Welcome to mirror list, hosted at ThFree Co, Russian Federation.

kernel_avx2_fma.cc « ruy - github.com/google/ruy.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 50488a4e8aeeb72189123cb86d43fd01487122c2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
/* Copyright 2019 Google LLC. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#include <algorithm>
#include <cstdint>
#include <cstring>

#include "ruy/check_macros.h"
#include "ruy/kernel_common.h"
#include "ruy/kernel_x86.h"
#include "ruy/opt_set.h"
#include "ruy/platform.h"
#include "ruy/profiler/instrumentation.h"

#if RUY_PLATFORM_AVX2_FMA && RUY_OPT(ASM)
#include <immintrin.h>  // IWYU pragma: keep
#endif

namespace ruy {

#if !(RUY_PLATFORM_AVX2_FMA && RUY_OPT(ASM))

void Kernel8bitAvx2(const KernelParams8bit<8, 8>&) {
  // CPU-ID-based checks should disable the path that would reach this point.
  RUY_DCHECK(false);
}

void Kernel8bitAvx2SingleCol(const KernelParams8bit<8, 8>&) {
  // CPU-ID-based checks should disable the path that would reach this point.
  RUY_DCHECK(false);
}

void KernelFloatAvx2(const KernelParamsFloat<8, 8>&) {
  // CPU-ID-based checks should disable the path that would reach this point.
  RUY_DCHECK(false);
}

void KernelFloatAvx2SingleCol(const KernelParamsFloat<8, 8>&) {
  // CPU-ID-based checks should disable the path that would reach this point.
  RUY_DCHECK(false);
}

#else  // RUY_PLATFORM_AVX2_FMA && RUY_OPT(ASM)

static constexpr int kAvx8bitBlockSize = 8;
static constexpr int kAvx8bitInnerSize = 4;

namespace {
namespace intrin_utils {

template <>
inline __m256i mm256_shuffle_epi8<Path::kAvx2Fma>(const __m256i& a,
                                                  const __m256i& b) {
  return _mm256_shuffle_epi8(a, b);
}

// Make an inline function for FMA so we can share the float kernels
// with non-FMA code.
template <>
inline __m256 MulAdd<Path::kAvx2Fma>(const __m256& a, const __m256& b,
                                     const __m256& c) {
  return _mm256_fmadd_ps(a, b, c);
}

template <>
inline __m128i mm256_extracti128_si256<Path::kAvx2Fma>(const __m256i& a,
                                                       const int imm) {
  switch (imm) {
    case 0:
      return _mm256_extracti128_si256(a, 0);
    case 1:
      return _mm256_extracti128_si256(a, 1);
    default:
      RUY_DCHECK_LT(imm, 2);
      return _mm_setzero_si128();
  }
}

__m256i mm256_blendv_epi32(const __m256i& a, const __m256i& b,
                           const __m256i& mask) {
  __m256 result =
      _mm256_blendv_ps(_mm256_castsi256_ps(a), _mm256_castsi256_ps(b),
                       _mm256_castsi256_ps(mask));
  return _mm256_castps_si256(result);
}

}  // namespace intrin_utils
}  // namespace

template <Path path>
void Kernel8bitAvx2Impl(const KernelParams8bit<8, 8>& params) {
  profiler::ScopeLabel label("Kernel kAvx2Fma 8-bit");
  const std::int8_t splitter_idx_data[32] = {
      0, 1, 4, 5, 8,  9,  12, 13,  //
      2, 3, 6, 7, 10, 11, 14, 15,  //
      0, 1, 4, 5, 8,  9,  12, 13,  //
      2, 3, 6, 7, 10, 11, 14, 15   //
  };

  std::int32_t dst_stride = 0;
  if ((params.dst_type_id == DstTypeId<std::int8_t>::kValue) ||
      (params.dst_type_id == DstTypeId<std::uint8_t>::kValue)) {
    dst_stride = params.dst_stride;
  } else if (params.dst_type_id == DstTypeId<std::int16_t>::kValue) {
    dst_stride = params.dst_stride / sizeof(std::int16_t);
  } else if (params.dst_type_id == DstTypeId<std::int32_t>::kValue) {
    dst_stride = params.dst_stride / sizeof(std::int32_t);
  } else {
    RUY_DCHECK(false);
  }

  const void* rhs_col_ptr = params.rhs_base_ptr;
  void* dst_col_ptr = params.dst_base_ptr;

  for (int col = params.start_col; col <= params.last_col;
       col += kAvx8bitBlockSize) {
    const std::int8_t* lhs_col_ptr = params.lhs_base_ptr;
    void* dst_ptr = dst_col_ptr;

    const std::int32_t lhs_zero_point = params.lhs_zero_point;
    const bool has_rhs_sums_offsets =
        (params.flags & RUY_ASM_FLAG_HAS_RHS_SUMS) && lhs_zero_point;
    std::int32_t rhs_sums_offsets[8];
    if (has_rhs_sums_offsets) {
      const __m256i rhs_sums_offset_v = _mm256_mullo_epi32(
          _mm256_set1_epi32(lhs_zero_point),
          _mm256_loadu_si256(
              reinterpret_cast<__m256i const*>(&params.rhs_sums[col])));
      _mm256_storeu_si256(reinterpret_cast<__m256i*>(rhs_sums_offsets),
                          rhs_sums_offset_v);
    }

    for (int row = params.start_row; row <= params.last_row;
         row += kAvx8bitBlockSize) {
      int channel =
          (params.flags & RUY_ASM_FLAG_CHANNEL_DIMENSION_IS_COL) ? col : row;
      int multiplier_channel =
          (params.flags & RUY_ASM_FLAG_HAS_PERCHANNEL) ? channel : 0;
      const int residual_rows =
          std::min(params.dst_rows - row, kAvx8bitBlockSize);
      const int residual_cols =
          std::min(params.dst_cols - col, kAvx8bitBlockSize);

      const __m256i splitter_idx = _mm256_loadu_si256(
          reinterpret_cast<__m256i const*>(splitter_idx_data));

      __m256i accum_data_v0;
      __m256i accum_data_v1;
      __m256i accum_data_v2;
      __m256i accum_data_v3;
      __m256i accum_data_v4;
      __m256i accum_data_v5;
      __m256i accum_data_v6;
      __m256i accum_data_v7;

      // initial_accum_data will be the initialize of each of the
      // accum_data_* accumulator registers. We compute into it terms that are
      // identical across columns.
      __m256i initial_accum_data = _mm256_set1_epi32(params.prod_zp_depth);

      // In the channels-are-rows case, we can load bias here.
      if ((params.flags & RUY_ASM_FLAG_HAS_BIAS) &&
          !(params.flags & RUY_ASM_FLAG_CHANNEL_DIMENSION_IS_COL)) {
        initial_accum_data = _mm256_add_epi32(
            initial_accum_data,
            _mm256_loadu_si256(
                reinterpret_cast<const __m256i*>(params.bias + row)));
      }

      // Adjustments common across columns.
      const std::int32_t rhs_zero_point = params.rhs_zero_point;
      if ((params.flags & RUY_ASM_FLAG_HAS_LHS_SUMS) && rhs_zero_point) {
        const __m256i lhs_sums_offset = _mm256_mullo_epi32(
            _mm256_set1_epi32(rhs_zero_point),
            _mm256_loadu_si256(
                reinterpret_cast<__m256i const*>(&params.lhs_sums[row])));
        initial_accum_data =
            _mm256_sub_epi32(initial_accum_data, lhs_sums_offset);
      }

      // Adjustments differing across columns.
      if (has_rhs_sums_offsets) {
        accum_data_v0 = _mm256_sub_epi32(
            initial_accum_data, _mm256_set1_epi32(rhs_sums_offsets[0]));
        accum_data_v1 = _mm256_sub_epi32(
            initial_accum_data, _mm256_set1_epi32(rhs_sums_offsets[1]));
        accum_data_v2 = _mm256_sub_epi32(
            initial_accum_data, _mm256_set1_epi32(rhs_sums_offsets[2]));
        accum_data_v3 = _mm256_sub_epi32(
            initial_accum_data, _mm256_set1_epi32(rhs_sums_offsets[3]));
        accum_data_v4 = _mm256_sub_epi32(
            initial_accum_data, _mm256_set1_epi32(rhs_sums_offsets[4]));
        accum_data_v5 = _mm256_sub_epi32(
            initial_accum_data, _mm256_set1_epi32(rhs_sums_offsets[5]));
        accum_data_v6 = _mm256_sub_epi32(
            initial_accum_data, _mm256_set1_epi32(rhs_sums_offsets[6]));
        accum_data_v7 = _mm256_sub_epi32(
            initial_accum_data, _mm256_set1_epi32(rhs_sums_offsets[7]));
      } else {
        accum_data_v0 = initial_accum_data;
        accum_data_v1 = initial_accum_data;
        accum_data_v2 = initial_accum_data;
        accum_data_v3 = initial_accum_data;
        accum_data_v4 = initial_accum_data;
        accum_data_v5 = initial_accum_data;
        accum_data_v6 = initial_accum_data;
        accum_data_v7 = initial_accum_data;
      }

      // Finally, in the channels-are-columns case, load bias data here.
      if ((params.flags & RUY_ASM_FLAG_HAS_BIAS) &&
          (params.flags & RUY_ASM_FLAG_CHANNEL_DIMENSION_IS_COL)) {
        const __m256i bias_data = _mm256_loadu_si256(
            reinterpret_cast<const __m256i*>(params.bias + col));
        accum_data_v0 = _mm256_add_epi32(
            accum_data_v0,
            _mm256_permutevar8x32_epi32(bias_data, _mm256_set1_epi32(0)));
        accum_data_v1 = _mm256_add_epi32(
            accum_data_v1,
            _mm256_permutevar8x32_epi32(bias_data, _mm256_set1_epi32(1)));
        accum_data_v2 = _mm256_add_epi32(
            accum_data_v2,
            _mm256_permutevar8x32_epi32(bias_data, _mm256_set1_epi32(2)));
        accum_data_v3 = _mm256_add_epi32(
            accum_data_v3,
            _mm256_permutevar8x32_epi32(bias_data, _mm256_set1_epi32(3)));
        accum_data_v4 = _mm256_add_epi32(
            accum_data_v4,
            _mm256_permutevar8x32_epi32(bias_data, _mm256_set1_epi32(4)));
        accum_data_v5 = _mm256_add_epi32(
            accum_data_v5,
            _mm256_permutevar8x32_epi32(bias_data, _mm256_set1_epi32(5)));
        accum_data_v6 = _mm256_add_epi32(
            accum_data_v6,
            _mm256_permutevar8x32_epi32(bias_data, _mm256_set1_epi32(6)));
        accum_data_v7 = _mm256_add_epi32(
            accum_data_v7,
            _mm256_permutevar8x32_epi32(bias_data, _mm256_set1_epi32(7)));
      }

      const std::int8_t* lhs_ptr = lhs_col_ptr;
      const void* rhs_ptr = rhs_col_ptr;
      for (int d = 0; d < params.depth; d += kAvx8bitInnerSize) {
        const __m256i lhs_data =
            _mm256_load_si256(reinterpret_cast<const __m256i*>(lhs_ptr));
        const __m256i rhs_data_8bit =
            _mm256_load_si256(reinterpret_cast<const __m256i*>(rhs_ptr));

        // Each "int32" is two 16-bit RHS values, sign extended from 8-bit.
        std::int32_t rhs_data_buf[16];
        const std::int32_t* rhs_data =
            reinterpret_cast<const std::int32_t*>(rhs_ptr);

        if (params.rhs_scalar_size == 1) {
          rhs_data = rhs_data_buf;
          const __m128i rhs_data_bottom_lane =
              _mm256_castsi256_si128(rhs_data_8bit);
          const __m128i rhs_data_top_lane =
              _mm256_extracti128_si256(rhs_data_8bit, 1);
          const __m256i rhs_16_bit_dup_low =
              _mm256_cvtepi8_epi16(rhs_data_bottom_lane);
          const __m256i rhs_16_bit_dup_high =
              _mm256_cvtepi8_epi16(rhs_data_top_lane);
          // Now that we have cast the RHS data, we store it so that each value
          // can be separately loaded in the accumulation loop.
          _mm256_storeu_si256(reinterpret_cast<__m256i*>(rhs_data_buf),
                              rhs_16_bit_dup_low);
          _mm256_storeu_si256(reinterpret_cast<__m256i*>(rhs_data_buf + 8),
                              rhs_16_bit_dup_high);
        } else {
          RUY_DCHECK(params.rhs_scalar_size == 2);
        }

        const __m256i lhs_data_split =
            _mm256_shuffle_epi8(lhs_data, splitter_idx);
        const __m256i lhs_data_split_expand_bottom =
            _mm256_cvtepi8_epi16(_mm256_extracti128_si256(lhs_data_split, 0));
        const __m256i lhs_data_split_expand_top =
            _mm256_cvtepi8_epi16(_mm256_extracti128_si256(lhs_data_split, 1));

        // Take bytes 0, 1, 4, 5, 8, 9, ... expanded to 16-bit.
        const __m256i lhs_16_bit_low = _mm256_permute2x128_si256(
            lhs_data_split_expand_bottom, lhs_data_split_expand_top, 0x20);
        // Take bytes 2, 3, 6, 7, 10, 11, ... expanded to 16-bit.
        const __m256i lhs_16_bit_high = _mm256_permute2x128_si256(
            lhs_data_split_expand_bottom, lhs_data_split_expand_top, 0x31);

        __m256i rhs0 = _mm256_lddqu_si256(reinterpret_cast<const __m256i*>(
            rhs_data));  // Load [0 1 2 3 4 5 6 7]
        __m256i rhs1 = _mm256_lddqu_si256(
            reinterpret_cast<const __m256i*>(rhs_data + 8));  // Load [8 - 15]
        __m256i rhs0_3 =
            _mm256_permute2f128_si256(rhs0, rhs0, 0);  // [0 1 2 3 0 1 2 3]
        __m256i rhs4_7 =
            _mm256_permute2f128_si256(rhs0, rhs0, 0x11);  // [4 5 6 7 4 5 6 7]
        __m256i rhs8_11 =
            _mm256_permute2f128_si256(rhs1, rhs1, 0);  // [8 9 10 11 8 9 10 11]
        __m256i rhs12_15 =
            _mm256_permute2f128_si256(rhs1, rhs1, 17);  // [12 - 15, 12 - 15]

        auto process_column = [=](__m256i& rhs_dup_lo, __m256i& rhs_dup_hi,
                                  __m256i& accum) {
          accum = _mm256_add_epi32(
              accum, _mm256_madd_epi16(lhs_16_bit_low, rhs_dup_lo));
          accum = _mm256_add_epi32(
              accum, _mm256_madd_epi16(lhs_16_bit_high, rhs_dup_hi));
        };
        __m256i tmp0, tmp1, tmp2, tmp3;
        tmp0 = _mm256_shuffle_epi32(rhs0_3, 0);
        tmp1 = _mm256_shuffle_epi32(rhs0_3, 0x55);
        process_column(tmp0, tmp1, accum_data_v0);
        tmp2 = _mm256_shuffle_epi32(rhs0_3, 0xaa);
        tmp3 = _mm256_shuffle_epi32(rhs0_3, 0xff);
        process_column(tmp2, tmp3, accum_data_v1);

        tmp0 = _mm256_shuffle_epi32(rhs4_7, 0);
        tmp1 = _mm256_shuffle_epi32(rhs4_7, 0x55);
        process_column(tmp0, tmp1, accum_data_v2);
        tmp2 = _mm256_shuffle_epi32(rhs4_7, 0xaa);
        tmp3 = _mm256_shuffle_epi32(rhs4_7, 0xff);
        process_column(tmp2, tmp3, accum_data_v3);

        tmp0 = _mm256_shuffle_epi32(rhs8_11, 0);
        tmp1 = _mm256_shuffle_epi32(rhs8_11, 0x55);
        process_column(tmp0, tmp1, accum_data_v4);
        tmp2 = _mm256_shuffle_epi32(rhs8_11, 0xaa);
        tmp3 = _mm256_shuffle_epi32(rhs8_11, 0xff);
        process_column(tmp2, tmp3, accum_data_v5);

        tmp0 = _mm256_shuffle_epi32(rhs12_15, 0);
        tmp1 = _mm256_shuffle_epi32(rhs12_15, 0x55);
        process_column(tmp0, tmp1, accum_data_v6);
        tmp2 = _mm256_shuffle_epi32(rhs12_15, 0xaa);
        tmp3 = _mm256_shuffle_epi32(rhs12_15, 0xff);
        process_column(tmp2, tmp3, accum_data_v7);

        lhs_ptr += kAvx8bitBlockSize * kAvx8bitInnerSize;
        rhs_ptr = static_cast<const void*>(
            static_cast<const char*>(rhs_ptr) +
            kAvx8bitBlockSize * kAvx8bitInnerSize * params.rhs_scalar_size);
      }

      if (params.dst_type_id != DstTypeId<std::int32_t>::kValue) {
        __m256i m_vector;
        __m256i e_vector;
        // Does not make use of RUY_ASM_FLAG_NEEDS_LEFT_SHIFT.
        m_vector = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(
            params.multiplier_fixedpoint + multiplier_channel));
        e_vector = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(
            params.multiplier_exponent + multiplier_channel));

        const __m256i m_64bit_low =
            _mm256_cvtepi32_epi64(_mm256_extracti128_si256(m_vector, 0));
        const __m256i m_64bit_high =
            _mm256_cvtepi32_epi64(_mm256_extracti128_si256(m_vector, 1));

        const __m256i zero_vector = _mm256_setzero_si256();
        const __m256i left_shift = _mm256_max_epi32(e_vector, zero_vector);
        const __m256i neg_e_vector = _mm256_sub_epi32(zero_vector, e_vector);
        const __m256i right_shift = _mm256_max_epi32(neg_e_vector, zero_vector);
        const __m256i final_right_shift = _mm256_set1_epi32(31);
        const __m256i final_right_shift_low = _mm256_cvtepi32_epi64(
            _mm256_extracti128_si256(final_right_shift, 0));
        const __m256i final_right_shift_high = _mm256_cvtepi32_epi64(
            _mm256_extracti128_si256(final_right_shift, 1));
        const __m256i convert_to_unsigned_64 =
            _mm256_set1_epi64x(0x8000000000000000);

        __m256i post_scaling_offset = _mm256_setzero_si256();
        // A "half" added for rounding prior to truncation of 64-bit value.
        const __m256i offset_vector = _mm256_add_epi64(
            _mm256_slli_epi64(_mm256_set1_epi64x(1), 30),
            convert_to_unsigned_64);

        if (params.dst_zero_point) {
          post_scaling_offset = _mm256_set1_epi32(params.dst_zero_point);
        }

        const __m256i repack_perm = _mm256_setr_epi32(0, 2, 4, 6, 1, 3, 5, 7);

        // We cannot do
        //
        // scaled_v_low =
        //     _mm256_srav_epi64(scaled_v_low, final_right_shift_low);
        // scaled_v_high =
        //     _mm256_srav_epi64(scaled_v_high, final_right_shift_high);
        //
        // since this instruction is not in AVX2. Instead we use
        // _mm256_srlv_epi64, but this is an unsigned shift, so we applied
        // offsets before (convert_to_unsigned_64) and after
        // (convert_to_signed_halved).
        //
        // The overall process is, for 64-bit scaled accumulator:
        // unsigned_accum = signed_accum + 1 << 63;
        // unsigned_accum = (unsigned_accum >> right_shift) >> 31;
        // signed_accum = unsigned_accum - ((1 << 32) >> right_shift) / 2 * 2;

        // There are various ways to repack the results, in the absence of
        // _mm256_cvtepi64_epi32() or anything like it.
        // A.
        // accum_data_v[j] =
        //     _mm256_set_epi32(_mm256_extract_epi32(scaled_v_high, 6),
        //                      _mm256_extract_epi32(scaled_v_high, 4),
        //                      _mm256_extract_epi32(scaled_v_high, 2),
        //                      _mm256_extract_epi32(scaled_v_high, 0),
        //                      _mm256_extract_epi32(scaled_v_low, 6),
        //                      _mm256_extract_epi32(scaled_v_low, 4),
        //                      _mm256_extract_epi32(scaled_v_low, 2),
        //                      _mm256_extract_epi32(scaled_v_low, 0));
        // B.
        // scaled_v_low = _mm256_shuffle_epi32(scaled_v_low, 0xd8);
        // scaled_v_high = _mm256_shuffle_epi32(scaled_v_high, 0xd8);
        // accum_data_v[j] =
        //     _mm256_set_epi64x(_mm256_extract_epi64(scaled_v_high, 2),
        //                       _mm256_extract_epi64(scaled_v_high, 0),
        //                       _mm256_extract_epi64(scaled_v_low, 2),
        //                       _mm256_extract_epi64(scaled_v_low, 0));
        // C.
        // scaled_v_low =
        //     _mm256_permutevar8x32_epi32(scaled_v_low, repack_perm);
        // scaled_v_high =
        //     _mm256_permutevar8x32_epi32(scaled_v_high, repack_perm);
        // accum_data_v[j] =
        //     _mm256_permute2x128_si256(scaled_v_low, scaled_v_high, 0x20);
        //
        // However, we choose the following because it uses two lighter
        // instructions. The permutation does have a longer latency, but this
        // loop can be unrolled.
        // D.
        // scaled_v_high = _mm256_slli_epi64(scaled_v_high, 32);
        // __m256i results =
        //     _mm256_blend_epi32(scaled_v_low, scaled_v_high, 0xaa);
        // results = _mm256_permutevar8x32_epi32(results, repack_perm);
        // accum_data_v[j] = _mm256_add_epi32(results, post_scaling_offset);

        // This multiplier code is complex and expensive enough on x86, that
        // we prefer to implement the channels-are-columns case by transposing
        // around it, rather than duplicate it (which would also require
        // duplicating the above code computing the multiplier constants).
        // This is one instance where channels-are-columns has lower performance
        // than channels-are-rows.
        const bool transpose_around_multiplier =
            (params.flags & RUY_ASM_FLAG_HAS_PERCHANNEL) &&
            (params.flags & RUY_ASM_FLAG_CHANNEL_DIMENSION_IS_COL);
        if (transpose_around_multiplier) {
          // Transpose the 8x8 accumulators block. Will be un-transposed below
          // after the multplier implementation.
          intrin_utils::mm256_transpose8x8_epi32<path>(
              &accum_data_v0, &accum_data_v1, &accum_data_v2, &accum_data_v3,
              &accum_data_v4, &accum_data_v5, &accum_data_v6, &accum_data_v7);
        }

        auto rounding_right_shift = [=](__m256i& results,
                                        const __m256i& exponent) {
          // Construct the "nudge" value for each lane if the exponent is
          // greater than 0. Otherwise, the nudge is 0.
          const __m256i zeros = _mm256_setzero_si256();
          const __m256i mask_rightshift_gtz =
              _mm256_cmpgt_epi32(exponent, zeros);
          const __m256i one_shift_exp_minus1 = _mm256_sllv_epi32(
              _mm256_set1_epi32(1),
              _mm256_sub_epi32(exponent, _mm256_set1_epi32(1)));
          __m256i nudge = intrin_utils::mm256_blendv_epi32(
              zeros, one_shift_exp_minus1, mask_rightshift_gtz);
          // Calculate the shifted sum (results + nudge) >> exp.
          const __m256i r_plus_nudge = _mm256_add_epi32(results, nudge);
          const __m256i shifted_sum = _mm256_srav_epi32(r_plus_nudge, exponent);

          // Identify overflow in each lane and create mask.
          const __m256i one_shift_31minus_exp = _mm256_sllv_epi32(
              _mm256_set1_epi32(1),
              _mm256_sub_epi32(_mm256_set1_epi32(31), exponent));
          const __m256i mask_num_plus_nudge_overflow = _mm256_cmpgt_epi32(
              results, _mm256_sub_epi32(_mm256_set1_epi32(0x7fffffff), nudge));
          // Fill results with either (results + nudge) >> exponent or
          // 1 << (31 - exp) in the case of overflow.
          results = intrin_utils::mm256_blendv_epi32(
              shifted_sum, one_shift_31minus_exp, mask_num_plus_nudge_overflow);
        };

        auto apply_multiplier = [=](__m256i& accum) {
          __m256i shifted_accum = _mm256_sllv_epi32(accum, left_shift);
          // Apply the fixed-point part of the multiplier.
          __m256i scaled_v_low = _mm256_mul_epi32(
              _mm256_cvtepi32_epi64(_mm256_extracti128_si256(shifted_accum, 0)),
              m_64bit_low);
          __m256i scaled_v_high = _mm256_mul_epi32(
              _mm256_cvtepi32_epi64(_mm256_extracti128_si256(shifted_accum, 1)),
              m_64bit_high);

          scaled_v_low = _mm256_add_epi64(scaled_v_low, offset_vector);
          scaled_v_high = _mm256_add_epi64(scaled_v_high, offset_vector);

          scaled_v_low = _mm256_srlv_epi64(scaled_v_low, final_right_shift_low);
          scaled_v_high =
              _mm256_srlv_epi64(scaled_v_high, final_right_shift_high);

          scaled_v_high = _mm256_slli_epi64(scaled_v_high, 32);
          __m256i results =
              _mm256_blend_epi32(scaled_v_low, scaled_v_high, 0xaa);
          results = _mm256_permutevar8x32_epi32(results, repack_perm);
          // Now do a Rounding Right Shift.
          rounding_right_shift(results, right_shift);
          accum = _mm256_add_epi32(results, post_scaling_offset);
        };
        apply_multiplier(accum_data_v0);
        apply_multiplier(accum_data_v1);
        apply_multiplier(accum_data_v2);
        apply_multiplier(accum_data_v3);
        apply_multiplier(accum_data_v4);
        apply_multiplier(accum_data_v5);
        apply_multiplier(accum_data_v6);
        apply_multiplier(accum_data_v7);
        // See above comment: here we transpose again to undo the transposition
        // of the 8x8 block of accumulators used to implement the
        // channels-are-columns case.
        if (transpose_around_multiplier) {
          intrin_utils::mm256_transpose8x8_epi32<path>(
              &accum_data_v0, &accum_data_v1, &accum_data_v2, &accum_data_v3,
              &accum_data_v4, &accum_data_v5, &accum_data_v6, &accum_data_v7);
        }
      }
      const __m256i clamp_max_v = _mm256_set1_epi32(params.clamp_max);
      const __m256i clamp_min_v = _mm256_set1_epi32(params.clamp_min);
      const bool store_full_block = (residual_rows == kAvx8bitBlockSize) &&
                                    (residual_cols == kAvx8bitBlockSize);

      __m256i accum_data_v[kAvx8bitBlockSize];
      if (!store_full_block) {
        accum_data_v[0] = accum_data_v0;
        accum_data_v[1] = accum_data_v1;
        accum_data_v[2] = accum_data_v2;
        accum_data_v[3] = accum_data_v3;
        accum_data_v[4] = accum_data_v4;
        accum_data_v[5] = accum_data_v5;
        accum_data_v[6] = accum_data_v6;
        accum_data_v[7] = accum_data_v7;
      }

      if (params.dst_type_id == DstTypeId<std::int8_t>::kValue) {
        std::int8_t* tmp_ptr = static_cast<std::int8_t*>(dst_ptr);
        if (store_full_block) {
          accum_data_v0 = _mm256_min_epi32(accum_data_v0, clamp_max_v);
          accum_data_v0 = _mm256_max_epi32(accum_data_v0, clamp_min_v);
          accum_data_v1 = _mm256_min_epi32(accum_data_v1, clamp_max_v);
          accum_data_v1 = _mm256_max_epi32(accum_data_v1, clamp_min_v);
          accum_data_v2 = _mm256_min_epi32(accum_data_v2, clamp_max_v);
          accum_data_v2 = _mm256_max_epi32(accum_data_v2, clamp_min_v);
          accum_data_v3 = _mm256_min_epi32(accum_data_v3, clamp_max_v);
          accum_data_v3 = _mm256_max_epi32(accum_data_v3, clamp_min_v);
          accum_data_v4 = _mm256_min_epi32(accum_data_v4, clamp_max_v);
          accum_data_v4 = _mm256_max_epi32(accum_data_v4, clamp_min_v);
          accum_data_v5 = _mm256_min_epi32(accum_data_v5, clamp_max_v);
          accum_data_v5 = _mm256_max_epi32(accum_data_v5, clamp_min_v);
          accum_data_v6 = _mm256_min_epi32(accum_data_v6, clamp_max_v);
          accum_data_v6 = _mm256_max_epi32(accum_data_v6, clamp_min_v);
          accum_data_v7 = _mm256_min_epi32(accum_data_v7, clamp_max_v);
          accum_data_v7 = _mm256_max_epi32(accum_data_v7, clamp_min_v);
          intrin_utils::mm256_storeu_cvtepi32_epi8<path>(
              &tmp_ptr[0 * dst_stride], accum_data_v0);
          intrin_utils::mm256_storeu_cvtepi32_epi8<path>(
              &tmp_ptr[1 * dst_stride], accum_data_v1);
          intrin_utils::mm256_storeu_cvtepi32_epi8<path>(
              &tmp_ptr[2 * dst_stride], accum_data_v2);
          intrin_utils::mm256_storeu_cvtepi32_epi8<path>(
              &tmp_ptr[3 * dst_stride], accum_data_v3);
          intrin_utils::mm256_storeu_cvtepi32_epi8<path>(
              &tmp_ptr[4 * dst_stride], accum_data_v4);
          intrin_utils::mm256_storeu_cvtepi32_epi8<path>(
              &tmp_ptr[5 * dst_stride], accum_data_v5);
          intrin_utils::mm256_storeu_cvtepi32_epi8<path>(
              &tmp_ptr[6 * dst_stride], accum_data_v6);
          intrin_utils::mm256_storeu_cvtepi32_epi8<path>(
              &tmp_ptr[7 * dst_stride], accum_data_v7);
        } else {
          for (int j = 0; j < residual_cols; ++j) {
            __m256i result = accum_data_v[j];
            result = _mm256_min_epi32(result, clamp_max_v);
            result = _mm256_max_epi32(result, clamp_min_v);
            intrin_utils::mm256_n_storeu_cvtepi32_epi8<path>(
                tmp_ptr, residual_rows, result);
            tmp_ptr += dst_stride;
          }
        }
        dst_ptr = static_cast<void*>(static_cast<std::int8_t*>(dst_ptr) +
                                     kAvx8bitBlockSize);
      } else if (params.dst_type_id == DstTypeId<std::uint8_t>::kValue) {
        std::uint8_t* tmp_ptr = static_cast<std::uint8_t*>(dst_ptr);
        if (store_full_block) {
          accum_data_v0 = _mm256_min_epi32(accum_data_v0, clamp_max_v);
          accum_data_v0 = _mm256_max_epi32(accum_data_v0, clamp_min_v);
          accum_data_v1 = _mm256_min_epi32(accum_data_v1, clamp_max_v);
          accum_data_v1 = _mm256_max_epi32(accum_data_v1, clamp_min_v);
          accum_data_v2 = _mm256_min_epi32(accum_data_v2, clamp_max_v);
          accum_data_v2 = _mm256_max_epi32(accum_data_v2, clamp_min_v);
          accum_data_v3 = _mm256_min_epi32(accum_data_v3, clamp_max_v);
          accum_data_v3 = _mm256_max_epi32(accum_data_v3, clamp_min_v);
          accum_data_v4 = _mm256_min_epi32(accum_data_v4, clamp_max_v);
          accum_data_v4 = _mm256_max_epi32(accum_data_v4, clamp_min_v);
          accum_data_v5 = _mm256_min_epi32(accum_data_v5, clamp_max_v);
          accum_data_v5 = _mm256_max_epi32(accum_data_v5, clamp_min_v);
          accum_data_v6 = _mm256_min_epi32(accum_data_v6, clamp_max_v);
          accum_data_v6 = _mm256_max_epi32(accum_data_v6, clamp_min_v);
          accum_data_v7 = _mm256_min_epi32(accum_data_v7, clamp_max_v);
          accum_data_v7 = _mm256_max_epi32(accum_data_v7, clamp_min_v);
          intrin_utils::mm256_storeu_cvtepi32_epi8<path>(&tmp_ptr[0],
                                                         accum_data_v0);
          intrin_utils::mm256_storeu_cvtepi32_epi8<path>(&tmp_ptr[dst_stride],
                                                         accum_data_v1);
          intrin_utils::mm256_storeu_cvtepi32_epi8<path>(
              &tmp_ptr[2 * dst_stride], accum_data_v2);
          intrin_utils::mm256_storeu_cvtepi32_epi8<path>(
              &tmp_ptr[3 * dst_stride], accum_data_v3);
          intrin_utils::mm256_storeu_cvtepi32_epi8<path>(
              &tmp_ptr[4 * dst_stride], accum_data_v4);
          intrin_utils::mm256_storeu_cvtepi32_epi8<path>(
              &tmp_ptr[5 * dst_stride], accum_data_v5);
          intrin_utils::mm256_storeu_cvtepi32_epi8<path>(
              &tmp_ptr[6 * dst_stride], accum_data_v6);
          intrin_utils::mm256_storeu_cvtepi32_epi8<path>(
              &tmp_ptr[7 * dst_stride], accum_data_v7);
        } else {
          for (int j = 0; j < residual_cols; ++j) {
            __m256i result = accum_data_v[j];
            result = _mm256_min_epi32(result, clamp_max_v);
            result = _mm256_max_epi32(result, clamp_min_v);
            intrin_utils::mm256_n_storeu_cvtepi32_epi8<path>(
                tmp_ptr, residual_rows, result);
            tmp_ptr += dst_stride;
          }
        }
        dst_ptr = static_cast<void*>(static_cast<std::uint8_t*>(dst_ptr) +
                                     kAvx8bitBlockSize);
      } else if (params.dst_type_id == DstTypeId<std::int16_t>::kValue) {
        std::int16_t* tmp_ptr = static_cast<std::int16_t*>(dst_ptr);
        if (store_full_block) {
          accum_data_v0 = _mm256_min_epi32(accum_data_v0, clamp_max_v);
          accum_data_v0 = _mm256_max_epi32(accum_data_v0, clamp_min_v);
          accum_data_v1 = _mm256_min_epi32(accum_data_v1, clamp_max_v);
          accum_data_v1 = _mm256_max_epi32(accum_data_v1, clamp_min_v);
          accum_data_v2 = _mm256_min_epi32(accum_data_v2, clamp_max_v);
          accum_data_v2 = _mm256_max_epi32(accum_data_v2, clamp_min_v);
          accum_data_v3 = _mm256_min_epi32(accum_data_v3, clamp_max_v);
          accum_data_v3 = _mm256_max_epi32(accum_data_v3, clamp_min_v);
          accum_data_v4 = _mm256_min_epi32(accum_data_v4, clamp_max_v);
          accum_data_v4 = _mm256_max_epi32(accum_data_v4, clamp_min_v);
          accum_data_v5 = _mm256_min_epi32(accum_data_v5, clamp_max_v);
          accum_data_v5 = _mm256_max_epi32(accum_data_v5, clamp_min_v);
          accum_data_v6 = _mm256_min_epi32(accum_data_v6, clamp_max_v);
          accum_data_v6 = _mm256_max_epi32(accum_data_v6, clamp_min_v);
          accum_data_v7 = _mm256_min_epi32(accum_data_v7, clamp_max_v);
          accum_data_v7 = _mm256_max_epi32(accum_data_v7, clamp_min_v);
          intrin_utils::mm256_storeu_cvtepi32_epi16<path>(&tmp_ptr[0],
                                                          accum_data_v0);
          intrin_utils::mm256_storeu_cvtepi32_epi16<path>(&tmp_ptr[dst_stride],
                                                          accum_data_v1);
          intrin_utils::mm256_storeu_cvtepi32_epi16<path>(
              &tmp_ptr[2 * dst_stride], accum_data_v2);
          intrin_utils::mm256_storeu_cvtepi32_epi16<path>(
              &tmp_ptr[3 * dst_stride], accum_data_v3);
          intrin_utils::mm256_storeu_cvtepi32_epi16<path>(
              &tmp_ptr[4 * dst_stride], accum_data_v4);
          intrin_utils::mm256_storeu_cvtepi32_epi16<path>(
              &tmp_ptr[5 * dst_stride], accum_data_v5);
          intrin_utils::mm256_storeu_cvtepi32_epi16<path>(
              &tmp_ptr[6 * dst_stride], accum_data_v6);
          intrin_utils::mm256_storeu_cvtepi32_epi16<path>(
              &tmp_ptr[7 * dst_stride], accum_data_v7);
        } else {
          for (int j = 0; j < residual_cols; ++j) {
            __m256i result = accum_data_v[j];
            result = _mm256_min_epi32(result, clamp_max_v);
            result = _mm256_max_epi32(result, clamp_min_v);
            intrin_utils::mm256_n_storeu_cvtepi32_epi16<path>(
                tmp_ptr, residual_rows, result);
            tmp_ptr += dst_stride;
          }
        }
        dst_ptr = static_cast<void*>(static_cast<std::int16_t*>(dst_ptr) +
                                     kAvx8bitBlockSize);
      } else if (params.dst_type_id == DstTypeId<std::int32_t>::kValue) {
        if (store_full_block) {
          std::int32_t* tmp_ptr = static_cast<std::int32_t*>(dst_ptr);
          intrin_utils::mm256_storeu_epi32<path>(&tmp_ptr[0], accum_data_v0);
          intrin_utils::mm256_storeu_epi32<path>(&tmp_ptr[dst_stride],
                                                 accum_data_v1);
          intrin_utils::mm256_storeu_epi32<path>(&tmp_ptr[2 * dst_stride],
                                                 accum_data_v2);
          intrin_utils::mm256_storeu_epi32<path>(&tmp_ptr[3 * dst_stride],
                                                 accum_data_v3);
          intrin_utils::mm256_storeu_epi32<path>(&tmp_ptr[4 * dst_stride],
                                                 accum_data_v4);
          intrin_utils::mm256_storeu_epi32<path>(&tmp_ptr[5 * dst_stride],
                                                 accum_data_v5);
          intrin_utils::mm256_storeu_epi32<path>(&tmp_ptr[6 * dst_stride],
                                                 accum_data_v6);
          intrin_utils::mm256_storeu_epi32<path>(&tmp_ptr[7 * dst_stride],
                                                 accum_data_v7);
        } else {
          std::int32_t* dst_block_ptr = static_cast<std::int32_t*>(dst_ptr);
          for (int j = 0; j < residual_cols; ++j) {
            intrin_utils::mm256_n_storeu_epi32<path>(
                dst_block_ptr, residual_rows, accum_data_v[j]);
            dst_block_ptr += dst_stride;
          }
        }
        dst_ptr = static_cast<void*>(static_cast<std::int32_t*>(dst_ptr) +
                                     kAvx8bitBlockSize);
      } else {
        RUY_DCHECK(false);
      }

      lhs_col_ptr += kAvx8bitBlockSize * params.lhs_stride;
    }  // End row-block loop.

    dst_col_ptr = static_cast<void*>(static_cast<char*>(dst_col_ptr) +
                                     kAvx8bitBlockSize * params.dst_stride);
    rhs_col_ptr =
        static_cast<const void*>(static_cast<const char*>(rhs_col_ptr) +
                                 kAvx8bitBlockSize * params.rhs_stride);
  }  // End col-block loop.
}  // NOLINT(readability/fn_size)

void Kernel8bitAvx2(const KernelParams8bit<8, 8>& params) {
  Kernel8bitAvx2Impl<Path::kAvx2Fma>(params);
}

template <Path path>
void Kernel8bitAvx2SingleColImpl(const KernelParams8bit<8, 8>& params) {
  profiler::ScopeLabel label("Kernel kAvx2Fma 8-bit GEMV");

  RUY_DCHECK_EQ(params.dst_cols, 1);
  RUY_DCHECK_EQ(params.last_col, 0);
  RUY_DCHECK_EQ(params.start_col, 0);

  const std::int8_t splitter_idx_data[32] = {
      0, 1, 4, 5, 8,  9,  12, 13,  //
      2, 3, 6, 7, 10, 11, 14, 15,  //
      0, 1, 4, 5, 8,  9,  12, 13,  //
      2, 3, 6, 7, 10, 11, 14, 15   //
  };

  int bias_ptr_block_increment =
      params.flags & RUY_ASM_FLAG_HAS_BIAS ? kAvx8bitBlockSize : 0;

  const std::int8_t* rhs_col_ptr =
      static_cast<const int8_t*>(params.rhs_base_ptr);
  void* dst_col_ptr = params.dst_base_ptr;
  const std::int32_t* bias_col_ptr = params.bias;
  if (params.flags & RUY_ASM_FLAG_HAS_BIAS) {
    bias_col_ptr += params.start_row;
  }

  const std::int8_t* lhs_col_ptr = params.lhs_base_ptr;
  void* dst_ptr = dst_col_ptr;
  const std::int32_t* bias_ptr = bias_col_ptr;

  const std::int32_t lhs_zero_point = params.lhs_zero_point;
  const bool has_rhs_sums_offsets =
      (params.flags & RUY_ASM_FLAG_HAS_RHS_SUMS) && lhs_zero_point;
  std::int32_t rhs_sums_offsets[8];
  if (has_rhs_sums_offsets) {
    const __m256i rhs_sums_offset_v = _mm256_mullo_epi32(
        _mm256_set1_epi32(lhs_zero_point),
        _mm256_loadu_si256(
            reinterpret_cast<__m256i const*>(&params.rhs_sums[0])));
    _mm256_storeu_si256(reinterpret_cast<__m256i*>(rhs_sums_offsets),
                        rhs_sums_offset_v);
  }

  for (int row = params.start_row; row <= params.last_row;
       row += kAvx8bitBlockSize) {
    const int residual_rows =
        std::min(params.dst_rows - row, kAvx8bitBlockSize);

    const __m256i splitter_idx =
        _mm256_loadu_si256(reinterpret_cast<__m256i const*>(splitter_idx_data));

    __m256i accum_data_v0;

    // Initialize with bias.
    __m256i initial_accum_data =
        _mm256_loadu_si256(reinterpret_cast<const __m256i*>(bias_ptr));
    bias_ptr += bias_ptr_block_increment;

    // Adjustments common across columns.
    const std::int32_t rhs_zero_point = params.rhs_zero_point;
    if ((params.flags & RUY_ASM_FLAG_HAS_LHS_SUMS) && rhs_zero_point) {
      const __m256i lhs_sums_offset = _mm256_mullo_epi32(
          _mm256_set1_epi32(rhs_zero_point),
          _mm256_loadu_si256(
              reinterpret_cast<__m256i const*>(&params.lhs_sums[row])));
      initial_accum_data =
          _mm256_sub_epi32(initial_accum_data, lhs_sums_offset);
    }
    const std::int32_t prod_zp_depth = params.prod_zp_depth;
    if (prod_zp_depth) {
      initial_accum_data = _mm256_add_epi32(initial_accum_data,
                                            _mm256_set1_epi32(prod_zp_depth));
    }

    // Adjustments differing across columns.
    if (has_rhs_sums_offsets) {
      accum_data_v0 = _mm256_sub_epi32(initial_accum_data,
                                       _mm256_set1_epi32(rhs_sums_offsets[0]));
    } else {
      accum_data_v0 = initial_accum_data;
    }

    const std::int8_t* lhs_ptr = lhs_col_ptr;
    const std::int8_t* rhs_ptr = rhs_col_ptr;
    for (int d = 0; d < params.depth; d += kAvx8bitInnerSize) {
      const __m256i lhs_data =
          _mm256_load_si256(reinterpret_cast<const __m256i*>(lhs_ptr));
      const __m128i rhs_data_8bit = intrin_utils::mm_loadu_si32<path>(rhs_ptr);

      // Each "int32" is two 16-bit RHS values, sign extended from 8-bit.
      // For simplicity we load 4x the data that we need and process twice the
      // data  that we need  and store only the data we need.
      std::int32_t rhs_data[2];
      const __m128i rhs_16_bit_dup = _mm_cvtepi8_epi16(rhs_data_8bit);
      // Now that we have cast the RHS data, we store it so that each value
      // can be separately loaded in the accumulation loop.
      _mm_storeu_si64(reinterpret_cast<__m128i*>(rhs_data), rhs_16_bit_dup);

      // NOTE: There may be opportunities for permuting the data in the packing
      // code instead of here.
      const __m256i lhs_data_split =
          _mm256_shuffle_epi8(lhs_data, splitter_idx);
      const __m256i lhs_data_split_expand_bottom =
          _mm256_cvtepi8_epi16(_mm256_extracti128_si256(lhs_data_split, 0));
      const __m256i lhs_data_split_expand_top =
          _mm256_cvtepi8_epi16(_mm256_extracti128_si256(lhs_data_split, 1));

      // Take bytes 0, 1, 4, 5, 8, 9, ... expanded to 16-bit.
      const __m256i lhs_16_bit_low = _mm256_permute2x128_si256(
          lhs_data_split_expand_bottom, lhs_data_split_expand_top, 0x20);
      // Take bytes 2, 3, 6, 7, 10, 11, ... expanded to 16-bit.
      const __m256i lhs_16_bit_high = _mm256_permute2x128_si256(
          lhs_data_split_expand_bottom, lhs_data_split_expand_top, 0x31);
      // Accumulate for column 0.
      const std::int32_t low_rhs_value = rhs_data[0];
      const std::int32_t high_rhs_value = rhs_data[1];

      const __m256i rhs_16_bit_dup_low = _mm256_set1_epi32(low_rhs_value);
      const __m256i rhs_16_bit_dup_high = _mm256_set1_epi32(high_rhs_value);

      accum_data_v0 = _mm256_add_epi32(
          accum_data_v0, _mm256_madd_epi16(lhs_16_bit_low, rhs_16_bit_dup_low));
      accum_data_v0 = _mm256_add_epi32(
          accum_data_v0,
          _mm256_madd_epi16(lhs_16_bit_high, rhs_16_bit_dup_high));

      lhs_ptr += kAvx8bitBlockSize * kAvx8bitInnerSize;
      rhs_ptr += kAvx8bitBlockSize * kAvx8bitInnerSize;
    }

    if (params.dst_type_id != DstTypeId<std::int32_t>::kValue) {
      __m256i m_vector;
      __m256i e_vector;
      // Does not make use of RUY_ASM_FLAG_NEEDS_LEFT_SHIFT.
      int channel = (params.flags & RUY_ASM_FLAG_HAS_PERCHANNEL) ? row : 0;
      m_vector = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(
          params.multiplier_fixedpoint + channel));
      e_vector = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(
          params.multiplier_exponent + channel));

      const __m256i m_64bit_low =
          _mm256_cvtepi32_epi64(_mm256_extracti128_si256(m_vector, 0));
      const __m256i m_64bit_high =
          _mm256_cvtepi32_epi64(_mm256_extracti128_si256(m_vector, 1));

      const __m256i zero_vector = _mm256_setzero_si256();
      const __m256i left_shift = _mm256_max_epi32(e_vector, zero_vector);
      const __m256i neg_e_vector = _mm256_sub_epi32(zero_vector, e_vector);
      const __m256i right_shift = _mm256_max_epi32(neg_e_vector, zero_vector);
      const __m256i final_right_shift = _mm256_set1_epi32(31);
      const __m256i final_right_shift_low =
          _mm256_cvtepi32_epi64(_mm256_extracti128_si256(final_right_shift, 0));
      const __m256i final_right_shift_high =
          _mm256_cvtepi32_epi64(_mm256_extracti128_si256(final_right_shift, 1));
      const __m256i convert_to_unsigned_64 =
          _mm256_set1_epi64x(0x8000000000000000);

      __m256i post_scaling_offset = _mm256_setzero_si256();
      // A "half" added for rounding prior to truncation of 64-bit value.
      const __m256i offset_vector = _mm256_add_epi64(
          _mm256_slli_epi64(_mm256_set1_epi64x(1), 30),
          convert_to_unsigned_64);

      if (params.dst_zero_point) {
        post_scaling_offset = _mm256_set1_epi32(params.dst_zero_point);
      }

      const __m256i repack_perm = _mm256_setr_epi32(0, 2, 4, 6, 1, 3, 5, 7);

      // See GEMM version for details of this process.
      {
        __m256i shifted_accum = _mm256_sllv_epi32(accum_data_v0, left_shift);
        // Apply the fixed-point part of the multiplier.
        __m256i scaled_v_low = _mm256_mul_epi32(
            _mm256_cvtepi32_epi64(_mm256_extracti128_si256(shifted_accum, 0)),
            m_64bit_low);
        __m256i scaled_v_high = _mm256_mul_epi32(
            _mm256_cvtepi32_epi64(_mm256_extracti128_si256(shifted_accum, 1)),
            m_64bit_high);

        scaled_v_low = _mm256_add_epi64(scaled_v_low, offset_vector);
        scaled_v_high = _mm256_add_epi64(scaled_v_high, offset_vector);

        scaled_v_low = _mm256_srlv_epi64(scaled_v_low, final_right_shift_low);
        scaled_v_high =
            _mm256_srlv_epi64(scaled_v_high, final_right_shift_high);

        scaled_v_high = _mm256_slli_epi64(scaled_v_high, 32);
        __m256i results = _mm256_blend_epi32(scaled_v_low, scaled_v_high, 0xaa);
        results = _mm256_permutevar8x32_epi32(results, repack_perm);

        // Now do a Rounding Right Shift.
        // First, construct the nudge value for each lane.
        const __m256i zeros = _mm256_setzero_si256();
        const __m256i mask_rightshift_gtz =
            _mm256_cmpgt_epi32(right_shift, zeros);
        const __m256i one_shift_exp_minus1 = _mm256_sllv_epi32(
            _mm256_set1_epi32(1),
            _mm256_sub_epi32(right_shift, _mm256_set1_epi32(1)));
        __m256i nudge = intrin_utils::mm256_blendv_epi32(
            zeros, one_shift_exp_minus1, mask_rightshift_gtz);
        // Calculate the shifted sum (results + nudge) >> exp.
        const __m256i r_plus_nudge = _mm256_add_epi32(results, nudge);
        const __m256i shifted_sum =
            _mm256_srav_epi32(r_plus_nudge, right_shift);

        // Identify overflow in each lane and create mask.
        const __m256i one_shift_31minus_exp = _mm256_sllv_epi32(
            _mm256_set1_epi32(1),
            _mm256_sub_epi32(_mm256_set1_epi32(31), right_shift));
        const __m256i mask_num_plus_nudge_overflow = _mm256_cmpgt_epi32(
            results, _mm256_sub_epi32(_mm256_set1_epi32(0x7fffffff), nudge));
        // Fill results with either (results + nudge) >> exponent or
        // 1 << (31 - exp) in the case of overflow.
        results = intrin_utils::mm256_blendv_epi32(
            shifted_sum, one_shift_31minus_exp, mask_num_plus_nudge_overflow);

        accum_data_v0 = _mm256_add_epi32(results, post_scaling_offset);
      }
    }
    const __m256i clamp_max_v = _mm256_set1_epi32(params.clamp_max);
    const __m256i clamp_min_v = _mm256_set1_epi32(params.clamp_min);

    if (params.dst_type_id == DstTypeId<std::int8_t>::kValue) {
      std::int8_t* tmp_ptr = static_cast<std::int8_t*>(dst_ptr);
      __m256i result = accum_data_v0;
      result = _mm256_min_epi32(result, clamp_max_v);
      result = _mm256_max_epi32(result, clamp_min_v);
      intrin_utils::mm256_n_storeu_cvtepi32_epi8<path>(tmp_ptr, residual_rows,
                                                       result);
      dst_ptr = static_cast<void*>(static_cast<std::int8_t*>(dst_ptr) +
                                   kAvx8bitBlockSize);
    } else if (params.dst_type_id == DstTypeId<std::uint8_t>::kValue) {
      std::uint8_t* tmp_ptr = static_cast<std::uint8_t*>(dst_ptr);
      __m256i result = accum_data_v0;
      result = _mm256_min_epi32(result, clamp_max_v);
      result = _mm256_max_epi32(result, clamp_min_v);
      intrin_utils::mm256_n_storeu_cvtepi32_epi8<path>(tmp_ptr, residual_rows,
                                                       result);
      dst_ptr = static_cast<void*>(static_cast<std::uint8_t*>(dst_ptr) +
                                   kAvx8bitBlockSize);
    } else if (params.dst_type_id == DstTypeId<std::int16_t>::kValue) {
      std::int16_t* tmp_ptr = static_cast<std::int16_t*>(dst_ptr);
      __m256i result = accum_data_v0;
      result = _mm256_min_epi32(result, clamp_max_v);
      result = _mm256_max_epi32(result, clamp_min_v);
      intrin_utils::mm256_n_storeu_cvtepi32_epi16<path>(tmp_ptr, residual_rows,
                                                        result);
      dst_ptr = static_cast<void*>(static_cast<std::int16_t*>(dst_ptr) +
                                   kAvx8bitBlockSize);
    } else if (params.dst_type_id == DstTypeId<std::int32_t>::kValue) {
      std::int32_t* dst_block_ptr = static_cast<std::int32_t*>(dst_ptr);
      intrin_utils::mm256_n_storeu_epi32<path>(dst_block_ptr, residual_rows,
                                               accum_data_v0);
      dst_ptr = static_cast<void*>(static_cast<std::int32_t*>(dst_ptr) +
                                   kAvx8bitBlockSize);
    } else {
      RUY_DCHECK(false);
    }

    lhs_col_ptr += kAvx8bitBlockSize * params.lhs_stride;
  }  // End row-block loop.

  dst_col_ptr = static_cast<void*>(static_cast<char*>(dst_col_ptr) +
                                   kAvx8bitBlockSize * params.dst_stride);
  rhs_col_ptr += kAvx8bitBlockSize * params.rhs_stride;
}  // NOLINT(readability/fn_size)

void Kernel8bitAvx2SingleCol(const KernelParams8bit<8, 8>& params) {
  Kernel8bitAvx2SingleColImpl<Path::kAvx2Fma>(params);
}

void KernelFloatAvx2(const KernelParamsFloat<8, 8>& params) {
  profiler::ScopeLabel label("Kernel kAvx2Fma float");
  KernelFloatAvxCommon<Path::kAvx2Fma>(params);
}

void KernelFloatAvx2SingleCol(const KernelParamsFloat<8, 8>& params) {
  profiler::ScopeLabel label("Kernel kAvx2Fma float GEMV");
  KernelFloatAvxCommonSingleCol<Path::kAvx2Fma>(params);
}

#endif  //  RUY_PLATFORM_AVX2_FMA && RUY_OPT(ASM)

}  // namespace ruy