Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/mRemoteNG/PuTTYNG.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorSimon Tatham <anakin@pobox.com>2019-01-03 15:30:46 +0300
committerSimon Tatham <anakin@pobox.com>2019-01-03 19:56:02 +0300
commitc3ae739e6d872d03edd990bb1f22a6257b1f2924 (patch)
tree0d51831ddf6c20b566b4cf534ee60994390e5f37 /contrib
parent4efb23de917e4de1cb7999beef9c77c11cc1e325 (diff)
Move eccref.py into the test directory.
The test suite I'm writing for ecc.c will live in that directory and want to use it to check answers.
Diffstat (limited to 'contrib')
-rw-r--r--contrib/eccref.py401
1 files changed, 0 insertions, 401 deletions
diff --git a/contrib/eccref.py b/contrib/eccref.py
deleted file mode 100644
index 93f6740b..00000000
--- a/contrib/eccref.py
+++ /dev/null
@@ -1,401 +0,0 @@
-import numbers
-import itertools
-
-def jacobi(n,m):
- """Compute the Jacobi symbol.
-
- The special case of this when m is prime is the Legendre symbol,
- which is 0 if n is congruent to 0 mod m; 1 if n is congruent to a
- non-zero square number mod m; -1 if n is not congruent to any
- square mod m.
-
- """
- assert m & 1
- acc = 1
- while True:
- n %= m
- if n == 0:
- return 0
- while not (n & 1):
- n >>= 1
- if (m & 7) not in {1,7}:
- acc *= -1
- if n == 1:
- return acc
- if (n & 3) == 3 and (m & 3) == 3:
- acc *= -1
- n, m = m, n
-
-class SqrtModP(object):
- """Class for finding square roots of numbers mod p.
-
- p must be an odd prime (but its primality is not checked)."""
-
- def __init__(self, p):
- p = abs(p)
- assert p & 1
- self.p = p
-
- # Decompose p as 2^e k + 1 for odd k.
- self.k = p-1
- self.e = 0
- while not (self.k & 1):
- self.k >>= 1
- self.e += 1
-
- # Find a non-square mod p.
- for self.z in itertools.count(1):
- if jacobi(self.z, self.p) == -1:
- break
- self.zinv = ModP(self.p, self.z).invert()
-
- def sqrt_recurse(self, a):
- ak = pow(a, self.k, self.p)
- for i in range(self.e, -1, -1):
- if ak == 1:
- break
- ak = ak*ak % self.p
- assert i > 0
- if i == self.e:
- return pow(a, (self.k+1) // 2, self.p)
- r_prime = self.sqrt_recurse(a * pow(self.z, 2**i, self.p))
- return r_prime * pow(self.zinv, 2**(i-1), self.p) % self.p
-
- def sqrt(self, a):
- j = jacobi(a, self.p)
- if j == 0:
- return 0
- if j < 0:
- raise ValueError("{} has no square root mod {}".format(a, self.p))
- a %= self.p
- r = self.sqrt_recurse(a)
- assert r*r % self.p == a
- # Normalise to the smaller (or 'positive') one of the two roots.
- return min(r, self.p - r)
-
- def __str__(self):
- return "{}({})".format(type(self).__name__, self.p)
- def __repr__(self):
- return self.__str__()
-
-class ModP(object):
- """Class that represents integers mod p as a field.
-
- All the usual arithmetic operations are supported directly,
- including division, so you can write formulas in a natural way
- without having to keep saying '% p' everywhere or call a
- cumbersome modular_inverse() function.
-
- """
- def __init__(self, p, n=0):
- self.p = p
- if isinstance(n, type(self)):
- self.check(n)
- n = n.n
- self.n = n % p
- def check(self, other):
- assert isinstance(other, type(self))
- assert isinstance(self, type(other))
- assert self.p == other.p
- def coerce_to(self, other):
- if not isinstance(other, type(self)):
- other = type(self)(self.p, other)
- else:
- self.check(other)
- return other
- def invert(self):
- "Internal routine which returns the bare inverse."
- if self.n % self.p == 0:
- raise ZeroDivisionError("division by {!r}".format(self))
- a = self.n, 1, 0
- b = self.p, 0, 1
- while b[0]:
- q = a[0] // b[0]
- a = a[0] - q*b[0], a[1] - q*b[1], a[2] - q*b[2]
- b, a = a, b
- assert abs(a[0]) == 1
- return a[1]*a[0]
- def __add__(self, rhs):
- rhs = self.coerce_to(rhs)
- return type(self)(self.p, (self.n + rhs.n) % self.p)
- def __neg__(self):
- return type(self)(self.p, -self.n % self.p)
- def __radd__(self, rhs):
- rhs = self.coerce_to(rhs)
- return type(self)(self.p, (self.n + rhs.n) % self.p)
- def __sub__(self, rhs):
- rhs = self.coerce_to(rhs)
- return type(self)(self.p, (self.n - rhs.n) % self.p)
- def __rsub__(self, rhs):
- rhs = self.coerce_to(rhs)
- return type(self)(self.p, (rhs.n - self.n) % self.p)
- def __mul__(self, rhs):
- rhs = self.coerce_to(rhs)
- return type(self)(self.p, (self.n * rhs.n) % self.p)
- def __rmul__(self, rhs):
- rhs = self.coerce_to(rhs)
- return type(self)(self.p, (self.n * rhs.n) % self.p)
- def __div__(self, rhs):
- rhs = self.coerce_to(rhs)
- return type(self)(self.p, (self.n * rhs.invert()) % self.p)
- def __rdiv__(self, rhs):
- rhs = self.coerce_to(rhs)
- return type(self)(self.p, (rhs.n * self.invert()) % self.p)
- def __pow__(self, exponent):
- assert exponent >= 0
- n, b_to_n = 1, self
- total = type(self)(self.p, 1)
- while True:
- if exponent & n:
- exponent -= n
- total *= b_to_n
- n *= 2
- if n > exponent:
- break
- b_to_n *= b_to_n
- return total
- def __cmp__(self, rhs):
- rhs = self.coerce_to(rhs)
- return cmp(self.n, rhs.n)
- def __eq__(self, rhs):
- rhs = self.coerce_to(rhs)
- return self.n == rhs.n
- def __ne__(self, rhs):
- rhs = self.coerce_to(rhs)
- return self.n != rhs.n
- def __lt__(self, rhs):
- raise ValueError("Elements of a modular ring have no ordering")
- def __le__(self, rhs):
- raise ValueError("Elements of a modular ring have no ordering")
- def __gt__(self, rhs):
- raise ValueError("Elements of a modular ring have no ordering")
- def __ge__(self, rhs):
- raise ValueError("Elements of a modular ring have no ordering")
- def __str__(self):
- return "0x{:x}".format(self.n)
- def __repr__(self):
- return "{}(0x{:x},0x{:x})".format(type(self).__name__, self.p, self.n)
-
-class AffinePoint(object):
- """Base class for points on an elliptic curve."""
-
- def __init__(self, curve, *args):
- self.curve = curve
- if len(args) == 0:
- self.infinite = True
- self.x = self.y = None
- else:
- assert len(args) == 2
- self.infinite = False
- self.x = ModP(self.curve.p, args[0])
- self.y = ModP(self.curve.p, args[1])
- self.check_equation()
- def __neg__(self):
- if self.infinite:
- return self
- return type(self)(self.curve, self.x, -self.y)
- def __mul__(self, rhs):
- if not isinstance(rhs, numbers.Integral):
- raise ValueError("Elliptic curve points can only be multiplied by integers")
- P = self
- if rhs < 0:
- rhs = -rhs
- P = -P
- toret = self.curve.point()
- n = 1
- nP = P
- while rhs != 0:
- if rhs & n:
- rhs -= n
- toret += nP
- n += n
- nP += nP
- return toret
- def __rmul__(self, rhs):
- return self * rhs
- def __sub__(self, rhs):
- return self + (-rhs)
- def __rsub__(self, rhs):
- return (-self) + rhs
- def __str__(self):
- if self.infinite:
- return "inf"
- else:
- return "({},{})".format(self.x, self.y)
- def __repr__(self):
- if self.infinite:
- args = ""
- else:
- args = ", {}, {}".format(self.x, self.y)
- return "{}.Point({}{})".format(type(self.curve).__name__,
- self.curve, args)
- def __eq__(self, rhs):
- if self.infinite or rhs.infinite:
- return self.infinite and rhs.infinite
- return (self.x, self.y) == (rhs.x, rhs.y)
- def __ne__(self, rhs):
- return not (self == rhs)
- def __lt__(self, rhs):
- raise ValueError("Elliptic curve points have no ordering")
- def __le__(self, rhs):
- raise ValueError("Elliptic curve points have no ordering")
- def __gt__(self, rhs):
- raise ValueError("Elliptic curve points have no ordering")
- def __ge__(self, rhs):
- raise ValueError("Elliptic curve points have no ordering")
- def __hash__(self):
- if self.infinite:
- return hash((True,))
- else:
- return hash((False, self.x, self.y))
-
-class CurveBase(object):
- def point(self, *args):
- return self.Point(self, *args)
-
-class WeierstrassCurve(CurveBase):
- class Point(AffinePoint):
- def check_equation(self):
- assert (self.y*self.y ==
- self.x*self.x*self.x +
- self.curve.a*self.x + self.curve.b)
- def __add__(self, rhs):
- if self.infinite:
- return rhs
- if rhs.infinite:
- return self
- if self.x == rhs.x and self.y != rhs.y:
- return self.curve.point()
- x1, x2, y1, y2 = self.x, rhs.x, self.y, rhs.y
- xdiff = x2-x1
- if xdiff != 0:
- slope = (y2-y1) / xdiff
- else:
- assert y1 == y2
- slope = (3*x1*x1 + self.curve.a) / (2*y1)
- xp = slope*slope - x1 - x2
- yp = -(y1 + slope * (xp-x1))
- return self.curve.point(xp, yp)
-
- def __init__(self, p, a, b):
- self.p = p
- self.a = ModP(p, a)
- self.b = ModP(p, b)
-
- def cpoint(self, x, yparity=0):
- if not hasattr(self, 'sqrtmodp'):
- self.sqrtmodp = SqrtModP(self.p)
- rhs = x**3 + self.a.n * x + self.b.n
- y = self.sqrtmodp.sqrt(rhs)
- if (y - yparity) % 2:
- y = -y
- return self.point(x, y)
-
- def __repr__(self):
- return "{}(0x{:x}, {}, {})".format(
- type(self).__name__, self.p, self.a, self.b)
-
-class MontgomeryCurve(CurveBase):
- class Point(AffinePoint):
- def check_equation(self):
- assert (self.curve.b*self.y*self.y ==
- self.x*self.x*self.x +
- self.curve.a*self.x*self.x + self.x)
- def __add__(self, rhs):
- if self.infinite:
- return rhs
- if rhs.infinite:
- return self
- if self.x == rhs.x and self.y != rhs.y:
- return self.curve.point()
- x1, x2, y1, y2 = self.x, rhs.x, self.y, rhs.y
- xdiff = x2-x1
- if xdiff != 0:
- slope = (y2-y1) / xdiff
- else:
- assert y1 == y2
- slope = (3*x1*x1 + 2*self.curve.a*x1 + 1) / (2*self.curve.b*y1)
- xp = self.curve.b*slope*slope - self.curve.a - x1 - x2
- yp = -(y1 + slope * (xp-x1))
- return self.curve.point(xp, yp)
-
- def __init__(self, p, a, b):
- self.p = p
- self.a = ModP(p, a)
- self.b = ModP(p, b)
-
- def cpoint(self, x, yparity=0):
- if not hasattr(self, 'sqrtmodp'):
- self.sqrtmodp = SqrtModP(self.p)
- rhs = (x**3 + self.a.n * x**2 + x) / self.b
- y = self.sqrtmodp.sqrt(int(rhs))
- if (y - yparity) % 2:
- y = -y
- return self.point(x, y)
-
- def __repr__(self):
- return "{}(0x{:x}, {}, {})".format(
- type(self).__name__, self.p, self.a, self.b)
-
-class TwistedEdwardsCurve(CurveBase):
- class Point(AffinePoint):
- def check_equation(self):
- x2, y2 = self.x*self.x, self.y*self.y
- assert (self.curve.a*x2 + y2 == 1 + self.curve.d*x2*y2)
- def __neg__(self):
- return type(self)(self.curve, -self.x, self.y)
- def __add__(self, rhs):
- x1, x2, y1, y2 = self.x, rhs.x, self.y, rhs.y
- x1y2, y1x2, y1y2, x1x2 = x1*y2, y1*x2, y1*y2, x1*x2
- dxxyy = self.curve.d*x1x2*y1y2
- return self.curve.point((x1y2+y1x2)/(1+dxxyy),
- (y1y2-self.curve.a*x1x2)/(1-dxxyy))
-
- def __init__(self, p, d, a):
- self.p = p
- self.d = ModP(p, d)
- self.a = ModP(p, a)
-
- def point(self, *args):
- # This curve form represents the identity using finite
- # numbers, so it doesn't need the special infinity flag.
- # Detect a no-argument call to point() and substitute the pair
- # of integers that gives the identity.
- if len(args) == 0:
- args = [0, 1]
- return super(TwistedEdwardsCurve, self).point(*args)
-
- def cpoint(self, y, xparity=0):
- if not hasattr(self, 'sqrtmodp'):
- self.sqrtmodp = SqrtModP(self.p)
- y = ModP(self.p, y)
- y2 = y**2
- radicand = (y2 - 1) / (self.d * y2 - self.a)
- x = self.sqrtmodp.sqrt(radicand.n)
- if (x - xparity) % 2:
- x = -x
- return self.point(x, y)
-
- def __repr__(self):
- return "{}(0x{:x}, {}, {})".format(
- type(self).__name__, self.p, self.d, self.a)
-
-p256 = WeierstrassCurve(0xffffffff00000001000000000000000000000000ffffffffffffffffffffffff, -3, 0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b)
-p256.G = p256.point(0x6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296,0x4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5)
-p256.G_order = 0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632551
-
-p384 = WeierstrassCurve(0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff0000000000000000ffffffff, -3, 0xb3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef)
-p384.G = p384.point(0xaa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760ab7, 0x3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f)
-p384.G_order = 0xffffffffffffffffffffffffffffffffffffffffffffffffc7634d81f4372ddf581a0db248b0a77aecec196accc52973
-
-p521 = WeierstrassCurve(0x01ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff, -3, 0x0051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00)
-p521.G = p521.point(0x00c6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66,0x011839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e662c97ee72995ef42640c550b9013fad0761353c7086a272c24088be94769fd16650)
-p521.G_order = 0x01fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb71e91386409
-
-curve25519 = MontgomeryCurve(2**255-19, 0x76d06, 1)
-curve25519.G = curve25519.cpoint(9)
-
-ed25519 = TwistedEdwardsCurve(2**255-19, 0x52036cee2b6ffe738cc740797779e89800700a4d4141d8ab75eb4dca135978a3, -1)
-ed25519.G = ed25519.point(0x216936d3cd6e53fec0a4e231fdd6dc5c692cc7609525a7b2c9562d608f25d51a,0x6666666666666666666666666666666666666666666666666666666666666658)
-ed25519.G_order = 0x1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed
-