Welcome to mirror list, hosted at ThFree Co, Russian Federation.

asmjit_test_misc.h « test - github.com/asmjit/asmjit.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 0839d30ac00ec9c5bb4b1b4d4184c19f27a33539 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
// This file is part of AsmJit project <https://asmjit.com>
//
// See asmjit.h or LICENSE.md for license and copyright information
// SPDX-License-Identifier: Zlib

#ifndef ASMJIT_TEST_MISC_H_INCLUDED
#define ASMJIT_TEST_MISC_H_INCLUDED

#include <asmjit/x86.h>

namespace asmtest {

using namespace asmjit;

// Generates a typical alpha blend function that uses SSE2 instruction set.
// This function combines emitting instructions with control flow constructs
// like binding Labels and jumping to them. This should be pretty representative.
template<typename Emitter>
static void generateSseAlphaBlendInternal(
  Emitter& cc,
  const x86::Gp& dst, const x86::Gp& src, const x86::Gp& n,
  const x86::Gp& gp0,
  const x86::Xmm& simd0, const x86::Xmm& simd1, const x86::Xmm& simd2, const x86::Xmm& simd3,
  const x86::Xmm& simd4, const x86::Xmm& simd5, const x86::Xmm& simd6, const x86::Xmm& simd7) {

  x86::Gp i = n;
  x86::Gp j = gp0;

  x86::Xmm vzero = simd0;
  x86::Xmm v0080 = simd1;
  x86::Xmm v0101 = simd2;

  Label L_SmallLoop = cc.newLabel();
  Label L_SmallEnd  = cc.newLabel();
  Label L_LargeLoop = cc.newLabel();
  Label L_LargeEnd  = cc.newLabel();
  Label L_Done = cc.newLabel();

  // Load SIMD Constants.
  cc.xorps(vzero, vzero);
  cc.mov(gp0.r32(), 0x00800080);
  cc.movd(v0080, gp0.r32());
  cc.mov(gp0.r32(), 0x01010101);
  cc.movd(v0101, gp0.r32());
  cc.pshufd(v0080, v0080, x86::shuffleImm(0, 0, 0, 0));
  cc.pshufd(v0101, v0101, x86::shuffleImm(0, 0, 0, 0));

  // How many pixels have to be processed to make the loop aligned.
  cc.xor_(j, j);
  cc.sub(j, dst);
  cc.and_(j, 15);
  cc.shr(j, 2);
  cc.jz(L_SmallEnd);

  cc.cmp(j, i);
  cc.cmovg(j, i); // j = min(i, j)
  cc.sub(i, j);   // i -= j

  // Small loop.
  cc.bind(L_SmallLoop);
  {
    x86::Xmm x0 = simd3;
    x86::Xmm y0 = simd4;
    x86::Xmm a0 = simd5;

    cc.movd(y0, x86::ptr(src));
    cc.movd(x0, x86::ptr(dst));

    cc.pcmpeqb(a0, a0);
    cc.pxor(a0, y0);
    cc.psrlw(a0, 8);
    cc.punpcklbw(x0, vzero);

    cc.pshuflw(a0, a0, x86::shuffleImm(1, 1, 1, 1));
    cc.punpcklbw(y0, vzero);

    cc.pmullw(x0, a0);
    cc.paddsw(x0, v0080);
    cc.pmulhuw(x0, v0101);

    cc.paddw(x0, y0);
    cc.packuswb(x0, x0);

    cc.movd(x86::ptr(dst), x0);

    cc.add(dst, 4);
    cc.add(src, 4);

    cc.dec(j);
    cc.jnz(L_SmallLoop);
  }

  // Second section, prepare for an aligned loop.
  cc.bind(L_SmallEnd);

  cc.test(i, i);
  cc.mov(j, i);
  cc.jz(L_Done);

  cc.and_(j, 3);
  cc.shr(i, 2);
  cc.jz(L_LargeEnd);

  // Aligned loop.
  cc.bind(L_LargeLoop);
  {
    x86::Xmm x0 = simd3;
    x86::Xmm x1 = simd4;
    x86::Xmm y0 = simd5;
    x86::Xmm a0 = simd6;
    x86::Xmm a1 = simd7;

    cc.movups(y0, x86::ptr(src));
    cc.movaps(x0, x86::ptr(dst));

    cc.pcmpeqb(a0, a0);
    cc.xorps(a0, y0);
    cc.movaps(x1, x0);

    cc.psrlw(a0, 8);
    cc.punpcklbw(x0, vzero);

    cc.movaps(a1, a0);
    cc.punpcklwd(a0, a0);

    cc.punpckhbw(x1, vzero);
    cc.punpckhwd(a1, a1);

    cc.pshufd(a0, a0, x86::shuffleImm(3, 3, 1, 1));
    cc.pshufd(a1, a1, x86::shuffleImm(3, 3, 1, 1));

    cc.pmullw(x0, a0);
    cc.pmullw(x1, a1);

    cc.paddsw(x0, v0080);
    cc.paddsw(x1, v0080);

    cc.pmulhuw(x0, v0101);
    cc.pmulhuw(x1, v0101);

    cc.add(src, 16);
    cc.packuswb(x0, x1);

    cc.paddw(x0, y0);
    cc.movaps(x86::ptr(dst), x0);

    cc.add(dst, 16);

    cc.dec(i);
    cc.jnz(L_LargeLoop);
  }

  cc.bind(L_LargeEnd);
  cc.test(j, j);
  cc.jnz(L_SmallLoop);

  cc.bind(L_Done);
}

static void generateSseAlphaBlend(asmjit::BaseEmitter& emitter, bool emitPrologEpilog) {
  using namespace asmjit::x86;

  if (emitter.isAssembler()) {
    Assembler& cc = *emitter.as<Assembler>();

    x86::Gp dst = cc.zax();
    x86::Gp src = cc.zcx();
    x86::Gp i = cc.zdx();
    x86::Gp j = cc.zdi();

    if (emitPrologEpilog) {
      FuncDetail func;
      func.init(FuncSignatureT<void, void*, const void*, size_t>(CallConvId::kHost), cc.environment());

      FuncFrame frame;
      frame.init(func);
      frame.addDirtyRegs(dst, src, i, j);
      frame.addDirtyRegs(xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);

      FuncArgsAssignment args(&func);
      args.assignAll(dst, src, i);
      args.updateFuncFrame(frame);
      frame.finalize();

      cc.emitProlog(frame);
      cc.emitArgsAssignment(frame, args);
      generateSseAlphaBlendInternal(cc, dst, src, i, j, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);
      cc.emitEpilog(frame);
    }
    else {
      generateSseAlphaBlendInternal(cc, dst, src, i, j, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);
    }
  }
#ifndef ASMJIT_NO_BUILDER
  else if (emitter.isBuilder()) {
    Builder& cc = *emitter.as<Builder>();

    x86::Gp dst = cc.zax();
    x86::Gp src = cc.zcx();
    x86::Gp i = cc.zdx();
    x86::Gp j = cc.zdi();

    if (emitPrologEpilog) {
      FuncDetail func;
      func.init(FuncSignatureT<void, void*, const void*, size_t>(CallConvId::kHost), cc.environment());

      FuncFrame frame;
      frame.init(func);
      frame.addDirtyRegs(dst, src, i, j);
      frame.addDirtyRegs(xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);

      FuncArgsAssignment args(&func);
      args.assignAll(dst, src, i);
      args.updateFuncFrame(frame);
      frame.finalize();

      cc.emitProlog(frame);
      cc.emitArgsAssignment(frame, args);
      generateSseAlphaBlendInternal(cc, dst, src, i, j, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);
      cc.emitEpilog(frame);
    }
    else {
      generateSseAlphaBlendInternal(cc, dst, src, i, j, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);
    }
  }
#endif
#ifndef ASMJIT_NO_COMPILER
  else if (emitter.isCompiler()) {
    Compiler& cc = *emitter.as<Compiler>();

    Gp dst = cc.newIntPtr("dst");
    Gp src = cc.newIntPtr("src");
    Gp i = cc.newIntPtr("i");
    Gp j = cc.newIntPtr("j");

    Xmm v0 = cc.newXmm("v0");
    Xmm v1 = cc.newXmm("v1");
    Xmm v2 = cc.newXmm("v2");
    Xmm v3 = cc.newXmm("v3");
    Xmm v4 = cc.newXmm("v4");
    Xmm v5 = cc.newXmm("v5");
    Xmm v6 = cc.newXmm("v6");
    Xmm v7 = cc.newXmm("v7");

    FuncNode* funcNode = cc.addFunc(FuncSignatureT<void, void*, const void*, size_t>(CallConvId::kHost));
    funcNode->setArg(0, dst);
    funcNode->setArg(1, src);
    funcNode->setArg(2, i);
    generateSseAlphaBlendInternal(cc, dst, src, i, j, v0, v1, v2, v3, v4, v5, v6, v7);
    cc.endFunc();
  }
#endif
}

} // {asmtest}

#endif // ASMJIT_TEST_MISC_H_INCLUDED