Welcome to mirror list, hosted at ThFree Co, Russian Federation.

x86func.cpp « x86 « asmjit « src - github.com/asmjit/asmjit.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: bba9eef148cd5aebad2b1e1f90c2705ef68b1a99 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
// This file is part of AsmJit project <https://asmjit.com>
//
// See asmjit.h or LICENSE.md for license and copyright information
// SPDX-License-Identifier: Zlib

#include "../core/api-build_p.h"
#if !defined(ASMJIT_NO_X86)

#include "../x86/x86func_p.h"
#include "../x86/x86emithelper_p.h"
#include "../x86/x86operand.h"

ASMJIT_BEGIN_SUB_NAMESPACE(x86)

namespace FuncInternal {

static inline bool shouldThreatAsCDeclIn64BitMode(CallConvId ccId) noexcept {
  return ccId == CallConvId::kCDecl ||
         ccId == CallConvId::kStdCall ||
         ccId == CallConvId::kThisCall ||
         ccId == CallConvId::kFastCall ||
         ccId == CallConvId::kRegParm1 ||
         ccId == CallConvId::kRegParm2 ||
         ccId == CallConvId::kRegParm3;
}

ASMJIT_FAVOR_SIZE Error initCallConv(CallConv& cc, CallConvId ccId, const Environment& environment) noexcept {
  constexpr uint32_t kZax = Gp::kIdAx;
  constexpr uint32_t kZbx = Gp::kIdBx;
  constexpr uint32_t kZcx = Gp::kIdCx;
  constexpr uint32_t kZdx = Gp::kIdDx;
  constexpr uint32_t kZsp = Gp::kIdSp;
  constexpr uint32_t kZbp = Gp::kIdBp;
  constexpr uint32_t kZsi = Gp::kIdSi;
  constexpr uint32_t kZdi = Gp::kIdDi;

  bool winABI = environment.isPlatformWindows() || environment.isMSVC();

  cc.setArch(environment.arch());
  cc.setSaveRestoreRegSize(RegGroup::kVec, 16);
  cc.setSaveRestoreRegSize(RegGroup::kX86_MM, 8);
  cc.setSaveRestoreRegSize(RegGroup::kX86_K, 8);
  cc.setSaveRestoreAlignment(RegGroup::kVec, 16);
  cc.setSaveRestoreAlignment(RegGroup::kX86_MM, 8);
  cc.setSaveRestoreAlignment(RegGroup::kX86_K, 8);

  if (environment.is32Bit()) {
    bool isStandardCallConv = true;

    cc.setSaveRestoreRegSize(RegGroup::kGp, 4);
    cc.setSaveRestoreAlignment(RegGroup::kGp, 4);

    cc.setPreservedRegs(RegGroup::kGp, Support::bitMask(Gp::kIdBx, Gp::kIdSp, Gp::kIdBp, Gp::kIdSi, Gp::kIdDi));
    cc.setNaturalStackAlignment(4);

    switch (ccId) {
      case CallConvId::kCDecl:
        break;

      case CallConvId::kStdCall:
        cc.setFlags(CallConvFlags::kCalleePopsStack);
        break;

      case CallConvId::kFastCall:
        cc.setFlags(CallConvFlags::kCalleePopsStack);
        cc.setPassedOrder(RegGroup::kGp, kZcx, kZdx);
        break;

      case CallConvId::kVectorCall:
        cc.setFlags(CallConvFlags::kCalleePopsStack);
        cc.setPassedOrder(RegGroup::kGp, kZcx, kZdx);
        cc.setPassedOrder(RegGroup::kVec, 0, 1, 2, 3, 4, 5);
        break;

      case CallConvId::kThisCall:
        // NOTE: Even MINGW (starting with GCC 4.7.0) now uses __thiscall on MS Windows, so we won't bail to any
        // other calling convention if __thiscall was specified.
        if (winABI) {
          cc.setFlags(CallConvFlags::kCalleePopsStack);
          cc.setPassedOrder(RegGroup::kGp, kZcx);
        }
        else {
          ccId = CallConvId::kCDecl;
        }
        break;

      case CallConvId::kRegParm1:
        cc.setPassedOrder(RegGroup::kGp, kZax);
        break;

      case CallConvId::kRegParm2:
        cc.setPassedOrder(RegGroup::kGp, kZax, kZdx);
        break;

      case CallConvId::kRegParm3:
        cc.setPassedOrder(RegGroup::kGp, kZax, kZdx, kZcx);
        break;

      case CallConvId::kLightCall2:
      case CallConvId::kLightCall3:
      case CallConvId::kLightCall4: {
        uint32_t n = uint32_t(ccId) - uint32_t(CallConvId::kLightCall2) + 2;

        cc.setFlags(CallConvFlags::kPassFloatsByVec);
        cc.setPassedOrder(RegGroup::kGp, kZax, kZdx, kZcx, kZsi, kZdi);
        cc.setPassedOrder(RegGroup::kVec, 0, 1, 2, 3, 4, 5, 6, 7);
        cc.setPassedOrder(RegGroup::kX86_K, 0, 1, 2, 3, 4, 5, 6, 7);
        cc.setPassedOrder(RegGroup::kX86_MM, 0, 1, 2, 3, 4, 5, 6, 7);
        cc.setPreservedRegs(RegGroup::kGp, Support::lsbMask<uint32_t>(8));
        cc.setPreservedRegs(RegGroup::kVec, Support::lsbMask<uint32_t>(8) & ~Support::lsbMask<uint32_t>(n));

        cc.setNaturalStackAlignment(16);
        isStandardCallConv = false;
        break;
      }

      default:
        return DebugUtils::errored(kErrorInvalidArgument);
    }

    if (isStandardCallConv) {
      // MMX arguments is something where compiler vendors disagree. For example GCC and MSVC would pass first three
      // via registers and the rest via stack, however Clang passes all via stack. Returning MMX registers is even
      // more fun, where GCC uses MM0, but Clang uses EAX:EDX pair. I'm not sure it's something we should be worried
      // about as MMX is deprecated anyway.
      cc.setPassedOrder(RegGroup::kX86_MM, 0, 1, 2);

      // Vector arguments (XMM|YMM|ZMM) are passed via registers. However, if the function is variadic then they have
      // to be passed via stack.
      cc.setPassedOrder(RegGroup::kVec, 0, 1, 2);

      // Functions with variable arguments always use stack for MM and vector arguments.
      cc.addFlags(CallConvFlags::kPassVecByStackIfVA);
    }

    if (ccId == CallConvId::kCDecl) {
      cc.addFlags(CallConvFlags::kVarArgCompatible);
    }
  }
  else {
    cc.setSaveRestoreRegSize(RegGroup::kGp, 8);
    cc.setSaveRestoreAlignment(RegGroup::kGp, 8);

    // Preprocess the calling convention into a common id as many conventions are normally ignored even by C/C++
    // compilers and treated as `__cdecl`.
    if (shouldThreatAsCDeclIn64BitMode(ccId))
      ccId = winABI ? CallConvId::kX64Windows : CallConvId::kX64SystemV;

    switch (ccId) {
      case CallConvId::kX64SystemV: {
        cc.setFlags(CallConvFlags::kPassFloatsByVec |
                    CallConvFlags::kPassMmxByXmm    |
                    CallConvFlags::kVarArgCompatible);
        cc.setNaturalStackAlignment(16);
        cc.setRedZoneSize(128);
        cc.setPassedOrder(RegGroup::kGp, kZdi, kZsi, kZdx, kZcx, 8, 9);
        cc.setPassedOrder(RegGroup::kVec, 0, 1, 2, 3, 4, 5, 6, 7);
        cc.setPreservedRegs(RegGroup::kGp, Support::bitMask(kZbx, kZsp, kZbp, 12, 13, 14, 15));
        break;
      }

      case CallConvId::kX64Windows: {
        cc.setStrategy(CallConvStrategy::kX64Windows);
        cc.setFlags(CallConvFlags::kPassFloatsByVec |
                    CallConvFlags::kIndirectVecArgs |
                    CallConvFlags::kPassMmxByGp     |
                    CallConvFlags::kVarArgCompatible);
        cc.setNaturalStackAlignment(16);
        // Maximum 4 arguments in registers, each adds 8 bytes to the spill zone.
        cc.setSpillZoneSize(4 * 8);
        cc.setPassedOrder(RegGroup::kGp, kZcx, kZdx, 8, 9);
        cc.setPassedOrder(RegGroup::kVec, 0, 1, 2, 3);
        cc.setPreservedRegs(RegGroup::kGp, Support::bitMask(kZbx, kZsp, kZbp, kZsi, kZdi, 12, 13, 14, 15));
        cc.setPreservedRegs(RegGroup::kVec, Support::bitMask(6, 7, 8, 9, 10, 11, 12, 13, 14, 15));
        break;
      }

      case CallConvId::kVectorCall: {
        cc.setStrategy(CallConvStrategy::kX64VectorCall);
        cc.setFlags(CallConvFlags::kPassFloatsByVec |
                    CallConvFlags::kPassMmxByGp     );
        cc.setNaturalStackAlignment(16);
        // Maximum 6 arguments in registers, each adds 8 bytes to the spill zone.
        cc.setSpillZoneSize(6 * 8);
        cc.setPassedOrder(RegGroup::kGp, kZcx, kZdx, 8, 9);
        cc.setPassedOrder(RegGroup::kVec, 0, 1, 2, 3, 4, 5);
        cc.setPreservedRegs(RegGroup::kGp, Support::bitMask(kZbx, kZsp, kZbp, kZsi, kZdi, 12, 13, 14, 15));
        cc.setPreservedRegs(RegGroup::kVec, Support::bitMask(6, 7, 8, 9, 10, 11, 12, 13, 14, 15));
        break;
      }

      case CallConvId::kLightCall2:
      case CallConvId::kLightCall3:
      case CallConvId::kLightCall4: {
        uint32_t n = uint32_t(ccId) - uint32_t(CallConvId::kLightCall2) + 2;

        cc.setFlags(CallConvFlags::kPassFloatsByVec);
        cc.setNaturalStackAlignment(16);
        cc.setPassedOrder(RegGroup::kGp, kZax, kZdx, kZcx, kZsi, kZdi);
        cc.setPassedOrder(RegGroup::kVec, 0, 1, 2, 3, 4, 5, 6, 7);
        cc.setPassedOrder(RegGroup::kX86_K, 0, 1, 2, 3, 4, 5, 6, 7);
        cc.setPassedOrder(RegGroup::kX86_MM, 0, 1, 2, 3, 4, 5, 6, 7);

        cc.setPreservedRegs(RegGroup::kGp, Support::lsbMask<uint32_t>(16));
        cc.setPreservedRegs(RegGroup::kVec, ~Support::lsbMask<uint32_t>(n));
        break;
      }

      default:
        return DebugUtils::errored(kErrorInvalidArgument);
    }
  }

  cc.setId(ccId);
  return kErrorOk;
}

ASMJIT_FAVOR_SIZE void unpackValues(FuncDetail& func, FuncValuePack& pack) noexcept {
  TypeId typeId = pack[0].typeId();
  switch (typeId) {
    case TypeId::kInt64:
    case TypeId::kUInt64: {
      if (Environment::is32Bit(func.callConv().arch())) {
        // Convert a 64-bit return value to two 32-bit return values.
        pack[0].initTypeId(TypeId::kUInt32);
        pack[1].initTypeId(TypeId(uint32_t(typeId) - 2));
        break;
      }
      break;
    }

    default: {
      break;
    }
  }
}

ASMJIT_FAVOR_SIZE Error initFuncDetail(FuncDetail& func, const FuncSignature& signature, uint32_t registerSize) noexcept {
  const CallConv& cc = func.callConv();
  Arch arch = cc.arch();
  uint32_t stackOffset = cc._spillZoneSize;
  uint32_t argCount = func.argCount();

  // Up to two return values can be returned in GP registers.
  static const uint8_t gpReturnIndexes[4] = {
    uint8_t(Gp::kIdAx),
    uint8_t(Gp::kIdDx),
    uint8_t(BaseReg::kIdBad),
    uint8_t(BaseReg::kIdBad)
  };

  if (func.hasRet()) {
    unpackValues(func, func._rets);
    for (uint32_t valueIndex = 0; valueIndex < Globals::kMaxValuePack; valueIndex++) {
      TypeId typeId = func._rets[valueIndex].typeId();

      // Terminate at the first void type (end of the pack).
      if (typeId == TypeId::kVoid)
        break;

      switch (typeId) {
        case TypeId::kInt64:
        case TypeId::kUInt64: {
          if (gpReturnIndexes[valueIndex] != BaseReg::kIdBad)
            func._rets[valueIndex].initReg(RegType::kX86_Gpq, gpReturnIndexes[valueIndex], typeId);
          else
            return DebugUtils::errored(kErrorInvalidState);
          break;
        }

        case TypeId::kInt8:
        case TypeId::kInt16:
        case TypeId::kInt32: {
          if (gpReturnIndexes[valueIndex] != BaseReg::kIdBad)
            func._rets[valueIndex].initReg(RegType::kX86_Gpd, gpReturnIndexes[valueIndex], TypeId::kInt32);
          else
            return DebugUtils::errored(kErrorInvalidState);
          break;
        }

        case TypeId::kUInt8:
        case TypeId::kUInt16:
        case TypeId::kUInt32: {
          if (gpReturnIndexes[valueIndex] != BaseReg::kIdBad)
            func._rets[valueIndex].initReg(RegType::kX86_Gpd, gpReturnIndexes[valueIndex], TypeId::kUInt32);
          else
            return DebugUtils::errored(kErrorInvalidState);
          break;
        }

        case TypeId::kFloat32:
        case TypeId::kFloat64: {
          RegType regType = Environment::is32Bit(arch) ? RegType::kX86_St : RegType::kX86_Xmm;
          func._rets[valueIndex].initReg(regType, valueIndex, typeId);
          break;
        }

        case TypeId::kFloat80: {
          // 80-bit floats are always returned by FP0.
          func._rets[valueIndex].initReg(RegType::kX86_St, valueIndex, typeId);
          break;
        }

        case TypeId::kMmx32:
        case TypeId::kMmx64: {
          // MM registers are returned through XMM (SystemV) or GPQ (Win64).
          RegType regType = RegType::kX86_Mm;
          uint32_t regIndex = valueIndex;
          if (Environment::is64Bit(arch)) {
            regType = cc.strategy() == CallConvStrategy::kDefault ? RegType::kX86_Xmm : RegType::kX86_Gpq;
            regIndex = cc.strategy() == CallConvStrategy::kDefault ? valueIndex : gpReturnIndexes[valueIndex];

            if (regIndex == BaseReg::kIdBad)
              return DebugUtils::errored(kErrorInvalidState);
          }

          func._rets[valueIndex].initReg(regType, regIndex, typeId);
          break;
        }

        default: {
          func._rets[valueIndex].initReg(vecTypeIdToRegType(typeId), valueIndex, typeId);
          break;
        }
      }
    }
  }

  switch (cc.strategy()) {
    case CallConvStrategy::kDefault: {
      uint32_t gpzPos = 0;
      uint32_t vecPos = 0;

      for (uint32_t argIndex = 0; argIndex < argCount; argIndex++) {
        unpackValues(func, func._args[argIndex]);

        for (uint32_t valueIndex = 0; valueIndex < Globals::kMaxValuePack; valueIndex++) {
          FuncValue& arg = func._args[argIndex][valueIndex];

          // Terminate if there are no more arguments in the pack.
          if (!arg)
            break;

          TypeId typeId = arg.typeId();

          if (TypeUtils::isInt(typeId)) {
            uint32_t regId = BaseReg::kIdBad;

            if (gpzPos < CallConv::kMaxRegArgsPerGroup)
              regId = cc._passedOrder[RegGroup::kGp].id[gpzPos];

            if (regId != BaseReg::kIdBad) {
              RegType regType = typeId <= TypeId::kUInt32 ? RegType::kX86_Gpd : RegType::kX86_Gpq;
              arg.assignRegData(regType, regId);
              func.addUsedRegs(RegGroup::kGp, Support::bitMask(regId));
              gpzPos++;
            }
            else {
              uint32_t size = Support::max<uint32_t>(TypeUtils::sizeOf(typeId), registerSize);
              arg.assignStackOffset(int32_t(stackOffset));
              stackOffset += size;
            }
            continue;
          }

          if (TypeUtils::isFloat(typeId) || TypeUtils::isVec(typeId)) {
            uint32_t regId = BaseReg::kIdBad;

            if (vecPos < CallConv::kMaxRegArgsPerGroup)
              regId = cc._passedOrder[RegGroup::kVec].id[vecPos];

            if (TypeUtils::isFloat(typeId)) {
              // If this is a float, but `kFlagPassFloatsByVec` is false, we have to use stack instead. This should
              // be only used by 32-bit calling conventions.
              if (!cc.hasFlag(CallConvFlags::kPassFloatsByVec))
                regId = BaseReg::kIdBad;
            }
            else {
              // Pass vector registers via stack if this is a variable arguments function. This should be only used
              // by 32-bit calling conventions.
              if (signature.hasVarArgs() && cc.hasFlag(CallConvFlags::kPassVecByStackIfVA))
                regId = BaseReg::kIdBad;
            }

            if (regId != BaseReg::kIdBad) {
              arg.initTypeId(typeId);
              arg.assignRegData(vecTypeIdToRegType(typeId), regId);
              func.addUsedRegs(RegGroup::kVec, Support::bitMask(regId));
              vecPos++;
            }
            else {
              uint32_t size = TypeUtils::sizeOf(typeId);
              arg.assignStackOffset(int32_t(stackOffset));
              stackOffset += size;
            }
            continue;
          }
        }
      }
      break;
    }

    case CallConvStrategy::kX64Windows:
    case CallConvStrategy::kX64VectorCall: {
      // Both X64 and VectorCall behave similarly - arguments are indexed from left to right. The position of the
      // argument determines in which register the argument is allocated, so it's either GP or one of XMM/YMM/ZMM
      // registers.
      //
      //       [       X64       ] [VecCall]
      // Index: #0   #1   #2   #3   #4   #5
      //
      // GP   : RCX  RDX  R8   R9
      // VEC  : XMM0 XMM1 XMM2 XMM3 XMM4 XMM5
      //
      // For example function `f(int a, double b, int c, double d)` will be:
      //
      //        (a)  (b)  (c)  (d)
      //        RCX  XMM1 R8   XMM3
      //
      // Unused vector registers are used by HVA.
      bool isVectorCall = (cc.strategy() == CallConvStrategy::kX64VectorCall);

      for (uint32_t argIndex = 0; argIndex < argCount; argIndex++) {
        unpackValues(func, func._args[argIndex]);

        for (uint32_t valueIndex = 0; valueIndex < Globals::kMaxValuePack; valueIndex++) {
          FuncValue& arg = func._args[argIndex][valueIndex];

          // Terminate if there are no more arguments in the pack.
          if (!arg)
            break;

          TypeId typeId = arg.typeId();
          uint32_t size = TypeUtils::sizeOf(typeId);

          if (TypeUtils::isInt(typeId) || TypeUtils::isMmx(typeId)) {
            uint32_t regId = BaseReg::kIdBad;

            if (argIndex < CallConv::kMaxRegArgsPerGroup)
              regId = cc._passedOrder[RegGroup::kGp].id[argIndex];

            if (regId != BaseReg::kIdBad) {
              RegType regType = size <= 4 && !TypeUtils::isMmx(typeId) ? RegType::kX86_Gpd : RegType::kX86_Gpq;
              arg.assignRegData(regType, regId);
              func.addUsedRegs(RegGroup::kGp, Support::bitMask(regId));
            }
            else {
              arg.assignStackOffset(int32_t(stackOffset));
              stackOffset += 8;
            }
            continue;
          }

          if (TypeUtils::isFloat(typeId) || TypeUtils::isVec(typeId)) {
            uint32_t regId = BaseReg::kIdBad;

            if (argIndex < CallConv::kMaxRegArgsPerGroup)
              regId = cc._passedOrder[RegGroup::kVec].id[argIndex];

            if (regId != BaseReg::kIdBad) {
              // X64-ABI doesn't allow vector types (XMM|YMM|ZMM) to be passed via registers, however, VectorCall
              // was designed for that purpose.
              if (TypeUtils::isFloat(typeId) || isVectorCall) {
                RegType regType = vecTypeIdToRegType(typeId);
                arg.assignRegData(regType, regId);
                func.addUsedRegs(RegGroup::kVec, Support::bitMask(regId));
                continue;
              }
            }

            // Passed via stack if the argument is float/double or indirectly. The trap is - if the argument is
            // passed indirectly, the address can be passed via register, if the argument's index has GP one.
            if (TypeUtils::isFloat(typeId)) {
              arg.assignStackOffset(int32_t(stackOffset));
            }
            else {
              uint32_t gpRegId = cc._passedOrder[RegGroup::kGp].id[argIndex];
              if (gpRegId != BaseReg::kIdBad)
                arg.assignRegData(RegType::kX86_Gpq, gpRegId);
              else
                arg.assignStackOffset(int32_t(stackOffset));
              arg.addFlags(FuncValue::kFlagIsIndirect);
            }

            // Always 8 bytes (float/double/pointer).
            stackOffset += 8;
            continue;
          }
        }
      }
      break;
    }
  }

  func._argStackSize = stackOffset;
  return kErrorOk;
}

} // {FuncInternal}

ASMJIT_END_SUB_NAMESPACE

#endif // !ASMJIT_NO_X86