Welcome to mirror list, hosted at ThFree Co, Russian Federation.

WzAES.cpp « WzAES « Crypto « 7zip « CPP - github.com/kornelski/7z.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 8bf53b43a778f44e8e7201579f5748c8cecb9d3d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
// WzAES.cpp
/*
This code implements Brian Gladman's scheme 
specified in password Based File Encryption Utility.
*/

#include "StdAfx.h"

#include "Windows/Defs.h"
#include "../../Common/StreamObjects.h"
#include "../../Common/StreamUtils.h"
#include "../Hash/Pbkdf2HmacSha1.h"
#include "../Hash/RandGen.h"

#include "WzAES.h"

#ifdef CRYPTO_AES
#include "../AES/MyAES.h"
#else
extern void GetCryptoFolderPrefix(TCHAR *path);
#endif

// define it if you don't want to use speed-optimized version of Pbkdf2HmacSha1
// #define _NO_WZAES_OPTIMIZATIONS

namespace NCrypto {
namespace NWzAES {

const unsigned int kAesKeySizeMax = 32;

static const UInt32 kNumKeyGenIterations = 1000;

STDMETHODIMP CBaseCoder::CryptoSetPassword(const Byte *data, UInt32 size)
{
  if(size > kPasswordSizeMax)
    return E_INVALIDARG;
  _key.Password.SetCapacity(size);
  memcpy(_key.Password, data, size);
  return S_OK;
}

void CBaseCoder::EncryptData(Byte *data, UInt32 size)
{   
  unsigned int pos = _blockPos;
  for (; size > 0; size--)
  {
    if (pos == kAesBlockSize)
    {   
      int j;
      for (j = 0; j < 8 && ++_counter[j] == 0; j++);
      for (j = 0; j < 8; j++)
        _buffer[j] = _counter[j];
      for (; j < kAesBlockSize; j++)
        _buffer[j] = 0;
      _aesFilter->Filter(_buffer, kAesBlockSize);
      pos = 0;
    }
    *data++ ^= _buffer[pos++];
  }
  _blockPos = pos;
}

#ifndef _NO_WZAES_OPTIMIZATIONS

static void BytesToBeUInt32s(const Byte *src, UInt32 *dest, int destSize)
{
  for (int i = 0 ; i < destSize; i++)
      dest[i] = 
          ((UInt32)(src[i * 4 + 0]) << 24) |
          ((UInt32)(src[i * 4 + 1]) << 16) |
          ((UInt32)(src[i * 4 + 2]) <<  8) |
          ((UInt32)(src[i * 4 + 3]));
}

#endif

STDMETHODIMP CBaseCoder::Init()
{
  UInt32 keySize = _key.GetKeySize();
  UInt32 keysTotalSize = 2 * keySize + kPwdVerifCodeSize;
  Byte buf[2 * kAesKeySizeMax + kPwdVerifCodeSize];
  
  // for (int ii = 0; ii < 1000; ii++)
  {
    #ifdef _NO_WZAES_OPTIMIZATIONS

    NSha1::Pbkdf2Hmac(
      _key.Password, _key.Password.GetCapacity(), 
      _key.Salt, _key.GetSaltSize(),
      kNumKeyGenIterations, 
      buf, keysTotalSize);

    #else

    UInt32 buf32[(2 * kAesKeySizeMax + kPwdVerifCodeSize + 3) / 4];
    UInt32 key32SizeTotal = (keysTotalSize + 3) / 4;
    UInt32 salt[kSaltSizeMax * 4];
    UInt32 saltSizeInWords = _key.GetSaltSize() / 4;
    BytesToBeUInt32s(_key.Salt, salt, saltSizeInWords);
    NSha1::Pbkdf2Hmac32(
      _key.Password, _key.Password.GetCapacity(), 
      salt, saltSizeInWords,
      kNumKeyGenIterations, 
      buf32, key32SizeTotal);
    for (UInt32 j = 0; j < keysTotalSize; j++) 
      buf[j] = (Byte)(buf32[j / 4] >> (24 - 8 * (j & 3)));
    
    #endif
  }

  _hmac.SetKey(buf + keySize, keySize);
  memcpy(_key.PwdVerifComputed, buf + 2 * keySize, kPwdVerifCodeSize);
  
  _blockPos = kAesBlockSize;
  for (int i = 0; i < 8; i++)
    _counter[i] = 0;

  RINOK(CreateFilters());
  CMyComPtr<ICryptoProperties> cp;
  RINOK(_aesFilter.QueryInterface(IID_ICryptoProperties, &cp));
  return cp->SetKey(buf, keySize);
}

static HRESULT SafeWrite(ISequentialOutStream *outStream, const Byte *data, UInt32 size)
{
  UInt32 processedSize;
  RINOK(WriteStream(outStream, data, size, &processedSize));
  return ((processedSize == size) ? S_OK : E_FAIL);
}

/*
STDMETHODIMP CEncoder::WriteCoderProperties(ISequentialOutStream *outStream)
{ 
  Byte keySizeMode = 3;
  return outStream->Write(&keySizeMode, 1, NULL);
}
*/

HRESULT CEncoder::WriteHeader(ISequentialOutStream *outStream)
{
  UInt32 saltSize = _key.GetSaltSize();
  g_RandomGenerator.Generate(_key.Salt, saltSize);
  Init();
  RINOK(SafeWrite(outStream, _key.Salt, saltSize));
  return SafeWrite(outStream, _key.PwdVerifComputed, kPwdVerifCodeSize);
}

HRESULT CEncoder::WriteFooter(ISequentialOutStream *outStream)
{
  Byte mac[kMacSize];
  _hmac.Final(mac, kMacSize);
  return SafeWrite(outStream, mac, kMacSize);
}

STDMETHODIMP CDecoder::SetDecoderProperties2(const Byte *data, UInt32 size)
{
  if (size != 1)
    return E_INVALIDARG;
  _key.Init();
  Byte keySizeMode = data[0];
  if (keySizeMode < 1 || keySizeMode > 3)
    return E_INVALIDARG;
  _key.KeySizeMode = keySizeMode;
  return S_OK;
}

HRESULT CDecoder::ReadHeader(ISequentialInStream *inStream)
{
  UInt32 saltSize = _key.GetSaltSize();
  UInt32 extraSize = saltSize + kPwdVerifCodeSize;
  Byte temp[kSaltSizeMax + kPwdVerifCodeSize];
  UInt32 processedSize;
  RINOK(ReadStream(inStream, temp, extraSize, &processedSize));
  if (processedSize != extraSize)
    return E_FAIL;
  UInt32 i;
  for (i = 0; i < saltSize; i++)
    _key.Salt[i] = temp[i];
  for (i = 0; i < kPwdVerifCodeSize; i++)
    _pwdVerifFromArchive[i] = temp[saltSize + i];
  return S_OK;
}

static bool CompareArrays(const Byte *p1, const Byte *p2, UInt32 size)
{
  for (UInt32 i = 0; i < size; i++)
    if (p1[i] != p2[i])
      return false;
  return true;
}

bool CDecoder::CheckPasswordVerifyCode()
{
  return CompareArrays(_key.PwdVerifComputed, _pwdVerifFromArchive, kPwdVerifCodeSize);
}

HRESULT CDecoder::CheckMac(ISequentialInStream *inStream, bool &isOK)
{
  isOK = false;
  UInt32 processedSize;
  Byte mac1[kMacSize];
  RINOK(ReadStream(inStream, mac1, kMacSize, &processedSize));
  if (processedSize != kMacSize)
    return E_FAIL;
  Byte mac2[kMacSize];
  _hmac.Final(mac2, kMacSize);
  isOK = CompareArrays(mac1, mac2, kMacSize);
  return S_OK;
}

STDMETHODIMP_(UInt32) CEncoder::Filter(Byte *data, UInt32 size)
{
  EncryptData(data, size);
  _hmac.Update(data, size);
  return size;
}

STDMETHODIMP_(UInt32) CDecoder::Filter(Byte *data, UInt32 size)
{
  _hmac.Update(data, size);
  EncryptData(data, size);
  return size;
}


HRESULT CBaseCoder::CreateFilters()
{
  if (!_aesFilter)
  {
    #ifdef CRYPTO_AES

    _aesFilter = new CAES_ECB_Encoder;
    
    #else
    
    TCHAR aesLibPath[MAX_PATH + 64];
    GetCryptoFolderPrefix(aesLibPath);
    lstrcat(aesLibPath, TEXT("AES.dll"));
    RINOK(_aesLibrary.LoadAndCreateFilter(aesLibPath, CLSID_CCrypto_AES_ECB_Encoder, &_aesFilter));
    
    #endif
  }
  return S_OK;
}

}}