Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/mRemoteNG/PuTTYNG.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'crypto/aes-neon.c')
-rw-r--r--crypto/aes-neon.c359
1 files changed, 359 insertions, 0 deletions
diff --git a/crypto/aes-neon.c b/crypto/aes-neon.c
new file mode 100644
index 00000000..5cd9f2d1
--- /dev/null
+++ b/crypto/aes-neon.c
@@ -0,0 +1,359 @@
+/* ----------------------------------------------------------------------
+ * Hardware-accelerated implementation of AES using Arm NEON.
+ */
+
+#include "ssh.h"
+#include "aes.h"
+
+#if USE_ARM64_NEON_H
+#include <arm64_neon.h>
+#else
+#include <arm_neon.h>
+#endif
+
+static bool aes_neon_available(void)
+{
+ /*
+ * For Arm, we delegate to a per-platform AES detection function,
+ * because it has to be implemented by asking the operating system
+ * rather than directly querying the CPU.
+ *
+ * That's because Arm systems commonly have multiple cores that
+ * are not all alike, so any method of querying whether NEON
+ * crypto instructions work on the _current_ CPU - even one as
+ * crude as just trying one and catching the SIGILL - wouldn't
+ * give an answer that you could still rely on the first time the
+ * OS migrated your process to another CPU.
+ */
+ return platform_aes_neon_available();
+}
+
+/*
+ * Core NEON encrypt/decrypt functions, one per length and direction.
+ */
+
+#define NEON_CIPHER(len, repmacro) \
+ static inline uint8x16_t aes_neon_##len##_e( \
+ uint8x16_t v, const uint8x16_t *keysched) \
+ { \
+ repmacro(v = vaesmcq_u8(vaeseq_u8(v, *keysched++));); \
+ v = vaeseq_u8(v, *keysched++); \
+ return veorq_u8(v, *keysched); \
+ } \
+ static inline uint8x16_t aes_neon_##len##_d( \
+ uint8x16_t v, const uint8x16_t *keysched) \
+ { \
+ repmacro(v = vaesimcq_u8(vaesdq_u8(v, *keysched++));); \
+ v = vaesdq_u8(v, *keysched++); \
+ return veorq_u8(v, *keysched); \
+ }
+
+NEON_CIPHER(128, REP9)
+NEON_CIPHER(192, REP11)
+NEON_CIPHER(256, REP13)
+
+/*
+ * The main key expansion.
+ */
+static void aes_neon_key_expand(
+ const unsigned char *key, size_t key_words,
+ uint8x16_t *keysched_e, uint8x16_t *keysched_d)
+{
+ size_t rounds = key_words + 6;
+ size_t sched_words = (rounds + 1) * 4;
+
+ /*
+ * Store the key schedule as 32-bit integers during expansion, so
+ * that it's easy to refer back to individual previous words. We
+ * collect them into the final uint8x16_t form at the end.
+ */
+ uint32_t sched[MAXROUNDKEYS * 4];
+
+ unsigned rconpos = 0;
+
+ for (size_t i = 0; i < sched_words; i++) {
+ if (i < key_words) {
+ sched[i] = GET_32BIT_LSB_FIRST(key + 4 * i);
+ } else {
+ uint32_t temp = sched[i - 1];
+
+ bool rotate_and_round_constant = (i % key_words == 0);
+ bool sub = rotate_and_round_constant ||
+ (key_words == 8 && i % 8 == 4);
+
+ if (rotate_and_round_constant)
+ temp = (temp << 24) | (temp >> 8);
+
+ if (sub) {
+ uint32x4_t v32 = vdupq_n_u32(temp);
+ uint8x16_t v8 = vreinterpretq_u8_u32(v32);
+ v8 = vaeseq_u8(v8, vdupq_n_u8(0));
+ v32 = vreinterpretq_u32_u8(v8);
+ temp = vget_lane_u32(vget_low_u32(v32), 0);
+ }
+
+ if (rotate_and_round_constant) {
+ assert(rconpos < lenof(aes_key_setup_round_constants));
+ temp ^= aes_key_setup_round_constants[rconpos++];
+ }
+
+ sched[i] = sched[i - key_words] ^ temp;
+ }
+ }
+
+ /*
+ * Combine the key schedule words into uint8x16_t vectors and
+ * store them in the output context.
+ */
+ for (size_t round = 0; round <= rounds; round++)
+ keysched_e[round] = vreinterpretq_u8_u32(vld1q_u32(sched + 4*round));
+
+ smemclr(sched, sizeof(sched));
+
+ /*
+ * Now prepare the modified keys for the inverse cipher.
+ */
+ for (size_t eround = 0; eround <= rounds; eround++) {
+ size_t dround = rounds - eround;
+ uint8x16_t rkey = keysched_e[eround];
+ if (eround && dround) /* neither first nor last */
+ rkey = vaesimcq_u8(rkey);
+ keysched_d[dround] = rkey;
+ }
+}
+
+/*
+ * Auxiliary routine to reverse the byte order of a vector, so that
+ * the SDCTR IV can be made big-endian for feeding to the cipher.
+ *
+ * In fact we don't need to reverse the vector _all_ the way; we leave
+ * the two lanes in MSW,LSW order, because that makes no difference to
+ * the efficiency of the increment. That way we only have to reverse
+ * bytes within each lane in this function.
+ */
+static inline uint8x16_t aes_neon_sdctr_reverse(uint8x16_t v)
+{
+ return vrev64q_u8(v);
+}
+
+/*
+ * Auxiliary routine to increment the 128-bit counter used in SDCTR
+ * mode. There's no instruction to treat a 128-bit vector as a single
+ * long integer, so instead we have to increment the bottom half
+ * unconditionally, and the top half if the bottom half started off as
+ * all 1s (in which case there was about to be a carry).
+ */
+static inline uint8x16_t aes_neon_sdctr_increment(uint8x16_t in)
+{
+#ifdef __aarch64__
+ /* There will be a carry if the low 64 bits are all 1s. */
+ uint64x1_t all1 = vcreate_u64(0xFFFFFFFFFFFFFFFF);
+ uint64x1_t carry = vceq_u64(vget_high_u64(vreinterpretq_u64_u8(in)), all1);
+
+ /* Make a word whose bottom half is unconditionally all 1s, and
+ * the top half is 'carry', i.e. all 0s most of the time but all
+ * 1s if we need to increment the top half. Then that word is what
+ * we need to _subtract_ from the input counter. */
+ uint64x2_t subtrahend = vcombine_u64(carry, all1);
+#else
+ /* AArch32 doesn't have comparisons that operate on a 64-bit lane,
+ * so we start by comparing each 32-bit half of the low 64 bits
+ * _separately_ to all-1s. */
+ uint32x2_t all1 = vdup_n_u32(0xFFFFFFFF);
+ uint32x2_t carry = vceq_u32(
+ vget_high_u32(vreinterpretq_u32_u8(in)), all1);
+
+ /* Swap the 32-bit words of the compare output, and AND with the
+ * unswapped version. Now carry is all 1s iff the bottom half of
+ * the input counter was all 1s, and all 0s otherwise. */
+ carry = vand_u32(carry, vrev64_u32(carry));
+
+ /* Now make the vector to subtract in the same way as above. */
+ uint64x2_t subtrahend = vreinterpretq_u64_u32(vcombine_u32(carry, all1));
+#endif
+
+ return vreinterpretq_u8_u64(
+ vsubq_u64(vreinterpretq_u64_u8(in), subtrahend));
+}
+
+/*
+ * Much simpler auxiliary routine to increment the counter for GCM
+ * mode. This only has to increment the low word.
+ */
+static inline uint8x16_t aes_neon_gcm_increment(uint8x16_t in)
+{
+ uint32x4_t inw = vreinterpretq_u32_u8(in);
+ uint32x4_t ONE = vcombine_u32(vcreate_u32(0), vcreate_u32(1));
+ inw = vaddq_u32(inw, ONE);
+ return vreinterpretq_u8_u32(inw);
+}
+
+/*
+ * The SSH interface and the cipher modes.
+ */
+
+typedef struct aes_neon_context aes_neon_context;
+struct aes_neon_context {
+ uint8x16_t keysched_e[MAXROUNDKEYS], keysched_d[MAXROUNDKEYS], iv;
+
+ ssh_cipher ciph;
+};
+
+static ssh_cipher *aes_neon_new(const ssh_cipheralg *alg)
+{
+ const struct aes_extra *extra = (const struct aes_extra *)alg->extra;
+ if (!check_availability(extra))
+ return NULL;
+
+ aes_neon_context *ctx = snew(aes_neon_context);
+ ctx->ciph.vt = alg;
+ return &ctx->ciph;
+}
+
+static void aes_neon_free(ssh_cipher *ciph)
+{
+ aes_neon_context *ctx = container_of(ciph, aes_neon_context, ciph);
+ smemclr(ctx, sizeof(*ctx));
+ sfree(ctx);
+}
+
+static void aes_neon_setkey(ssh_cipher *ciph, const void *vkey)
+{
+ aes_neon_context *ctx = container_of(ciph, aes_neon_context, ciph);
+ const unsigned char *key = (const unsigned char *)vkey;
+
+ aes_neon_key_expand(key, ctx->ciph.vt->real_keybits / 32,
+ ctx->keysched_e, ctx->keysched_d);
+}
+
+static void aes_neon_setiv_cbc(ssh_cipher *ciph, const void *iv)
+{
+ aes_neon_context *ctx = container_of(ciph, aes_neon_context, ciph);
+ ctx->iv = vld1q_u8(iv);
+}
+
+static void aes_neon_setiv_sdctr(ssh_cipher *ciph, const void *iv)
+{
+ aes_neon_context *ctx = container_of(ciph, aes_neon_context, ciph);
+ uint8x16_t counter = vld1q_u8(iv);
+ ctx->iv = aes_neon_sdctr_reverse(counter);
+}
+
+static void aes_neon_setiv_gcm(ssh_cipher *ciph, const void *iv)
+{
+ aes_neon_context *ctx = container_of(ciph, aes_neon_context, ciph);
+ uint8x16_t counter = vld1q_u8(iv);
+ ctx->iv = aes_neon_sdctr_reverse(counter);
+ ctx->iv = vreinterpretq_u8_u32(vsetq_lane_u32(
+ 1, vreinterpretq_u32_u8(ctx->iv), 2));
+}
+
+static void aes_neon_next_message_gcm(ssh_cipher *ciph)
+{
+ aes_neon_context *ctx = container_of(ciph, aes_neon_context, ciph);
+ uint32x4_t iv = vreinterpretq_u32_u8(ctx->iv);
+ uint64_t msg_counter = vgetq_lane_u32(iv, 0);
+ msg_counter = (msg_counter << 32) | vgetq_lane_u32(iv, 3);
+ msg_counter++;
+ iv = vsetq_lane_u32(msg_counter >> 32, iv, 0);
+ iv = vsetq_lane_u32(msg_counter, iv, 3);
+ iv = vsetq_lane_u32(1, iv, 2);
+ ctx->iv = vreinterpretq_u8_u32(iv);
+}
+
+typedef uint8x16_t (*aes_neon_fn)(uint8x16_t v, const uint8x16_t *keysched);
+
+static inline void aes_cbc_neon_encrypt(
+ ssh_cipher *ciph, void *vblk, int blklen, aes_neon_fn encrypt)
+{
+ aes_neon_context *ctx = container_of(ciph, aes_neon_context, ciph);
+
+ for (uint8_t *blk = (uint8_t *)vblk, *finish = blk + blklen;
+ blk < finish; blk += 16) {
+ uint8x16_t plaintext = vld1q_u8(blk);
+ uint8x16_t cipher_input = veorq_u8(plaintext, ctx->iv);
+ uint8x16_t ciphertext = encrypt(cipher_input, ctx->keysched_e);
+ vst1q_u8(blk, ciphertext);
+ ctx->iv = ciphertext;
+ }
+}
+
+static inline void aes_cbc_neon_decrypt(
+ ssh_cipher *ciph, void *vblk, int blklen, aes_neon_fn decrypt)
+{
+ aes_neon_context *ctx = container_of(ciph, aes_neon_context, ciph);
+
+ for (uint8_t *blk = (uint8_t *)vblk, *finish = blk + blklen;
+ blk < finish; blk += 16) {
+ uint8x16_t ciphertext = vld1q_u8(blk);
+ uint8x16_t decrypted = decrypt(ciphertext, ctx->keysched_d);
+ uint8x16_t plaintext = veorq_u8(decrypted, ctx->iv);
+ vst1q_u8(blk, plaintext);
+ ctx->iv = ciphertext;
+ }
+}
+
+static inline void aes_sdctr_neon(
+ ssh_cipher *ciph, void *vblk, int blklen, aes_neon_fn encrypt)
+{
+ aes_neon_context *ctx = container_of(ciph, aes_neon_context, ciph);
+
+ for (uint8_t *blk = (uint8_t *)vblk, *finish = blk + blklen;
+ blk < finish; blk += 16) {
+ uint8x16_t counter = aes_neon_sdctr_reverse(ctx->iv);
+ uint8x16_t keystream = encrypt(counter, ctx->keysched_e);
+ uint8x16_t input = vld1q_u8(blk);
+ uint8x16_t output = veorq_u8(input, keystream);
+ vst1q_u8(blk, output);
+ ctx->iv = aes_neon_sdctr_increment(ctx->iv);
+ }
+}
+
+static inline void aes_encrypt_ecb_block_neon(
+ ssh_cipher *ciph, void *blk, aes_neon_fn encrypt)
+{
+ aes_neon_context *ctx = container_of(ciph, aes_neon_context, ciph);
+ uint8x16_t plaintext = vld1q_u8(blk);
+ uint8x16_t ciphertext = encrypt(plaintext, ctx->keysched_e);
+ vst1q_u8(blk, ciphertext);
+}
+
+static inline void aes_gcm_neon(
+ ssh_cipher *ciph, void *vblk, int blklen, aes_neon_fn encrypt)
+{
+ aes_neon_context *ctx = container_of(ciph, aes_neon_context, ciph);
+
+ for (uint8_t *blk = (uint8_t *)vblk, *finish = blk + blklen;
+ blk < finish; blk += 16) {
+ uint8x16_t counter = aes_neon_sdctr_reverse(ctx->iv);
+ uint8x16_t keystream = encrypt(counter, ctx->keysched_e);
+ uint8x16_t input = vld1q_u8(blk);
+ uint8x16_t output = veorq_u8(input, keystream);
+ vst1q_u8(blk, output);
+ ctx->iv = aes_neon_gcm_increment(ctx->iv);
+ }
+}
+
+#define NEON_ENC_DEC(len) \
+ static void aes##len##_neon_cbc_encrypt( \
+ ssh_cipher *ciph, void *vblk, int blklen) \
+ { aes_cbc_neon_encrypt(ciph, vblk, blklen, aes_neon_##len##_e); } \
+ static void aes##len##_neon_cbc_decrypt( \
+ ssh_cipher *ciph, void *vblk, int blklen) \
+ { aes_cbc_neon_decrypt(ciph, vblk, blklen, aes_neon_##len##_d); } \
+ static void aes##len##_neon_sdctr( \
+ ssh_cipher *ciph, void *vblk, int blklen) \
+ { aes_sdctr_neon(ciph, vblk, blklen, aes_neon_##len##_e); } \
+ static void aes##len##_neon_gcm( \
+ ssh_cipher *ciph, void *vblk, int blklen) \
+ { aes_gcm_neon(ciph, vblk, blklen, aes_neon_##len##_e); } \
+ static void aes##len##_neon_encrypt_ecb_block( \
+ ssh_cipher *ciph, void *vblk) \
+ { aes_encrypt_ecb_block_neon(ciph, vblk, aes_neon_##len##_e); }
+
+NEON_ENC_DEC(128)
+NEON_ENC_DEC(192)
+NEON_ENC_DEC(256)
+
+AES_EXTRA(_neon);
+AES_ALL_VTABLES(_neon, "NEON accelerated");