Welcome to mirror list, hosted at ThFree Co, Russian Federation.

models.py « bicleaner_ai - github.com/bitextor/bicleaner-ai.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: d5b21e880cfd6477a727de2ec7becf30d8698eec (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
from transformers import (
    TFXLMRobertaForSequenceClassification,
    XLMRobertaConfig,
    XLMRobertaTokenizerFast
)
from transformers.modeling_tf_outputs import TFSequenceClassifierOutput
from transformers.optimization_tf import create_optimizer
from tensorflow.keras.optimizers.schedules import InverseTimeDecay
from tensorflow.keras.callbacks import EarlyStopping, Callback
from sklearn.metrics import f1_score, precision_score, recall_score, matthews_corrcoef
from tensorflow.keras.losses import SparseCategoricalCrossentropy, BinaryCrossentropy
from tensorflow.keras.metrics import Precision, Recall
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.models import load_model
from tensorflow.python.keras.saving import hdf5_format
from tensorflow.keras import layers
from contextlib import redirect_stdout
from glove import Corpus, Glove
from abc import ABC, abstractmethod
import tensorflow.keras.backend as K
import sentencepiece as sp
import tensorflow as tf
import numpy as np
import logging
import h5py
import sys
import os

try:
    from . import decomposable_attention
    from .metrics import FScore, MatthewsCorrCoef
    from .datagen import (
            TupleSentenceGenerator,
            ConcatSentenceGenerator,
            SentenceEncoder)
    from .layers import (
            TransformerBlock,
            TokenAndPositionEmbedding,
            BicleanerAIClassificationHead)
except (SystemError, ImportError):
    import decomposable_attention
    from metrics import FScore, MatthewsCorrCoef
    from datagen import (
            TupleSentenceGenerator,
            ConcatSentenceGenerator,
            SentenceEncoder)
    from layers import (
            TransformerBlock,
            TokenAndPositionEmbedding,
            BicleanerAIClassificationHead)

def calibrate_output(y_true, y_pred):
    ''' Platt calibration
    Estimate A*f(x)+B sigmoid parameters
    '''
    logging.info("Calibrating classifier output")
    init_mcc = matthews_corrcoef(y_true, np.where(y_pred>=0.5, 1, 0))
    # Define target values
    n_pos = np.sum(y_true == 1)
    n_neg = np.sum(y_true == 0)
    if n_pos < n_neg:
        # Separate pos and neg
        y_true_pos = np.extract(y_true == 1, y_true)
        y_true_neg = np.extract(y_true == 0, y_true)
        y_pred_pos = np.extract(y_true == 1, y_pred)
        y_pred_neg = np.extract(y_true == 0, y_pred)
        # Shuffle by index to shuffle with the same pattern preds and labels
        # and avoid srewing up labels
        idx_neg = np.arange(len(y_true_neg))
        np.random.shuffle(idx_neg)
        # Extract from the shuffle the same amount of neg and pos
        y_true_balanced = np.append(y_true_neg[idx_neg][:len(y_true_pos)], y_true_pos)
        y_pred_balanced = np.append(y_pred_neg[idx_neg][:len(y_pred_pos)], y_pred_pos)
    else:
        y_true_balanced = y_true
        y_pred_balanced = y_pred

    y_target = np.where(y_true_balanced == 1, (n_pos+1)/(n_pos+2), y_true_balanced)
    y_target = np.where(y_target == 0, 1/(n_neg+2), y_target)

    # Parametrized sigmoid is equivalent to
    # dense with single neuron and bias A*x + B
    with tf.device("/cpu:0"):
        model = tf.keras.Sequential([
            tf.keras.layers.Input(shape=(1,)),
            tf.keras.layers.Dense(1, activation='sigmoid'),
        ])
    loss = BinaryCrossentropy(reduction=tf.keras.losses.Reduction.SUM)
    earlystop = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=50)
    if logging.getLogger().level == logging.DEBUG:
        verbose = 2
    else:
        verbose = 0
    model.compile(optimizer=Adam(learning_rate=5e-3), loss=loss)
    with redirect_stdout(sys.stderr):
        model.fit(y_pred_balanced, y_target, epochs=5000, verbose=verbose,
                  batch_size=4096,
                  validation_split=0.1,
                  callbacks=[earlystop])

    # Check mcc hasn't been affected
    with redirect_stdout(sys.stderr):
        y_pred_calibrated = model.predict(y_pred, verbose=verbose)
    end_mcc = matthews_corrcoef(y_true, np.where(y_pred_calibrated>=0.5, 1, 0))
    logging.debug(f"MCC with calibrated output: {end_mcc}")
    if (init_mcc - end_mcc) > 0.02:
        logging.warning(f"Calibration has decreased MCC from {init_mcc:.4f} to {end_mcc:.4f}")

    # Obtain scalar values from model weights
    A = float(model.layers[0].weights[0].numpy()[0][0])
    B = float(model.layers[0].weights[1].numpy()[0])
    logging.debug(f"Calibrated parameters: {A} * x + {B}")
    return A, B

class ModelInterface(ABC):
    '''
    Interface for model classes that gathers the essential
    model methods: init, load, predict and train
    '''
    @abstractmethod
    def __init__(self, directory, settings):
        pass

    @abstractmethod
    def get_generator(self, batch_size, shuffle):
        pass

    @abstractmethod
    def predict(self, x1, x2, batch_size=None, calibrated=False,
                raw=False, verbose=0):
        pass

    @abstractmethod
    def load(self):
        pass

    @abstractmethod
    def train(self, train_set, dev_set):
        pass

    def calibrate(self, y_pred):
        A = self.settings["calibration_params"][0]
        B = self.settings["calibration_params"][1]
        return 1/(1 + np.exp(-(A*y_pred+B)))

class BaseModel(ModelInterface):
    '''Abstract Model class that gathers most of the training logic'''

    def __init__(self, directory, settings, distilled=False):
        self.dir = directory
        self.trained = False
        self.spm = None
        self.vocab = None
        self.model = None
        self.wv = None
        self.spm_prefix = 'spm'

        # Override with user defined settings in derived classes, not here
        self.settings = {
            "spm_file": self.spm_prefix + ".model",
            "vocab_file": self.spm_prefix + ".vocab",
            "model_file": "model.h5",
            "wv_file": "glove.vectors",
            "separator": '',
            "bos_id": -1,
            "eos_id": -1,
            "pad_id": 0,
            "unk_id": 1,
            "add_bos": False,
            "add_eos": False,
            "sampling": False,
            "emb_dim": 300,
            "emb_trainable": True,
            "emb_epochs": 10,
            "window": 15,
            "vocab_size": 32000,
            "batch_size": 1024,
            "maxlen": 100,
            "n_hidden": 200,
            "dropout": 0.2,
            "distilled": distilled,
            "n_classes": 2 if distilled else 1,
            "entail_dir": "both",
            "epochs": 200,
            "steps_per_epoch": 4096,
            "patience": 20,
            "loss": "categorical_crossentropy" if distilled else "binary_crossentropy",
            "lr": 5e-4,
            "clipnorm": None,
            "metrics": self.get_metrics,
        }
        scheduler = InverseTimeDecay(self.settings["lr"],
                         decay_steps=self.settings["steps_per_epoch"]//4,
                         decay_rate=0.2)
        self.settings["scheduler"] = scheduler
        self.settings["optimizer"] = Adam(learning_rate=scheduler,
                                          clipnorm=self.settings["clipnorm"])

    def get_metrics(self):
        '''
        Class method to create metric objects.
        Variables need to be instatiated inside the same
        strategy scope that the model.
        '''
        return [
            #TODO create argmax precision and recall or use categorical acc
            #Precision(name='p'),
            #Recall(name='r'),
            FScore(argmax=self.settings["distilled"]),
            MatthewsCorrCoef(argmax=self.settings["distilled"]),
        ]

    def get_generator(self, batch_size, shuffle):
        ''' Returns a sentence generator instance according to the model input '''
        raise NotImplementedError("Subclass must define its sentence generator")

    def build_model(self, compile=True):
        '''Returns a compiled Keras model instance'''
        raise NotImplementedError("Subclass must implement its model architecture")

    def predict(self, x1, x2, batch_size=None, calibrated=False,
                raw=False, verbose=0):
        '''Predicts from sequence generator'''
        if batch_size is None:
            batch_size = self.settings["batch_size"]
        generator = self.get_generator(batch_size, shuffle=False)
        generator.load((x1, x2, None))

        with redirect_stdout(sys.stderr):
            y_pred = self.model.predict(generator, verbose=verbose)
        # Obtain logits if model returns HF output
        if isinstance(y_pred, TFSequenceClassifierOutput):
            y_pred = y_pred.logits

        if raw:
            return y_pred

        if self.settings["n_classes"] == 1:
            y_pred_probs = y_pred
        else:
            # Compute softmax probability if output is 2-class
            y_pred_probs = self.softmax_pos_prob(y_pred)

        if calibrated and "calibration_params" in self.settings:
            return self.calibrate(y_pred_probs)
        else:
            return y_pred_probs


    def load_spm(self):
        '''Loads SentencePiece model and vocabulary from model directory'''
        self.spm = SentenceEncoder(self.dir+'/'+self.settings["spm_file"],
                                   add_bos=self.settings["add_bos"],
                                   add_eos=self.settings["add_eos"],
                                   enable_sampling=self.settings["sampling"])
        self.vocab = {}
        with open(self.dir + '/' + self.settings["vocab_file"]) as vocab_file:
            for i, line in enumerate(vocab_file):
                token = line.split('\t')[0]
                self.vocab[token] = i
        logging.info("Loaded SentencePiece model")

    def load_embed(self):
        '''Loads embeddings from model directory'''
        glove = Glove().load(self.dir+'/'+self.settings["wv_file"])
        self.wv = glove.word_vectors
        logging.info("Loaded SentenePiece Glove vectors")

    def load(self):
        '''Loads the whole model'''
        self.load_spm()
        logging.info("Loading neural classifier")
        deps = {'FScore': FScore,
                'MatthewsCorrCoef': MatthewsCorrCoef,
                'TokenAndPositionEmbedding': TokenAndPositionEmbedding,
                'K': tf.keras.backend,
        }

        # Try loading the whole model
        # If it fails due to bad marshal (saved with different Python version)
        # build a new model and load weights
        try:
            self.model = load_model(self.dir+'/'+self.settings["model_file"],
                                    custom_objects=deps, compile=False)
        except ValueError:
            self.model = self.build_model(compile=False)
            self.model.load_weights(self.dir+'/'+self.settings["model_file"])

    def train_vocab(self, monolingual, threads):
        '''Trains SentencePiece model and embeddings with Glove'''

        logging.info("Training SentencePiece joint vocabulary")
        trainer = sp.SentencePieceTrainer
        trainer.train(sentence_iterator=monolingual,
                      model_prefix=self.dir+'/'+self.spm_prefix,
                      vocab_size=self.settings["vocab_size"],
                      input_sentence_size=5000000,
                      shuffle_input_sentence=True,
                      pad_id=self.settings["pad_id"],
                      unk_id=self.settings["unk_id"],
                      bos_id=self.settings["bos_id"],
                      eos_id=self.settings["eos_id"],
                      user_defined_symbols=self.settings["separator"],
                      num_threads=threads,
                      minloglevel=1)
        monolingual.seek(0)
        self.load_spm()

        logging.info("Computing co-occurence matrix")
        # Iterator function that reads and tokenizes file
        # to avoid reading the whole input into memory
        def get_data(input_file):
            for line in input_file:
                yield self.spm.encode(line.rstrip(), out_type=str)
        corpus = Corpus(self.vocab) # Use spm vocab as glove vocab
        corpus.fit(get_data(monolingual), window=self.settings["window"],
                   ignore_missing=True)

        logging.info("Training vocabulary embeddings")
        embeddings = Glove(no_components=self.settings["emb_dim"])
        embeddings.fit(corpus.matrix,
                       epochs=self.settings["emb_epochs"],
                       no_threads=threads)
        self.wv = embeddings.word_vectors
        embeddings.save(self.dir + '/' + self.settings["wv_file"])

    def train(self, train_set, dev_set):
        '''Trains the neural classifier'''

        if self.wv is None or self.spm is None:
            raise Exception("Vocabulary is not trained")
        settings = self.settings

        logging.info("Loading training set")
        train_generator = self.get_generator(
                                settings["batch_size"],
                                shuffle=True)
        train_generator.load(train_set)
        steps_per_epoch = min(len(train_generator),
                              settings["steps_per_epoch"])

        dev_generator = self.get_generator(
                                settings["batch_size"],
                                shuffle=False)
        dev_generator.load(dev_set)

        model_filename = self.dir + '/' + settings["model_file"]
        earlystop = EarlyStopping(monitor='val_f1',
                                  mode='max',
                                  patience=settings["patience"],
                                  restore_best_weights=True)
        class LRReport(Callback):
            def on_epoch_end(self, epoch, logs={}):
                print(f' - lr: {self.model.optimizer.lr(epoch*steps_per_epoch):.3E}')

        logging.info("Training neural classifier")

        strategy = tf.distribute.MirroredStrategy()
        num_devices = strategy.num_replicas_in_sync
        with strategy.scope():
            self.model = self.build_model()
        if logging.getLogger().level == logging.DEBUG:
            self.model.summary()
        if logging.getLogger().level <= logging.INFO:
            verbose = 1
        else:
            verbose = 0

        with redirect_stdout(sys.stderr):
            self.model.fit(train_generator,
                           batch_size=settings["batch_size"],
                           epochs=settings["epochs"],
                           steps_per_epoch=steps_per_epoch,
                           validation_data=dev_generator,
                           callbacks=[earlystop, LRReport()],
                           verbose=verbose)
        self.model.save(model_filename)

        y_true = dev_generator.y
        with redirect_stdout(sys.stderr):
            y_pred_probs = self.model.predict(dev_generator, verbose=verbose)
        y_pred = np.where(y_pred_probs >= 0.5, 1, 0)
        logging.info(f"Dev precision: {precision_score(y_true, y_pred):.3f}")
        logging.info(f"Dev recall: {recall_score(y_true, y_pred):.3f}")
        logging.info(f"Dev f1: {f1_score(y_true, y_pred):.3f}")
        logging.info(f"Dev mcc: {matthews_corrcoef(y_true, y_pred):.3f}")

        A, B = calibrate_output(y_true, y_pred_probs)
        self.settings["calibration_params"] = (A, B)

        return y_true, y_pred

class DecomposableAttention(BaseModel):
    '''Decomposable Attention model (Parikh et. al. 2016)'''

    def __init__(self, directory, settings, **kwargs):
        super(DecomposableAttention, self).__init__(directory, settings, **kwargs)

        self.settings = {
            **self.settings, # Obtain settings from parent
            "self_attention": False,
            **settings, # Override default settings with user-defined
        }

    def get_generator(self, batch_size, shuffle):
        return TupleSentenceGenerator(
                    self.spm, shuffle=shuffle,
                    batch_size=batch_size,
                    maxlen=self.settings["maxlen"])

    def build_model(self, compile=True):
        return decomposable_attention.build_model(self.wv, self.settings, compile)

class Transformer(BaseModel):
    '''Basic Transformer model'''

    def __init__(self, directory, settings, **kwargs):
        super(Transformer, self).__init__(directory, settings, **kwargs)

        self.settings = {
            **self.settings, # Obtain settings from parent
            "separator": '[SEP]',
            "pad_id": 0,
            "bos_id": 1,
            "eos_id": 2,
            "unk_id": 3,
            "add_bos": True,
            "add_eos": True,
            "maxlen": 200,
            "n_hidden": 200,
            "n_heads": 4,
            "dropout": 0.2,
            "att_dropout": 0.5,
            "lr": 5e-4,
            "clipnorm": 1.0,
            **settings, # Override default settings with user-defined
        }
        scheduler = InverseTimeDecay(self.settings["lr"],
                         decay_steps=self.settings["steps_per_epoch"]//4,
                         decay_rate=0.2)
        self.settings["scheduler"] = scheduler
        self.settings["optimizer"] = Adam(learning_rate=settings["scheduler"],
                                          clipnorm=settings["clipnorm"])

    def get_generator(self, batch_size, shuffle):
        return ConcatSentenceGenerator(
                    self.spm, shuffle=shuffle,
                    batch_size=batch_size,
                    maxlen=self.settings["maxlen"],
                    separator=self.settings["separator"])

    def build_model(self, compile=True):
        settings = self.settings
        inputs = layers.Input(shape=(settings["maxlen"],), dtype='int32')
        embedding = TokenAndPositionEmbedding(self.wv,
                                              settings["maxlen"],
                                              trainable=True)
        transformer_block = TransformerBlock(
                                settings["emb_dim"],
                                settings["n_heads"],
                                settings["n_hidden"],
                                settings["att_dropout"])

        x = embedding(inputs)
        x = transformer_block(x)
        x = layers.GlobalAveragePooling1D()(x)
        x = layers.Dropout(settings["dropout"])(x)
        x = layers.Dense(settings["n_hidden"], activation="relu")(x)
        x = layers.Dropout(settings["dropout"])(x)
        if settings['loss'] == 'categorical_crossentropy':
            outputs = layers.Dense(settings["n_classes"], activation='softmax')(x)
        else:
            outputs = layers.Dense(settings["n_classes"], activation='sigmoid')(x)

        model = tf.keras.Model(inputs=inputs, outputs=outputs)
        if compile:
            model.compile(optimizer=settings["optimizer"],
                          loss=settings["loss"],
                          metrics=settings["metrics"]())
        return model


class BCXLMRoberta(BaseModel):
    ''' Fine-tuned XLMRoberta model '''

    def __init__(self, directory, settings, **kwargs):
        self.dir = directory
        self.model = None
        self.tokenizer = None

        self.settings = {
            "base_model": 'jplu/tf-xlm-roberta-base',
            "batch_size": 16,
            "maxlen": 150,
            "n_classes": 2,
            "epochs": 10,
            "steps_per_epoch": 40000,
            "patience": 3,
            "dropout": 0.1,
            "n_hidden": 2048,
            "activation": 'relu',
            "loss": "binary_crossentropy",
            "lr": 2e-6,
            "decay_rate": 0.1,
            "warmup_steps": 1000,
            "clipnorm": 1.0,
            **settings,
        }
        scheduler = InverseTimeDecay(self.settings["lr"],
                                     decay_steps=32.0,
                                     decay_rate=0.1)
        self.settings["scheduler"] = scheduler
        optimizer, scheduler = create_optimizer(
                self.settings["lr"],
                self.settings["steps_per_epoch"]*self.settings["epochs"],
                self.settings["warmup_steps"],
                weight_decay_rate=self.settings["decay_rate"])
        self.settings["scheduler"] = scheduler
        self.settings["optimizer"] = optimizer

    def get_generator(self, batch_size, shuffle):
        return ConcatSentenceGenerator(
                self.tokenizer, shuffle=shuffle,
                batch_size=batch_size,
                maxlen=self.settings["maxlen"])

    def load_model(self, model_file):
        settings = self.settings

        tf_model = TFXLMRBicleanerAI.from_pretrained(
                        model_file,
                        num_labels=settings["n_classes"],
                        head_hidden_size=settings["n_hidden"],
                        head_dropout=settings["dropout"],
                        head_activation=settings["activation"])

        return tf_model

    def load(self):
        ''' Load fine-tuned model '''
        # If vocab and model files are in a subdirectory, load from there
        if "vocab_file" in self.settings:
            vocab_file = f'{self.dir}/{self.settings["vocab_file"]}'
        else:
            vocab_file = self.dir

        if "model_file" in self.settings:
            model_file = f'{self.dir}/{self.settings["model_file"]}'
        else:
            model_file = self.dir

        self.tokenizer = XLMRobertaTokenizerFast.from_pretrained(vocab_file)
        self.model = self.load_model(model_file)

    def softmax_pos_prob(self, x):
        # Compute softmax probability of the second (positive) class
        e_x = np.exp(x - np.max(x))
        # Need transpose to compute for each sample in the batch
        # then slice to return class probability
        return (e_x.T / (np.sum(e_x, axis=1).T)).T[:,1:]

    def build_dataset(self, filename):
        ''' Read a file into a TFDataset '''
        data = [[], [], []]
        with open(filename, 'r') as file_:
            for line in file_:
                fields = line.split('\t')
                data[0].append(fields[0].strip())
                data[1].append(fields[1].strip())
                data[2].append(int(fields[2].strip()))
        # Give the sentences in separate arguments
        # so the tokenizer adds the corresponding special tokens
        sentences = self.tokenizer(data[0], data[1],
                                      padding=True,
                                      truncation=True,
                                      max_length=self.settings["maxlen"])

        ds = tf.data.Dataset.from_tensor_slices((dict(sentences),
                                                 data[2]))
        ds = ds.shuffle(len(sentences))
        return ds.batch(self.settings["batch_size"]).prefetch(5)

    def train_vocab(self, **kwargs):
        pass

    def train(self, train_set, dev_set):
        logging.info("Loading training set")

        self.tokenizer = XLMRobertaTokenizerFast.from_pretrained(
                                                    self.settings["base_model"])
        train_generator = self.get_generator(self.settings["batch_size"],
                                             shuffle=True)
        train_generator.load(train_set)
        steps_per_epoch = min(len(train_generator),
                              self.settings["steps_per_epoch"])

        dev_generator = self.get_generator(self.settings["batch_size"],
                                             shuffle=False)
        dev_generator.load(dev_set)

        earlystop = EarlyStopping(monitor='val_f1',
                                  mode='max',
                                  patience=self.settings["patience"],
                                  restore_best_weights=True)

        logging.info("Training classifier")

        strategy = tf.distribute.MirroredStrategy()
        num_devices = strategy.num_replicas_in_sync
        with strategy.scope():
            self.model = self.load_model(self.settings["base_model"])
            self.model.compile(optimizer=self.settings["optimizer"],
                               loss=SparseCategoricalCrossentropy(
                                        from_logits=True),
                               metrics=[FScore(argmax=True),
                                        MatthewsCorrCoef(argmax=True)])
        self.model.config._name_or_path = self.settings["model_name"]

        if logging.getLogger().level == logging.DEBUG:
            self.model.summary()
        if logging.getLogger().level <= logging.INFO:
            verbose = 1
        else:
            verbose = 0

        with redirect_stdout(sys.stderr):
            self.model.fit(train_generator,
                           epochs=self.settings["epochs"],
                           steps_per_epoch=steps_per_epoch,
                           validation_data=dev_generator,
                           batch_size=self.settings["batch_size"],
                           callbacks=[earlystop],
                           verbose=verbose)
        self.model.save_pretrained(self.dir + '/'
                                   + self.settings["model_file"])
        self.tokenizer.save_pretrained(self.dir + '/'
                                       + self.settings["vocab_file"])

        y_true = dev_generator.y
        with redirect_stdout(sys.stderr):
            y_pred = self.model.predict(dev_generator, verbose=verbose).logits
        y_pred_probs = self.softmax_pos_prob(y_pred)
        y_pred = np.argmax(y_pred, axis=-1)
        logging.info(f"Dev precision: {precision_score(y_true, y_pred):.3f}")
        logging.info(f"Dev recall: {recall_score(y_true, y_pred):.3f}")
        logging.info(f"Dev f1: {f1_score(y_true, y_pred):.3f}")
        logging.info(f"Dev mcc: {matthews_corrcoef(y_true, y_pred):.3f}")

        A, B = calibrate_output(y_true, y_pred_probs)
        self.settings["calibration_params"] = (A, B)

        return y_true, y_pred

class XLMRBicleanerAIConfig(XLMRobertaConfig):
    '''
    Bicleaner AI XLMR configuration class
    adds the config parameters for the classification layer
    '''
    def __init__(self, head_hidden_size=2048, head_dropout=0.1,
                 head_activation='relu', **kwargs):
        super().__init__(**kwargs)
        self.head_hidden_size = head_hidden_size
        self.head_dropout = head_dropout
        self.head_activation = head_activation

class TFXLMRBicleanerAI(TFXLMRobertaForSequenceClassification):
    '''
    Model for Bicleaner sentence-level classification tasks.
    Overwrites XLMRoberta classifiacion layer.
    '''
    config_class = XLMRBicleanerAIConfig

    def __init__(self, config, *inputs, **kwargs):
        super().__init__(config, *inputs, **kwargs)

        # Set the appropiate name for the classifier head layer
        # to avoid old models not being loaded correctly
        name = 'bicleaner_ai_classification_head'
        # If it's not a path, we are loading from hub, use the new name
        if os.path.isdir(config._name_or_path):
            # Inspect model file to guess if it has old head name
            with h5py.File(config._name_or_path + '/tf_model.h5', 'r') as h5:
                layers = set(hdf5_format.
                        load_attributes_from_hdf5_group(h5, "layer_names"))
                if 'bc_classification_head' in layers:
                    name = 'bc_classification_head'

        self.classifier = BicleanerAIClassificationHead(config,
                            name=name)