Welcome to mirror list, hosted at ThFree Co, Russian Federation.

decomposable_attention.py « bicleaner_ai - github.com/bitextor/bicleaner-ai.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: c312bd29f1924bacf4ea8b6a5ad3a485ec15996c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
'''
Keras implementation of Decomposable Attention (https://arxiv.org/pdf/1606.01933v1.pdf)
taken from spaCy examples (https://github.com/explosion/spaCy/tree/master/examples)
with modifications.

The MIT License (MIT)
Copyright (C) 2016-2020 ExplosionAI GmbH, 2016 spaCy GmbH, 2015 Matthew Honnibal
'''

from tensorflow.keras.optimizers import Adam
from tensorflow.keras.metrics import Precision, Recall
from tensorflow.keras import layers, Model, models
from tensorflow.keras import backend as K
import numpy as np

try:
    from .losses import KDLoss
    from .metrics import MatthewsCorrCoef
    from .layers import TokenAndPositionEmbedding
except (SystemError, ImportError):
    from losses import KDLoss
    from metrics import MatthewsCorrCoef
    from layers import TokenAndPositionEmbedding

def build_model(vectors, settings, compile=True):
    max_length = settings["maxlen"]
    nr_hidden = settings["n_hidden"]
    nr_class = settings["n_classes"]

    input1 = layers.Input(shape=(max_length,), dtype="int32", name="words1")
    input2 = layers.Input(shape=(max_length,), dtype="int32", name="words2")

    # embeddings (projected)
    embed = create_embedding(vectors, settings["emb_dim"],
                             settings["vocab_size"],
                             max_length, nr_hidden,
                             settings["emb_trainable"])

    a = embed(input1)
    b = embed(input2)

    # step 1: attend
    # self-attend
    if settings["self_attention"]:
        S_a = create_feedforward(nr_hidden, dropout=settings["dropout"])
        S_b = create_feedforward(nr_hidden, dropout=settings["dropout"])
        a_p = layers.Attention()([S_a(a), S_a(a)])
        b_p = layers.Attention()([S_b(b), S_b(b)])
        # self_att_a = layers.dot([S_a(a), S_a(a)], axes=-1)
        # self_att_b = layers.dot([S_b(b), S_b(b)], axes=-1)
        # self_norm_a = layers.Lambda(normalizer(1))(self_att_a)
        # self_norm_b = layers.Lambda(normalizer(1))(self_att_b)
        # a_p = layers.dot([self_norm_a, a], axes=1)
        # b_p = layers.dot([self_norm_b, b], axes=1)
    else:
        a_p = a
        b_p = b

    # attend
    F = create_feedforward(nr_hidden, dropout=settings["dropout"])
    att_weights = layers.dot([F(a_p), F(b_p)], axes=-1)

    G = create_feedforward(nr_hidden)

    if settings["entail_dir"] == "both":
        norm_weights_a = layers.Lambda(normalizer(1))(att_weights)
        norm_weights_b = layers.Lambda(normalizer(2))(att_weights)
        alpha = layers.dot([norm_weights_a, a_p], axes=1)
        beta = layers.dot([norm_weights_b, b_p], axes=1)

        # step 2: compare
        comp1 = layers.concatenate([a_p, beta])
        comp2 = layers.concatenate([b_p, alpha])
        v1 = layers.TimeDistributed(G)(comp1)
        v2 = layers.TimeDistributed(G)(comp2)

        # step 3: aggregate
        v1_sum = layers.Lambda(sum_word)(v1)
        v2_sum = layers.Lambda(sum_word)(v2)
        concat = layers.concatenate([v1_sum, v2_sum])

    elif settings["entail_dir"] == "left":
        norm_weights_a = layers.Lambda(normalizer(1))(att_weights)
        alpha = layers.dot([norm_weights_a, a], axes=1)
        comp2 = layers.concatenate([b, alpha])
        v2 = layers.TimeDistributed(G)(comp2)
        v2_sum = layers.Lambda(sum_word)(v2)
        concat = v2_sum

    else:
        norm_weights_b = layers.Lambda(normalizer(2))(att_weights)
        beta = layers.dot([norm_weights_b, b], axes=1)
        comp1 = layers.concatenate([a, beta])
        v1 = layers.TimeDistributed(G)(comp1)
        v1_sum = layers.Lambda(sum_word)(v1)
        concat = v1_sum

    H = create_feedforward(nr_hidden, dropout=settings["dropout"])
    out = H(concat)
    if settings['distilled']:
        out = layers.Dense(nr_class)(out)
        loss = KDLoss(settings["batch_size"])
    else:
        out = layers.Dense(nr_class)(out)
        out = layers.Activation('sigmoid', dtype='float32')(out)
        loss = settings["loss"]

    model = Model([input1, input2], out)

    if compile:
        model.compile(optimizer=settings["optimizer"],
                      loss=loss,
                      metrics=settings["metrics"](), # Call get_metrics
                      experimental_run_tf_function=False,)

    return model


def create_embedding(vectors, emb_dim, vocab_size, max_length, projected_dim, trainable=False):
    return models.Sequential(
        [
            # layers.Embedding(
            #     vectors.shape[0],
            #     vectors.shape[1],
            #     input_length=max_length,
            #     weights=[vectors],
            #     trainable=trainable,
            #     mask_zero=True,
            # ),
            TokenAndPositionEmbedding(vocab_size,
                                      emb_dim,
                                      max_length,
                                      vectors,
                                      trainable),
            layers.TimeDistributed(
                layers.Dense(projected_dim, activation=None, use_bias=False,
                    kernel_regularizer=None)
            ),
        ]
    )


def create_feedforward(num_units=200, activation="relu", dropout=0.2):
    return models.Sequential(
        [
            layers.Dense(num_units, activation=activation),
            layers.Dropout(dropout),
            layers.Dense(num_units, activation=activation),
            layers.Dropout(dropout),
        ]
    )


def normalizer(axis):
    def _normalize(att_weights):
        exp_weights = K.exp(att_weights)
        sum_weights = K.sum(exp_weights, axis=axis, keepdims=True)
        return exp_weights / sum_weights

    return _normalize


def sum_word(x):
    return K.sum(x, axis=1)


def f1(y_true, y_pred): #taken from old keras source code
    true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
    possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
    predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
    precision = true_positives / (predicted_positives+K.epsilon())
    recall = true_positives / (possible_positives+K.epsilon())
    f1_val = 2*(precision*recall) / (precision+recall+K.epsilon())
    return f1_val


def test_build_model():
    vectors = np.ndarray((100, 8), dtype="float32")
    shape = (10, 16, 3)
    settings = {"lr": 0.001, "dropout": 0.2, "gru_encode": True, "entail_dir": "both"}
    model = build_model(vectors, shape, settings)


def test_fit_model():
    def _generate_X(nr_example, length, nr_vector):
        X1 = np.ndarray((nr_example, length), dtype="int32")
        X1 *= X1 < nr_vector
        X1 *= 0 <= X1
        X2 = np.ndarray((nr_example, length), dtype="int32")
        X2 *= X2 < nr_vector
        X2 *= 0 <= X2
        return [X1, X2]

    def _generate_Y(nr_example, nr_class):
        ys = np.zeros((nr_example, nr_class), dtype="int32")
        for i in range(nr_example):
            ys[i, i % nr_class] = 1
        return ys

    vectors = np.ndarray((100, 8), dtype="float32")
    shape = (10, 16, 3)
    settings = {"lr": 0.001, "dropout": 0.2, "gru_encode": True, "entail_dir": "both"}
    model = build_model(vectors, shape, settings)

    train_X = _generate_X(20, shape[0], vectors.shape[0])
    train_Y = _generate_Y(20, shape[2])
    dev_X = _generate_X(15, shape[0], vectors.shape[0])
    dev_Y = _generate_Y(15, shape[2])

    model.fit(train_X, train_Y, validation_data=(dev_X, dev_Y), epochs=5, batch_size=4)


__all__ = [build_model]