Welcome to mirror list, hosted at ThFree Co, Russian Federation.

sha1.cpp « RarAES « Crypto « 7zip - github.com/kornelski/7z.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 4e76de9ff9650ae0d7fdb2d1cfa3b3bf594822ed (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
// sha1.cpp
// This file is based on public domain 
// Steve Reid and Wei Dai's code from Crypto++

#include "StdAfx.h"

#include "sha1.h"

static inline UInt32 rotlFixed(UInt32 x, int n)
{
	return (x << n) | (x >> (32 - n));
}

#define blk0(i) (W[i] = data[i])
#define blk1(i) (W[i&15] = rotlFixed(W[(i+13)&15]^W[(i+8)&15]^W[(i+2)&15]^W[i&15],1))

#define f1(x,y,z) (z^(x&(y^z)))
#define f2(x,y,z) (x^y^z)
#define f3(x,y,z) ((x&y)|(z&(x|y)))
#define f4(x,y,z) (x^y^z)

/* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */
#define R0(v,w,x,y,z,i) z+=f1(w,x,y)+blk0(i)+0x5A827999+rotlFixed(v,5);w=rotlFixed(w,30);
#define R1(v,w,x,y,z,i) z+=f1(w,x,y)+blk1(i)+0x5A827999+rotlFixed(v,5);w=rotlFixed(w,30);
#define R2(v,w,x,y,z,i) z+=f2(w,x,y)+blk1(i)+0x6ED9EBA1+rotlFixed(v,5);w=rotlFixed(w,30);
#define R3(v,w,x,y,z,i) z+=f3(w,x,y)+blk1(i)+0x8F1BBCDC+rotlFixed(v,5);w=rotlFixed(w,30);
#define R4(v,w,x,y,z,i) z+=f4(w,x,y)+blk1(i)+0xCA62C1D6+rotlFixed(v,5);w=rotlFixed(w,30);


/* Hash a single 512-bit block. This is the core of the algorithm. */

void CSHA1::Transform(UInt32 data[16], bool returnRes)
{
  UInt32 a, b, c, d, e;
	UInt32 W[16];

  /* Copy context->m_State[] to working vars */
  a = m_State[0];
  b = m_State[1];
  c = m_State[2];
  d = m_State[3];
  e = m_State[4];
  /* 4 rounds of 20 operations each. Loop unrolled. */
  R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
  R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
  R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
  R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
  R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
  R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
  R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
  R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
  R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
  R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
  R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
  R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
  R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
  R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
  R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
  R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
  R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
  R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
  R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
  R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
  /* Add the working vars back into context.m_State[] */
  m_State[0] += a;
  m_State[1] += b;
  m_State[2] += c;
  m_State[3] += d;
  m_State[4] += e;
  if (returnRes)
    for (int i = 0 ; i < 16; i++)
      data[i] = W[i];
  
  /* Wipe variables */
  a = b = c = d = e = 0;
}  


void CSHA1::Init()
{
  m_State[0] = 0x67452301;
  m_State[1] = 0xEFCDAB89;
  m_State[2] = 0x98BADCFE;
  m_State[3] = 0x10325476;
  m_State[4] = 0xC3D2E1F0;
  m_Count = 0;
}


void CSHA1::WriteByteBlock(bool returnRes)
{
  UInt32 data32[16];
  int i;
  for (i = 0; i < 16; i++)
  {
    data32[i] = 
      (UInt32(_buffer[i * 4 + 0]) << 24) +
      (UInt32(_buffer[i * 4 + 1]) << 16) +
      (UInt32(_buffer[i * 4 + 2]) <<  8) +
       UInt32(_buffer[i * 4 + 3]);
  }
  Transform(data32, returnRes);
  if (returnRes)
    for (i = 0; i < 16; i++)
    {
      UInt32 d = data32[i];
      _buffer[i * 4 + 0] = (Byte)(d >>  0);
      _buffer[i * 4 + 1] = (Byte)(d >>  8);
      _buffer[i * 4 + 2] = (Byte)(d >> 16);
      _buffer[i * 4 + 3] = (Byte)(d >> 24);
    }
}

void CSHA1::Update(Byte *data, size_t size, bool rar350Mode)
{
  bool returnRes = false;
  UInt32 curBufferPos = UInt32(m_Count) & 0x3F;
  while (size > 0)
  {
    while(curBufferPos < 64 && size > 0)
    {
      _buffer[curBufferPos++] = *data++;
      m_Count++;
      size--;
    }
    if (curBufferPos == 64)
    {
      curBufferPos = 0;
      WriteByteBlock(returnRes);
      if (returnRes)
        for (int i = 0; i < 64; i++)
          data[i - 64] = _buffer[i];
      returnRes = rar350Mode;
    }
  }
}

void CSHA1::Final(Byte *digest)
{
  UInt64 lenInBits = (m_Count << 3);
  UInt32 curBufferPos = UInt32(m_Count) & 0x3F;
  _buffer[curBufferPos++] = 0x80;
  while (curBufferPos != (64 - 8))
  {
    curBufferPos &= 0x3F;
    if (curBufferPos == 0)
      WriteByteBlock();
    _buffer[curBufferPos++] = 0;
  }
  int i;
  for (i = 0; i < 8; i++)
  {
    _buffer[curBufferPos++] = Byte(lenInBits >> 56);
    lenInBits <<= 8;
  }
  WriteByteBlock();

  for (i = 0; i < 5; i++) 
  {
    UInt32 state = m_State[i] & 0xffffffff;
    *digest++ = state >> 24;
    *digest++ = state >> 16;
    *digest++ = state >> 8;
    *digest++ = state;
  }
  Init();
}