI2 = ((n11 * n22) - (n21 * n21))**2/(n1p * np1 * np2 * n2p)
- return(PHI2)
-
- def t_score_2g(self,n_ii, n_ix_xi_tuple, n_xx):
- '''chi_sq - Pearson's chi-squared according to NSP'''
- (n_ix, n_xi) = n_ix_xi_tuple
- n_oo=n_xx-n_ix-n_xi
- n_io=n_ix-n_ii
- n_oi=n_xi-n_ii
- n_oo=n_xx-n_ix-n_xi
-
- n11=n_ii
- n12=n_io
- n21=n_oi
- n22=n_oo
- n1p=n11+n12
- np1=n11+n21
- n2p=n21+n22
- np2=n12+n22
- npp=n_xx
-
- m11 = (n1p*np1/npp)
- m12 = (n1p*np2/npp)
- m21 = (np1*n2p/npp)
- m22 = (n2p*np2/npp)
-
- m11 = n1p * np1 / npp
-
- T_score = (n11 - m11)/math.sqrt(n11)
-
- return(T_score)
- def dice_2g(self,n_ii, n_ix_xi_tuple, n_xx):
- '''chi_sq - Pearson's chi-squared according to NSP'''
- (n_ix, n_xi) = n_ix_xi_tuple
- n_oo=n_xx-n_ix-n_xi
- n_io=n_ix-n_ii
- n_oi=n_xi-n_ii
- n_oo=n_xx-n_ix-n_xi
-
- n11=n_ii
- n12=n_io
- n21=n_oi
- n22=n_oo
- n1p=n11+n12
- np1=n11+n21
- n2p=n21+n22
- np2=n12+n22
- npp=n_xx
-
- m11 = (n1p*np1/npp)
- m12 = (n1p*np2/npp)
- m21 = (np1*n2p/npp)
- m22 = (n2p*np2/npp)
-
- dice=2*n11/(np1 + n1p)
- return(dice)
-
- def jaccard_2g(self,n_ii, n_ix_xi_tuple, n_xx):
- '''chi_sq - Pearson's chi-squared according to NSP'''
- (n_ix, n_xi) = n_ix_xi_tuple
- n_oo=n_xx-n_ix-n_xi
- n_io=n_ix-n_ii
- n_oi=n_xi-n_ii
- n_oo=n_xx-n_ix-n_xi
-
- n11=n_ii
- n12=n_io
- n21=n_oi
- n22=n_oo
- n1p=n11+n12
- np1=n11+n21
- n2p=n21+n22
- np2=n12+n22
- npp=n_xx
-
- m11 = (n1p*np1/npp)
- m12 = (n1p*np2/npp)
- m21 = (np1*n2p/npp)
- m22 = (n2p*np2/npp)
-
- jaccard = n11 / (n11 + n12 + n21)
- return(jaccard)
-
- def loglikelihood_2g(self,n_ii, n_ix_xi_tuple, n_xx):
- '''chi_sq - Pearson's chi-squared according to NSP'''
- (n_ix, n_xi) = n_ix_xi_tuple
- n_oo=n_xx-n_ix-n_xi
- n_io=n_ix-n_ii
- n_oi=n_xi-n_ii
- n_oo=n_xx-n_ix-n_xi
-
- n11=n_ii
- n12=n_io
- n21=n_oi
- n22=n_oo
- n1p=n11+n12
- np1=n11+n21
- n2p=n21+n22
- np2=n12+n22
- npp=n_xx
-
- m11 = (n1p*np1/npp)
- m12 = (n1p*np2/npp)
- m21 = (np1*n2p/npp)
- m22 = (n2p*np2/npp)
- try:
- LogLikelihood = 2 * (n11 * math.log((n11/m11),2) + n12 * math.log((n12/m12),2) + n21 * math.log((n21/m21),2) + n22 * math.log((n22/m22),2))
- except:
- LogLikelihood=0
- return(LogLikelihood)
-
- def MI(self,n_ii, n_ix_xi_tuple, n_xx):
- '''Church Mutual Information accoding to Pazienza'''
- (n_ix, n_xi) = n_ix_xi_tuple
- self.E11=n_xi*n_ix/n_xx
- self.part=n_ii/self.E11
- self.MI=math.log(self.part,2)
- return(self.MI)
-
- def MI2(self,n_ii, n_ix_xi_tuple, n_xx):
- '''Church Mutual Information Variant accoding to Pazienza'''
- (n_ix, n_xi) = n_ix_xi_tuple
- self.E11=n_xi*n_ix/n_xx
- self.part=(n_ii/self.E11)**2
- self.MI2=math.log(self.part,2)
- return(self.MI2)
-
- def MI3(self,n_ii, n_ix_xi_tuple, n_xx):
- '''Church Mutual Information Variant accoding to Pazienza'''
- (n_ix, n_xi) = n_ix_xi_tuple
- self.E11=n_xi*n_ix/n_xx
- self.part=(n_ii/self.E11)**3
- self.MI3=math.log(self.part,2)
- return(self.MI3)
-
- def pmi_2g(self,n_ii, n_ix_xi_tuple, n_xx):
- '''chi_sq - Pearson's chi-squared according to NSP'''
- (n_ix, n_xi) = n_ix_xi_tuple
- n_oo=n_xx-n_ix-n_xi
- n_io=n_ix-n_ii
- n_oi=n_xi-n_ii
- n_oo=n_xx-n_ix-n_xi
-
- n11=n_ii
- n12=n_io
- n21=n_oi
- n22=n_oo
- n1p=n11+n12
- np1=n11+n21
- n2p=n21+n22
- np2=n12+n22
- npp=n_xx
-
- m11 = (n1p*np1/npp)
- m12 = (n1p*np2/npp)
- m21 = (np1*n2p/npp)
- m22 = (n2p*np2/npp)
-
- PMI = math.log((n11/m11),2)
- return(PMI)
-
- def poisson_stirling_2g(self,n_ii, n_ix_xi_tuple, n_xx):
- '''chi_sq - Pearson's chi-squared according to NSP'''
- (n_ix, n_xi) = n_ix_xi_tuple
- n_oo=n_xx-n_ix-n_xi
- n_io=n_ix-n_ii
- n_oi=n_xi-n_ii
- n_oo=n_xx-n_ix-n_xi
-
- n11=n_ii
- n12=n_io
- n21=n_oi
- n22=n_oo
- n1p=n11+n12
- np1=n11+n21
- n2p=n21+n22
- np2=n12+n22
- npp=n_xx
-
- m11 = (n1p*np1/npp)
- m12 = (n1p*np2/npp)
- m21 = (np1*n2p/npp)
- m22 = (n2p*np2/npp)
-
- PoissonStirling = n11 * ( math.log(n11,2) - math.log(m11,2) - 1)
- return(PoissonStirling)
-
-
- def tmi_2g(self,n_ii, n_ix_xi_tuple, n_xx):
- '''chi_sq - Pearson's chi-squared according to NSP'''
- (n_ix, n_xi) = n_ix_xi_tuple
- n_oo=n_xx-n_ix-n_xi
- n_io=n_ix-n_ii
- n_oi=n_xi-n_ii
- n_oo=n_xx-n_ix-n_xi
-
- n11=n_ii
- n12=n_io
- n21=n_oi
- n22=n_oo
- n1p=n11+n12
- np1=n11+n21
- n2p=n21+n22
- np2=n12+n22
- npp=n_xx
-
- m11 = (n1p*np1/npp)
- m12 = (n1p*np2/npp)
- m21 = (np1*n2p/npp)
- m22 = (n2p*np2/npp)
- try:
- tmi = ((n11/npp) * math.log((n11/m11),) + (n12/npp) * math.log((n12/m12),2) + (n21/npp) * math.log((n21/m21),2) + (n22/npp) * math.log((n22/m22),2))
- except:
- tmi=0
- return(tmi)
-
- def odds_2g(self,n_ii, n_ix_xi_tuple, n_xx):
- '''chi_sq - Pearson's chi-squared according to NSP'''
- (n_ix, n_xi) = n_ix_xi_tuple
- n_oo=n_xx-n_ix-n_xi
- n_io=n_ix-n_ii
- n_oi=n_xi-n_ii
- n_oo=n_xx-n_ix-n_xi
-
- n11=n_ii
- n12=n_io
- n21=n_oi
- n22=n_oo
- n1p=n11+n12
- np1=n11+n21
- n2p=n21+n22
- np2=n12+n22
- npp=n_xx
-
- m11 = (n1p*np1/npp)
- m12 = (n1p*np2/npp)
- m21 = (np1*n2p/npp)
- m22 = (n2p*np2/npp)
-
- if n21==0:n21=1
- if n12==0:n12=1
- ODDS_RATIO = (n11*n22)/(n21*n12)
- return(ODDS_RATIO)
-
- #VELLES
-
-
- def my_dice(self,n_ii, n_ix_xi_tuple, n_xx):
- '''Recalculation of dice accoding to Pazienza'''
- (n_ix, n_xi) = n_ix_xi_tuple
- n_oo=n_xx-n_ix-n_xi
-
- n_io=n_ix-n_ii
- n_oi=n_xi-n_ii
- n_oo=n_xx-n_ix-n_xi
-
- self.DF=2*n_ii/(n_xi+n_ix)
- return(self.DF)
-
- def t_score(self,n_ii, n_ix_xi_tuple, n_xx):
- '''Recalculation of student_t accoding to Pazienza'''
- (n_ix, n_xi) = n_ix_xi_tuple
- self.E11=n_xi*n_ix/n_xx
- self.TS=(n_ii-self.E11)/math.sqrt(n_ii)
- return(self.TS)
-
- def L_LLR(self,a,b,c):
- '''Auxiliar function to calculate Log Likelihood Ratio'''
- L=(c**a)*((1-c)**(b-a))
- return(L)
-
- def log_likelihood_ratio(self,n_ii, n_ix_xi_tuple, n_xx):
- '''Calculation of Log Likelihood Ratio accoding to Pazienza'''
- (n_ix, n_xi) = n_ix_xi_tuple
- n_oo=n_xx-n_ix-n_xi
-
- n_io=n_ix-n_ii
- n_oi=n_xi-n_ii
- n_oo=n_xx-n_ix-n_xi
-
- r=n_xi/n_xx
- r1=n_ii/n_ix
- r2=n_oi/(n_oi+n_oo)
-
- NOM=L_LLR(n_ii,n_ix,r)*L_LLR(n_oi,(n_oi+n_oo),r)
- DEN=L_LLR(n_ii,n_ix,r1)*L_LLR(n_oi,(n_oi+n_oo),r2)
- if not DEN==0 and NOM/DEN>0:
- self.LLR=-2*math.log((NOM/DEN),2)
- else:
- self.LLR=0
- return(self.LLR)
-
- def log_likelihood_ratio_TEXTNSP(self,n_ii, n_ix_xi_tuple, n_xx):
- '''Calculation of Log Likelihood Ratio accoding to Pazienza'''
- (n_ix, n_xi) = n_ix_xi_tuple
- n_oo=n_xx-n_ix-n_xi
-
- n_io=n_ix-n_ii
- n_oi=n_xi-n_ii
- n_oo=n_xx-n_ix-n_xi
-
- m11=(n_ix*n_xi)/n_xx
- m12=(n_io+n_oo)*n_xi/n_xx
- m21=n_ix*(n_io+n_oo)/n_xx
- m22=(n_oi+n_oo)*(n_io+n_oo)/n_xx
- try:
- self.LLR=2*((n_ii*math.log((n_ii/m11),2))+(n_oi*math.log((n_oi/m12),2))+(n_io*math.log((n_io/m21),2))+(n_oo*math.log((n_oo/m22),2)))
- except:
- self.LRR=0
-
- return(self.LLR)
-
- def tmi(self,n_ii, n_ix_xi_tuple, n_xx):
- '''Calculation of True Mutual Information according to Text:NSP'''
- (n_ix, n_xi) = n_ix_xi_tuple
- n_oo=n_xx-n_ix-n_xi
-
- n_io=n_ix-n_ii
- n_oi=n_xi-n_ii
- n_oo=n_xx-n_ix-n_xi
-
- self.E11=n_xi*n_ix/n_xx
- self.PMI=math.log((n_ii/self.E11),2)
-
-
- self.tmi=(n_ii/n_xx)*self.PMI+(n_oi/n_xx)*self.PMI+(n_io/n_xx)*self.PMI+(n_oo/n_xx)*self.PMI
- print(self.E11,self.PMI,self.tmi)
- return(self.tmi)
-
- def poisson_stirling_TEXTNSP(self,n_ii, n_ix_xi_tuple, n_xx):
- '''Calculation of Log Likelihood Ratio accoding to Pazienza'''
- (n_ix, n_xi) = n_ix_xi_tuple
- n_oo=n_xx-n_ix-n_xi
-
- n_io=n_ix-n_ii
- n_oi=n_xi-n_ii
- n_oo=n_xx-n_ix-n_xi
-
- m11=(n_ix*n_xi)/n_xx
-
- self.PS=n_ii*(math.log((n_ii/m11),2)-1)
-
- return(self.PS)
-
- def chi_squared(self,n_ii, n_ix_xi_tuple, n_xx):
- '''Calculation of chi_sq according to Text-NSP'''
- (n_ix, n_xi) = n_ix_xi_tuple
- n_oo=n_xx-n_ix-n_xi
-
- n_io=n_ix-n_ii
- n_oi=n_xi-n_ii
- n_oo=n_xx-n_ix-n_xi
-
- phi2=((n_ii*n_oo)-(n_io*n_io))**2/(n_xi*n_ix*(n_oi+n_oo)*(n_io+n_oo))
- self.chi_sqr=n_xx*phi2
- return(self.chi_sqr)
-
- def jaccard_TEXTNSP(self,n_ii, n_ix_xi_tuple, n_xx):
- '''Calculation of Jaccard according to Text-NSP'''
- (n_ix, n_xi) = n_ix_xi_tuple
- n_oo=n_xx-n_ix-n_xi
-
- n_io=n_ix-n_ii
- n_oi=n_xi-n_ii
- n_oo=n_xx-n_ix-n_xi
-
- self.jaccard=n_ii/(n_ii+n_oi+n_io)
- return(self.jaccard)
-
- def pmi_TEXTNSP(self,n_ii, n_ix_xi_tuple, n_xx):
- '''Calculation of pmi according to Text-NSP'''
- (n_ix, n_xi) = n_ix_xi_tuple
- n_oo=n_xx-n_ix-n_xi
-
- n_io=n_ix-n_ii
- n_oi=n_xi-n_ii
- n_oo=n_xx-n_ix-n_xi
-
- m11=n_ix*n_xi/n_xx
- self.PMI=math.log((n_ii/m11),2)
-
- return(self.PMI)
-
- def phi_sq_TEXTNSP(self,n_ii, n_ix_xi_tuple, n_xx):
- '''Calculation of phi_sq according to Text-NSP'''
- (n_ix, n_xi) = n_ix_xi_tuple
- n_oo=n_xx-n_ix-n_xi
-
- n_io=n_ix-n_ii
- n_oi=n_xi-n_ii
- n_oo=n_xx-n_ix-n_xi
-
- self.phi2=((n_ii*n_oo)-(n_io*n_io))**2/(n_xi*n_ix*(n_oi+n_oo)*(n_io+n_oo))
-
- return(self.phi2)
-
-class myTrigramAssocMeasures(nltk.collocations.TrigramAssocMeasures):
-
- def pmi_3g(cls, *dades):
- n_iii=dades[0]
- n_xxx=dades[3]
- n_iix_tuple=dades[1]
- n_ixx_tuple=dades[2]
- (n_iix, n_ixi, n_xii) = n_iix_tuple
- (n_ixx, n_xix, n_xxi) = n_ixx_tuple
- n1pp=n_ixx+n_ixi+n_iix+n_iii
- np1p=n_xix+n_xii+n_iix+n_iii
- npp1=n_xxi+n_xii+n_xii+n_ixi+n_iii
- n2pp=n_xxx+n_xxi+n_xix+n_xii
- np2p=n_xxx+n_xxi+n_ixx+n_ixi
- npp2=n_xxx+n_ixi+n_ixx+n_iix
-
- n111=n_iii
- nppp=n_xxx
-
- m111=n1pp*np1p*npp1/(nppp*nppp)
- PMI=math.log((n111/m111),2)
- return(PMI)
-
- def poisson_stirling_3g(cls, *dades):
- n_iii=dades[0]
- n_xxx=dades[3]
- n_iix_tuple=dades[1]
- n_ixx_tuple=dades[2]
- (n_iix, n_ixi, n_xii) = n_iix_tuple
- (n_ixx, n_xix, n_xxi) = n_ixx_tuple
- n1pp=n_ixx+n_ixi+n_iix+n_iii
- np1p=n_xix+n_xii+n_iix+n_iii
- npp1=n_xxi+n_xii+n_xii+n_ixi+n_iii
- n2pp=n_xxx+n_xxi+n_xix+n_xii
- np2p=n_xxx+n_xxi+n_ixx+n_ixi
- npp2=n_xxx+n_ixi+n_ixx+n_iix
-
- n111=n_iii
- nppp=n_xxx
-
- m111=n1pp*np1p*npp1/nppp
- poisson_stirling=m111*(math.log(n111,2)-math.log(m111,2)-1)
- return(poisson_stirling)
-
- def tmi_3g(cls, *dades):
- n_iii=dades[0]
- n_xxx=dades[3]
- n_iix_tuple=dades[1]
- n_ixx_tuple=dades[2]
- (n_iix, n_ixi, n_xii) = n_iix_tuple
- (n_ixx, n_xix, n_xxi) = n_ixx_tuple
- n1pp=n_ixx+n_ixi+n_iix+n_iii
- np1p=n_xix+n_xii+n_iix+n_iii
- npp1=n_xxi+n_xii+n_xii+n_ixi+n_iii
- n2pp=n_xxx+n_xxi+n_xix+n_xii
- np2p=n_xxx+n_xxi+n_ixx+n_ixi
- npp2=n_xxx+n_ixi+n_ixx+n_iix
-
- n111=n_iii
- n112=n_iix
- n121=n_ixi
- n122=n_ixx
- n211=n_xii
- n212=n_xix
- n221=n_xxi
- n222=n_xxx
-
- nppp=n_xxx
- m111=n1pp*np1p*npp1/nppp
- m112=n1pp*np1p*npp2/nppp
- m121=n1pp*np2p*npp1/nppp
- m122=n1pp*np2p*npp2/nppp
- m211=n2pp*np1p*npp1/nppp
- m212=n2pp*np1p*npp2/nppp
- m221=n2pp*np2p*npp1/nppp
- m222=n2pp*np2p*npp2/nppp
- try:
- tmi = (n111/nppp * math.log((n111/m111),2) + n112/nppp * math.log((n112/m112),2) + n121/nppp * math.log((n121/m121),2) + n122/nppp * math.log((n122/m122),2) + n211/nppp * math.log((n211/m211),2) + n212/nppp * math.log((n212/m212),2) + n221/nppp * math.log((n221/m221),2) + n222/nppp * math.log((n222/m222),2))
- except:
- tmi=0
-
- return(tmi)
-
-
- def loglikelihood_3g(cls, *dades):
- n_iii=dades[0]
- n_xxx=dades[3]
- n_iix_tuple=dades[1]
- n_ixx_tuple=dades[2]
- (n_iix, n_ixi, n_xii) = n_iix_tuple
- (n_ixx, n_xix, n_xxi) = n_ixx_tuple
- n1pp=n_ixx+n_ixi+n_iix+n_iii
- np1p=n_xix+n_xii+n_iix+n_iii
- npp1=n_xxi+n_xii+n_xii+n_ixi+n_iii
- n2pp=n_xxx+n_xxi+n_xix+n_xii
- np2p=n_xxx+n_xxi+n_ixx+n_ixi
- npp2=n_xxx+n_ixi+n_ixx+n_iix
-
- n111=n_iii
- n112=n_iix
- n121=n_ixi
- n122=n_ixx
- n211=n_xii
- n212=n_xix
- n221=n_xxi
- n222=n_xxx
-
- nppp=n_xxx
- m111=n1pp*np1p*npp1/nppp
- m112=n1pp*np1p*npp2/nppp
- m121=n1pp*np2p*npp1/nppp
- m122=n1pp*np2p*npp2/nppp
- m211=n2pp*np1p*npp1/nppp
- m212=n2pp*np1p*npp2/nppp
- m221=n2pp*np2p*npp1/nppp
- m222=n2pp*np2p*npp2/nppp
- try:
- Log_Likelihood = 2 * (n111 * math.log((n111/m111),2) + n112 * math.log((n112/m112),2) + n121 * math.log((n121/m121),2) + n122 * math.log((n122/m122),2) + n211 * math.log((n211/m211),2) + n212 * math.log((n212/m212),2) + n221 * math.log((n221/m221),2) + n222 * math.log((n222/m222),2))
- except:
- Log_Likelihood=0
-
- return(Log_Likelihood)
-
-
-