Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/mRemoteNG/PuTTYNG.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'crypto/mpint.c')
-rw-r--r--crypto/mpint.c2810
1 files changed, 2810 insertions, 0 deletions
diff --git a/crypto/mpint.c b/crypto/mpint.c
new file mode 100644
index 00000000..437c7e8c
--- /dev/null
+++ b/crypto/mpint.c
@@ -0,0 +1,2810 @@
+/*
+ * Multiprecision integer arithmetic, implementing mpint.h.
+ */
+
+#include <assert.h>
+#include <limits.h>
+#include <stdio.h>
+
+#include "defs.h"
+#include "misc.h"
+#include "puttymem.h"
+
+#include "mpint.h"
+#include "mpint_i.h"
+
+#define SIZE_T_BITS (CHAR_BIT * sizeof(size_t))
+
+/*
+ * Inline helpers to take min and max of size_t values, used
+ * throughout this code.
+ */
+static inline size_t size_t_min(size_t a, size_t b)
+{
+ return a < b ? a : b;
+}
+static inline size_t size_t_max(size_t a, size_t b)
+{
+ return a > b ? a : b;
+}
+
+/*
+ * Helper to fetch a word of data from x with array overflow checking.
+ * If x is too short to have that word, 0 is returned.
+ */
+static inline BignumInt mp_word(mp_int *x, size_t i)
+{
+ return i < x->nw ? x->w[i] : 0;
+}
+
+/*
+ * Shift an ordinary C integer by BIGNUM_INT_BITS, in a way that
+ * avoids writing a shift operator whose RHS is greater or equal to
+ * the size of the type, because that's undefined behaviour in C.
+ *
+ * In fact we must avoid even writing it in a definitely-untaken
+ * branch of an if, because compilers will sometimes warn about
+ * that. So you can't just write 'shift too big ? 0 : n >> shift',
+ * because even if 'shift too big' is a constant-expression
+ * evaluating to false, you can still get complaints about the
+ * else clause of the ?:.
+ *
+ * So we have to re-check _inside_ that clause, so that the shift
+ * count is reset to something nonsensical but safe in the case
+ * where the clause wasn't going to be taken anyway.
+ */
+static uintmax_t shift_right_by_one_word(uintmax_t n)
+{
+ bool shift_too_big = BIGNUM_INT_BYTES >= sizeof(n);
+ return shift_too_big ? 0 :
+ n >> (shift_too_big ? 0 : BIGNUM_INT_BITS);
+}
+static uintmax_t shift_left_by_one_word(uintmax_t n)
+{
+ bool shift_too_big = BIGNUM_INT_BYTES >= sizeof(n);
+ return shift_too_big ? 0 :
+ n << (shift_too_big ? 0 : BIGNUM_INT_BITS);
+}
+
+mp_int *mp_make_sized(size_t nw)
+{
+ mp_int *x = snew_plus(mp_int, nw * sizeof(BignumInt));
+ assert(nw); /* we outlaw the zero-word mp_int */
+ x->nw = nw;
+ x->w = snew_plus_get_aux(x);
+ mp_clear(x);
+ return x;
+}
+
+mp_int *mp_new(size_t maxbits)
+{
+ size_t words = (maxbits + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS;
+ return mp_make_sized(words);
+}
+
+mp_int *mp_resize(mp_int *mp, size_t newmaxbits)
+{
+ mp_int *copy = mp_new(newmaxbits);
+ mp_copy_into(copy, mp);
+ mp_free(mp);
+ return copy;
+}
+
+mp_int *mp_from_integer(uintmax_t n)
+{
+ mp_int *x = mp_make_sized(
+ (sizeof(n) + BIGNUM_INT_BYTES - 1) / BIGNUM_INT_BYTES);
+ for (size_t i = 0; i < x->nw; i++)
+ x->w[i] = n >> (i * BIGNUM_INT_BITS);
+ return x;
+}
+
+size_t mp_max_bytes(mp_int *x)
+{
+ return x->nw * BIGNUM_INT_BYTES;
+}
+
+size_t mp_max_bits(mp_int *x)
+{
+ return x->nw * BIGNUM_INT_BITS;
+}
+
+void mp_free(mp_int *x)
+{
+ mp_clear(x);
+ smemclr(x, sizeof(*x));
+ sfree(x);
+}
+
+void mp_dump(FILE *fp, const char *prefix, mp_int *x, const char *suffix)
+{
+ fprintf(fp, "%s0x", prefix);
+ for (size_t i = mp_max_bytes(x); i-- > 0 ;)
+ fprintf(fp, "%02X", mp_get_byte(x, i));
+ fputs(suffix, fp);
+}
+
+void mp_copy_into(mp_int *dest, mp_int *src)
+{
+ size_t copy_nw = size_t_min(dest->nw, src->nw);
+ memmove(dest->w, src->w, copy_nw * sizeof(BignumInt));
+ smemclr(dest->w + copy_nw, (dest->nw - copy_nw) * sizeof(BignumInt));
+}
+
+void mp_copy_integer_into(mp_int *r, uintmax_t n)
+{
+ for (size_t i = 0; i < r->nw; i++) {
+ r->w[i] = n;
+ n = shift_right_by_one_word(n);
+ }
+}
+
+/*
+ * Conditional selection is done by negating 'which', to give a mask
+ * word which is all 1s if which==1 and all 0s if which==0. Then you
+ * can select between two inputs a,b without data-dependent control
+ * flow by XORing them to get their difference; ANDing with the mask
+ * word to replace that difference with 0 if which==0; and XORing that
+ * into a, which will either turn it into b or leave it alone.
+ *
+ * This trick will be used throughout this code and taken as read the
+ * rest of the time (or else I'd be here all week typing comments),
+ * but I felt I ought to explain it in words _once_.
+ */
+void mp_select_into(mp_int *dest, mp_int *src0, mp_int *src1,
+ unsigned which)
+{
+ BignumInt mask = -(BignumInt)(1 & which);
+ for (size_t i = 0; i < dest->nw; i++) {
+ BignumInt srcword0 = mp_word(src0, i), srcword1 = mp_word(src1, i);
+ dest->w[i] = srcword0 ^ ((srcword1 ^ srcword0) & mask);
+ }
+}
+
+void mp_cond_swap(mp_int *x0, mp_int *x1, unsigned swap)
+{
+ assert(x0->nw == x1->nw);
+ volatile BignumInt mask = -(BignumInt)(1 & swap);
+ for (size_t i = 0; i < x0->nw; i++) {
+ BignumInt diff = (x0->w[i] ^ x1->w[i]) & mask;
+ x0->w[i] ^= diff;
+ x1->w[i] ^= diff;
+ }
+}
+
+void mp_clear(mp_int *x)
+{
+ smemclr(x->w, x->nw * sizeof(BignumInt));
+}
+
+void mp_cond_clear(mp_int *x, unsigned clear)
+{
+ BignumInt mask = ~-(BignumInt)(1 & clear);
+ for (size_t i = 0; i < x->nw; i++)
+ x->w[i] &= mask;
+}
+
+/*
+ * Common code between mp_from_bytes_{le,be} which reads bytes in an
+ * arbitrary arithmetic progression.
+ */
+static mp_int *mp_from_bytes_int(ptrlen bytes, size_t m, size_t c)
+{
+ size_t nw = (bytes.len + BIGNUM_INT_BYTES - 1) / BIGNUM_INT_BYTES;
+ nw = size_t_max(nw, 1);
+ mp_int *n = mp_make_sized(nw);
+ for (size_t i = 0; i < bytes.len; i++)
+ n->w[i / BIGNUM_INT_BYTES] |=
+ (BignumInt)(((const unsigned char *)bytes.ptr)[m*i+c]) <<
+ (8 * (i % BIGNUM_INT_BYTES));
+ return n;
+}
+
+mp_int *mp_from_bytes_le(ptrlen bytes)
+{
+ return mp_from_bytes_int(bytes, 1, 0);
+}
+
+mp_int *mp_from_bytes_be(ptrlen bytes)
+{
+ return mp_from_bytes_int(bytes, -1, bytes.len - 1);
+}
+
+static mp_int *mp_from_words(size_t nw, const BignumInt *w)
+{
+ mp_int *x = mp_make_sized(nw);
+ memcpy(x->w, w, x->nw * sizeof(BignumInt));
+ return x;
+}
+
+/*
+ * Decimal-to-binary conversion: just go through the input string
+ * adding on the decimal value of each digit, and then multiplying the
+ * number so far by 10.
+ */
+mp_int *mp_from_decimal_pl(ptrlen decimal)
+{
+ /* 196/59 is an upper bound (and also a continued-fraction
+ * convergent) for log2(10), so this conservatively estimates the
+ * number of bits that will be needed to store any number that can
+ * be written in this many decimal digits. */
+ assert(decimal.len < (~(size_t)0) / 196);
+ size_t bits = 196 * decimal.len / 59;
+
+ /* Now round that up to words. */
+ size_t words = bits / BIGNUM_INT_BITS + 1;
+
+ mp_int *x = mp_make_sized(words);
+ for (size_t i = 0; i < decimal.len; i++) {
+ mp_add_integer_into(x, x, ((const char *)decimal.ptr)[i] - '0');
+
+ if (i+1 == decimal.len)
+ break;
+
+ mp_mul_integer_into(x, x, 10);
+ }
+ return x;
+}
+
+mp_int *mp_from_decimal(const char *decimal)
+{
+ return mp_from_decimal_pl(ptrlen_from_asciz(decimal));
+}
+
+/*
+ * Hex-to-binary conversion: _algorithmically_ simpler than decimal
+ * (none of those multiplications by 10), but there's some fiddly
+ * bit-twiddling needed to process each hex digit without diverging
+ * control flow depending on whether it's a letter or a number.
+ */
+mp_int *mp_from_hex_pl(ptrlen hex)
+{
+ assert(hex.len <= (~(size_t)0) / 4);
+ size_t bits = hex.len * 4;
+ size_t words = (bits + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS;
+ words = size_t_max(words, 1);
+ mp_int *x = mp_make_sized(words);
+ for (size_t nibble = 0; nibble < hex.len; nibble++) {
+ BignumInt digit = ((const char *)hex.ptr)[hex.len-1 - nibble];
+
+ BignumInt lmask = ~-((BignumInt)((digit-'a')|('f'-digit))
+ >> (BIGNUM_INT_BITS-1));
+ BignumInt umask = ~-((BignumInt)((digit-'A')|('F'-digit))
+ >> (BIGNUM_INT_BITS-1));
+
+ BignumInt digitval = digit - '0';
+ digitval ^= (digitval ^ (digit - 'a' + 10)) & lmask;
+ digitval ^= (digitval ^ (digit - 'A' + 10)) & umask;
+ digitval &= 0xF; /* at least be _slightly_ nice about weird input */
+
+ size_t word_idx = nibble / (BIGNUM_INT_BYTES*2);
+ size_t nibble_within_word = nibble % (BIGNUM_INT_BYTES*2);
+ x->w[word_idx] |= digitval << (nibble_within_word * 4);
+ }
+ return x;
+}
+
+mp_int *mp_from_hex(const char *hex)
+{
+ return mp_from_hex_pl(ptrlen_from_asciz(hex));
+}
+
+mp_int *mp_copy(mp_int *x)
+{
+ return mp_from_words(x->nw, x->w);
+}
+
+uint8_t mp_get_byte(mp_int *x, size_t byte)
+{
+ return 0xFF & (mp_word(x, byte / BIGNUM_INT_BYTES) >>
+ (8 * (byte % BIGNUM_INT_BYTES)));
+}
+
+unsigned mp_get_bit(mp_int *x, size_t bit)
+{
+ return 1 & (mp_word(x, bit / BIGNUM_INT_BITS) >>
+ (bit % BIGNUM_INT_BITS));
+}
+
+uintmax_t mp_get_integer(mp_int *x)
+{
+ uintmax_t toret = 0;
+ for (size_t i = x->nw; i-- > 0 ;)
+ toret = shift_left_by_one_word(toret) | x->w[i];
+ return toret;
+}
+
+void mp_set_bit(mp_int *x, size_t bit, unsigned val)
+{
+ size_t word = bit / BIGNUM_INT_BITS;
+ assert(word < x->nw);
+
+ unsigned shift = (bit % BIGNUM_INT_BITS);
+
+ x->w[word] &= ~((BignumInt)1 << shift);
+ x->w[word] |= (BignumInt)(val & 1) << shift;
+}
+
+/*
+ * Helper function used here and there to normalise any nonzero input
+ * value to 1.
+ */
+static inline unsigned normalise_to_1(BignumInt n)
+{
+ n = (n >> 1) | (n & 1); /* ensure top bit is clear */
+ n = (BignumInt)(-n) >> (BIGNUM_INT_BITS - 1); /* normalise to 0 or 1 */
+ return n;
+}
+static inline unsigned normalise_to_1_u64(uint64_t n)
+{
+ n = (n >> 1) | (n & 1); /* ensure top bit is clear */
+ n = (-n) >> 63; /* normalise to 0 or 1 */
+ return n;
+}
+
+/*
+ * Find the highest nonzero word in a number. Returns the index of the
+ * word in x->w, and also a pair of output uint64_t in which that word
+ * appears in the high one shifted left by 'shift_wanted' bits, the
+ * words immediately below it occupy the space to the right, and the
+ * words below _that_ fill up the low one.
+ *
+ * If there is no nonzero word at all, the passed-by-reference output
+ * variables retain their original values.
+ */
+static inline void mp_find_highest_nonzero_word_pair(
+ mp_int *x, size_t shift_wanted, size_t *index,
+ uint64_t *hi, uint64_t *lo)
+{
+ uint64_t curr_hi = 0, curr_lo = 0;
+
+ for (size_t curr_index = 0; curr_index < x->nw; curr_index++) {
+ BignumInt curr_word = x->w[curr_index];
+ unsigned indicator = normalise_to_1(curr_word);
+
+ curr_lo = (BIGNUM_INT_BITS < 64 ? (curr_lo >> BIGNUM_INT_BITS) : 0) |
+ (curr_hi << (64 - BIGNUM_INT_BITS));
+ curr_hi = (BIGNUM_INT_BITS < 64 ? (curr_hi >> BIGNUM_INT_BITS) : 0) |
+ ((uint64_t)curr_word << shift_wanted);
+
+ if (hi) *hi ^= (curr_hi ^ *hi ) & -(uint64_t)indicator;
+ if (lo) *lo ^= (curr_lo ^ *lo ) & -(uint64_t)indicator;
+ if (index) *index ^= (curr_index ^ *index) & -(size_t) indicator;
+ }
+}
+
+size_t mp_get_nbits(mp_int *x)
+{
+ /* Sentinel values in case there are no bits set at all: we
+ * imagine that there's a word at position -1 (i.e. the topmost
+ * fraction word) which is all 1s, because that way, we handle a
+ * zero input by considering its highest set bit to be the top one
+ * of that word, i.e. just below the units digit, i.e. at bit
+ * index -1, i.e. so we'll return 0 on output. */
+ size_t hiword_index = -(size_t)1;
+ uint64_t hiword64 = ~(BignumInt)0;
+
+ /*
+ * Find the highest nonzero word and its index.
+ */
+ mp_find_highest_nonzero_word_pair(x, 0, &hiword_index, &hiword64, NULL);
+ BignumInt hiword = hiword64; /* in case BignumInt is a narrower type */
+
+ /*
+ * Find the index of the highest set bit within hiword.
+ */
+ BignumInt hibit_index = 0;
+ for (size_t i = (1 << (BIGNUM_INT_BITS_BITS-1)); i != 0; i >>= 1) {
+ BignumInt shifted_word = hiword >> i;
+ BignumInt indicator =
+ (BignumInt)(-shifted_word) >> (BIGNUM_INT_BITS-1);
+ hiword ^= (shifted_word ^ hiword ) & -indicator;
+ hibit_index += i & -(size_t)indicator;
+ }
+
+ /*
+ * Put together the result.
+ */
+ return (hiword_index << BIGNUM_INT_BITS_BITS) + hibit_index + 1;
+}
+
+/*
+ * Shared code between the hex and decimal output functions to get rid
+ * of leading zeroes on the output string. The idea is that we wrote
+ * out a fixed number of digits and a trailing \0 byte into 'buf', and
+ * now we want to shift it all left so that the first nonzero digit
+ * moves to buf[0] (or, if there are no nonzero digits at all, we move
+ * up by 'maxtrim', so that we return 0 as "0" instead of "").
+ */
+static void trim_leading_zeroes(char *buf, size_t bufsize, size_t maxtrim)
+{
+ size_t trim = maxtrim;
+
+ /*
+ * Look for the first character not equal to '0', to find the
+ * shift count.
+ */
+ if (trim > 0) {
+ for (size_t pos = trim; pos-- > 0 ;) {
+ uint8_t diff = buf[pos] ^ '0';
+ size_t mask = -((((size_t)diff) - 1) >> (SIZE_T_BITS - 1));
+ trim ^= (trim ^ pos) & ~mask;
+ }
+ }
+
+ /*
+ * Now do the shift, in log n passes each of which does a
+ * conditional shift by 2^i bytes if bit i is set in the shift
+ * count.
+ */
+ uint8_t *ubuf = (uint8_t *)buf;
+ for (size_t logd = 0; bufsize >> logd; logd++) {
+ uint8_t mask = -(uint8_t)((trim >> logd) & 1);
+ size_t d = (size_t)1 << logd;
+ for (size_t i = 0; i+d < bufsize; i++) {
+ uint8_t diff = mask & (ubuf[i] ^ ubuf[i+d]);
+ ubuf[i] ^= diff;
+ ubuf[i+d] ^= diff;
+ }
+ }
+}
+
+/*
+ * Binary to decimal conversion. Our strategy here is to extract each
+ * decimal digit by finding the input number's residue mod 10, then
+ * subtract that off to give an exact multiple of 10, which then means
+ * you can safely divide by 10 by means of shifting right one bit and
+ * then multiplying by the inverse of 5 mod 2^n.
+ */
+char *mp_get_decimal(mp_int *x_orig)
+{
+ mp_int *x = mp_copy(x_orig), *y = mp_make_sized(x->nw);
+
+ /*
+ * The inverse of 5 mod 2^lots is 0xccccccccccccccccccccd, for an
+ * appropriate number of 'c's. Manually construct an integer the
+ * right size.
+ */
+ mp_int *inv5 = mp_make_sized(x->nw);
+ assert(BIGNUM_INT_BITS % 8 == 0);
+ for (size_t i = 0; i < inv5->nw; i++)
+ inv5->w[i] = BIGNUM_INT_MASK / 5 * 4;
+ inv5->w[0]++;
+
+ /*
+ * 146/485 is an upper bound (and also a continued-fraction
+ * convergent) of log10(2), so this is a conservative estimate of
+ * the number of decimal digits needed to store a value that fits
+ * in this many binary bits.
+ */
+ assert(x->nw < (~(size_t)1) / (146 * BIGNUM_INT_BITS));
+ size_t bufsize = size_t_max(x->nw * (146 * BIGNUM_INT_BITS) / 485, 1) + 2;
+ char *outbuf = snewn(bufsize, char);
+ outbuf[bufsize - 1] = '\0';
+
+ /*
+ * Loop over the number generating digits from the least
+ * significant upwards, so that we write to outbuf in reverse
+ * order.
+ */
+ for (size_t pos = bufsize - 1; pos-- > 0 ;) {
+ /*
+ * Find the current residue mod 10. We do this by first
+ * summing the bytes of the number, with all but the lowest
+ * one multiplied by 6 (because 256^i == 6 mod 10 for all
+ * i>0). That gives us a single word congruent mod 10 to the
+ * input number, and then we reduce it further by manual
+ * multiplication and shifting, just in case the compiler
+ * target implements the C division operator in a way that has
+ * input-dependent timing.
+ */
+ uint32_t low_digit = 0, maxval = 0, mult = 1;
+ for (size_t i = 0; i < x->nw; i++) {
+ for (unsigned j = 0; j < BIGNUM_INT_BYTES; j++) {
+ low_digit += mult * (0xFF & (x->w[i] >> (8*j)));
+ maxval += mult * 0xFF;
+ mult = 6;
+ }
+ /*
+ * For _really_ big numbers, prevent overflow of t by
+ * periodically folding the top half of the accumulator
+ * into the bottom half, using the same rule 'multiply by
+ * 6 when shifting down by one or more whole bytes'.
+ */
+ if (maxval > UINT32_MAX - (6 * 0xFF * BIGNUM_INT_BYTES)) {
+ low_digit = (low_digit & 0xFFFF) + 6 * (low_digit >> 16);
+ maxval = (maxval & 0xFFFF) + 6 * (maxval >> 16);
+ }
+ }
+
+ /*
+ * Final reduction of low_digit. We multiply by 2^32 / 10
+ * (that's the constant 0x19999999) to get a 64-bit value
+ * whose top 32 bits are the approximate quotient
+ * low_digit/10; then we subtract off 10 times that; and
+ * finally we do one last trial subtraction of 10 by adding 6
+ * (which sets bit 4 if the number was just over 10) and then
+ * testing bit 4.
+ */
+ low_digit -= 10 * ((0x19999999ULL * low_digit) >> 32);
+ low_digit -= 10 * ((low_digit + 6) >> 4);
+
+ assert(low_digit < 10); /* make sure we did reduce fully */
+ outbuf[pos] = '0' + low_digit;
+
+ /*
+ * Now subtract off that digit, divide by 2 (using a right
+ * shift) and by 5 (using the modular inverse), to get the
+ * next output digit into the units position.
+ */
+ mp_sub_integer_into(x, x, low_digit);
+ mp_rshift_fixed_into(y, x, 1);
+ mp_mul_into(x, y, inv5);
+ }
+
+ mp_free(x);
+ mp_free(y);
+ mp_free(inv5);
+
+ trim_leading_zeroes(outbuf, bufsize, bufsize - 2);
+ return outbuf;
+}
+
+/*
+ * Binary to hex conversion. Reasonably simple (only a spot of bit
+ * twiddling to choose whether to output a digit or a letter for each
+ * nibble).
+ */
+static char *mp_get_hex_internal(mp_int *x, uint8_t letter_offset)
+{
+ size_t nibbles = x->nw * BIGNUM_INT_BYTES * 2;
+ size_t bufsize = nibbles + 1;
+ char *outbuf = snewn(bufsize, char);
+ outbuf[nibbles] = '\0';
+
+ for (size_t nibble = 0; nibble < nibbles; nibble++) {
+ size_t word_idx = nibble / (BIGNUM_INT_BYTES*2);
+ size_t nibble_within_word = nibble % (BIGNUM_INT_BYTES*2);
+ uint8_t digitval = 0xF & (x->w[word_idx] >> (nibble_within_word * 4));
+
+ uint8_t mask = -((digitval + 6) >> 4);
+ char digit = digitval + '0' + (letter_offset & mask);
+ outbuf[nibbles-1 - nibble] = digit;
+ }
+
+ trim_leading_zeroes(outbuf, bufsize, nibbles - 1);
+ return outbuf;
+}
+
+char *mp_get_hex(mp_int *x)
+{
+ return mp_get_hex_internal(x, 'a' - ('0'+10));
+}
+
+char *mp_get_hex_uppercase(mp_int *x)
+{
+ return mp_get_hex_internal(x, 'A' - ('0'+10));
+}
+
+/*
+ * Routines for reading and writing the SSH-1 and SSH-2 wire formats
+ * for multiprecision integers, declared in marshal.h.
+ *
+ * These can't avoid having control flow dependent on the true bit
+ * size of the number, because the wire format requires the number of
+ * output bytes to depend on that.
+ */
+void BinarySink_put_mp_ssh1(BinarySink *bs, mp_int *x)
+{
+ size_t bits = mp_get_nbits(x);
+ size_t bytes = (bits + 7) / 8;
+
+ assert(bits < 0x10000);
+ put_uint16(bs, bits);
+ for (size_t i = bytes; i-- > 0 ;)
+ put_byte(bs, mp_get_byte(x, i));
+}
+
+void BinarySink_put_mp_ssh2(BinarySink *bs, mp_int *x)
+{
+ size_t bytes = (mp_get_nbits(x) + 8) / 8;
+
+ put_uint32(bs, bytes);
+ for (size_t i = bytes; i-- > 0 ;)
+ put_byte(bs, mp_get_byte(x, i));
+}
+
+mp_int *BinarySource_get_mp_ssh1(BinarySource *src)
+{
+ unsigned bitc = get_uint16(src);
+ ptrlen bytes = get_data(src, (bitc + 7) / 8);
+ if (get_err(src)) {
+ return mp_from_integer(0);
+ } else {
+ mp_int *toret = mp_from_bytes_be(bytes);
+ /* SSH-1.5 spec says that it's OK for the prefix uint16 to be
+ * _greater_ than the actual number of bits */
+ if (mp_get_nbits(toret) > bitc) {
+ src->err = BSE_INVALID;
+ mp_free(toret);
+ toret = mp_from_integer(0);
+ }
+ return toret;
+ }
+}
+
+mp_int *BinarySource_get_mp_ssh2(BinarySource *src)
+{
+ ptrlen bytes = get_string(src);
+ if (get_err(src)) {
+ return mp_from_integer(0);
+ } else {
+ const unsigned char *p = bytes.ptr;
+ if ((bytes.len > 0 &&
+ ((p[0] & 0x80) ||
+ (p[0] == 0 && (bytes.len <= 1 || !(p[1] & 0x80)))))) {
+ src->err = BSE_INVALID;
+ return mp_from_integer(0);
+ }
+ return mp_from_bytes_be(bytes);
+ }
+}
+
+/*
+ * Make an mp_int structure whose words array aliases a subinterval of
+ * some other mp_int. This makes it easy to read or write just the low
+ * or high words of a number, e.g. to add a number starting from a
+ * high bit position, or to reduce mod 2^{n*BIGNUM_INT_BITS}.
+ *
+ * The convention throughout this code is that when we store an mp_int
+ * directly by value, we always expect it to be an alias of some kind,
+ * so its words array won't ever need freeing. Whereas an 'mp_int *'
+ * has an owner, who knows whether it needs freeing or whether it was
+ * created by address-taking an alias.
+ */
+static mp_int mp_make_alias(mp_int *in, size_t offset, size_t len)
+{
+ /*
+ * Bounds-check the offset and length so that we always return
+ * something valid, even if it's not necessarily the length the
+ * caller asked for.
+ */
+ if (offset > in->nw)
+ offset = in->nw;
+ if (len > in->nw - offset)
+ len = in->nw - offset;
+
+ mp_int toret;
+ toret.nw = len;
+ toret.w = in->w + offset;
+ return toret;
+}
+
+/*
+ * A special case of mp_make_alias: in some cases we preallocate a
+ * large mp_int to use as scratch space (to avoid pointless
+ * malloc/free churn in recursive or iterative work).
+ *
+ * mp_alloc_from_scratch creates an alias of size 'len' to part of
+ * 'pool', and adjusts 'pool' itself so that further allocations won't
+ * overwrite that space.
+ *
+ * There's no free function to go with this. Typically you just copy
+ * the pool mp_int by value, allocate from the copy, and when you're
+ * done with those allocations, throw the copy away and go back to the
+ * original value of pool. (A mark/release system.)
+ */
+static mp_int mp_alloc_from_scratch(mp_int *pool, size_t len)
+{
+ assert(len <= pool->nw);
+ mp_int toret = mp_make_alias(pool, 0, len);
+ *pool = mp_make_alias(pool, len, pool->nw);
+ return toret;
+}
+
+/*
+ * Internal component common to lots of assorted add/subtract code.
+ * Reads words from a,b; writes into w_out (which might be NULL if the
+ * output isn't even needed). Takes an input carry flag in 'carry',
+ * and returns the output carry. Each word read from b is ANDed with
+ * b_and and then XORed with b_xor.
+ *
+ * So you can implement addition by setting b_and to all 1s and b_xor
+ * to 0; you can subtract by making b_xor all 1s too (effectively
+ * bit-flipping b) and also passing 1 as the input carry (to turn
+ * one's complement into two's complement). And you can do conditional
+ * add/subtract by choosing b_and to be all 1s or all 0s based on a
+ * condition, because the value of b will be totally ignored if b_and
+ * == 0.
+ */
+static BignumCarry mp_add_masked_into(
+ BignumInt *w_out, size_t rw, mp_int *a, mp_int *b,
+ BignumInt b_and, BignumInt b_xor, BignumCarry carry)
+{
+ for (size_t i = 0; i < rw; i++) {
+ BignumInt aword = mp_word(a, i), bword = mp_word(b, i), out;
+ bword = (bword & b_and) ^ b_xor;
+ BignumADC(out, carry, aword, bword, carry);
+ if (w_out)
+ w_out[i] = out;
+ }
+ return carry;
+}
+
+/*
+ * Like the public mp_add_into except that it returns the output carry.
+ */
+static inline BignumCarry mp_add_into_internal(mp_int *r, mp_int *a, mp_int *b)
+{
+ return mp_add_masked_into(r->w, r->nw, a, b, ~(BignumInt)0, 0, 0);
+}
+
+void mp_add_into(mp_int *r, mp_int *a, mp_int *b)
+{
+ mp_add_into_internal(r, a, b);
+}
+
+void mp_sub_into(mp_int *r, mp_int *a, mp_int *b)
+{
+ mp_add_masked_into(r->w, r->nw, a, b, ~(BignumInt)0, ~(BignumInt)0, 1);
+}
+
+void mp_and_into(mp_int *r, mp_int *a, mp_int *b)
+{
+ for (size_t i = 0; i < r->nw; i++) {
+ BignumInt aword = mp_word(a, i), bword = mp_word(b, i);
+ r->w[i] = aword & bword;
+ }
+}
+
+void mp_or_into(mp_int *r, mp_int *a, mp_int *b)
+{
+ for (size_t i = 0; i < r->nw; i++) {
+ BignumInt aword = mp_word(a, i), bword = mp_word(b, i);
+ r->w[i] = aword | bword;
+ }
+}
+
+void mp_xor_into(mp_int *r, mp_int *a, mp_int *b)
+{
+ for (size_t i = 0; i < r->nw; i++) {
+ BignumInt aword = mp_word(a, i), bword = mp_word(b, i);
+ r->w[i] = aword ^ bword;
+ }
+}
+
+void mp_bic_into(mp_int *r, mp_int *a, mp_int *b)
+{
+ for (size_t i = 0; i < r->nw; i++) {
+ BignumInt aword = mp_word(a, i), bword = mp_word(b, i);
+ r->w[i] = aword & ~bword;
+ }
+}
+
+static void mp_cond_negate(mp_int *r, mp_int *x, unsigned yes)
+{
+ BignumCarry carry = yes;
+ BignumInt flip = -(BignumInt)yes;
+ for (size_t i = 0; i < r->nw; i++) {
+ BignumInt xword = mp_word(x, i);
+ xword ^= flip;
+ BignumADC(r->w[i], carry, 0, xword, carry);
+ }
+}
+
+/*
+ * Similar to mp_add_masked_into, but takes a C integer instead of an
+ * mp_int as the masked operand.
+ */
+static BignumCarry mp_add_masked_integer_into(
+ BignumInt *w_out, size_t rw, mp_int *a, uintmax_t b,
+ BignumInt b_and, BignumInt b_xor, BignumCarry carry)
+{
+ for (size_t i = 0; i < rw; i++) {
+ BignumInt aword = mp_word(a, i);
+ BignumInt bword = b;
+ b = shift_right_by_one_word(b);
+ BignumInt out;
+ bword = (bword ^ b_xor) & b_and;
+ BignumADC(out, carry, aword, bword, carry);
+ if (w_out)
+ w_out[i] = out;
+ }
+ return carry;
+}
+
+void mp_add_integer_into(mp_int *r, mp_int *a, uintmax_t n)
+{
+ mp_add_masked_integer_into(r->w, r->nw, a, n, ~(BignumInt)0, 0, 0);
+}
+
+void mp_sub_integer_into(mp_int *r, mp_int *a, uintmax_t n)
+{
+ mp_add_masked_integer_into(r->w, r->nw, a, n,
+ ~(BignumInt)0, ~(BignumInt)0, 1);
+}
+
+/*
+ * Sets r to a + n << (word_index * BIGNUM_INT_BITS), treating
+ * word_index as secret data.
+ */
+static void mp_add_integer_into_shifted_by_words(
+ mp_int *r, mp_int *a, uintmax_t n, size_t word_index)
+{
+ unsigned indicator = 0;
+ BignumCarry carry = 0;
+
+ for (size_t i = 0; i < r->nw; i++) {
+ /* indicator becomes 1 when we reach the index that the least
+ * significant bits of n want to be placed at, and it stays 1
+ * thereafter. */
+ indicator |= 1 ^ normalise_to_1(i ^ word_index);
+
+ /* If indicator is 1, we add the low bits of n into r, and
+ * shift n down. If it's 0, we add zero bits into r, and
+ * leave n alone. */
+ BignumInt bword = n & -(BignumInt)indicator;
+ uintmax_t new_n = shift_right_by_one_word(n);
+ n ^= (n ^ new_n) & -(uintmax_t)indicator;
+
+ BignumInt aword = mp_word(a, i);
+ BignumInt out;
+ BignumADC(out, carry, aword, bword, carry);
+ r->w[i] = out;
+ }
+}
+
+void mp_mul_integer_into(mp_int *r, mp_int *a, uint16_t n)
+{
+ BignumInt carry = 0, mult = n;
+ for (size_t i = 0; i < r->nw; i++) {
+ BignumInt aword = mp_word(a, i);
+ BignumMULADD(carry, r->w[i], aword, mult, carry);
+ }
+ assert(!carry);
+}
+
+void mp_cond_add_into(mp_int *r, mp_int *a, mp_int *b, unsigned yes)
+{
+ BignumInt mask = -(BignumInt)(yes & 1);
+ mp_add_masked_into(r->w, r->nw, a, b, mask, 0, 0);
+}
+
+void mp_cond_sub_into(mp_int *r, mp_int *a, mp_int *b, unsigned yes)
+{
+ BignumInt mask = -(BignumInt)(yes & 1);
+ mp_add_masked_into(r->w, r->nw, a, b, mask, mask, 1 & mask);
+}
+
+/*
+ * Ordered comparison between unsigned numbers is done by subtracting
+ * one from the other and looking at the output carry.
+ */
+unsigned mp_cmp_hs(mp_int *a, mp_int *b)
+{
+ size_t rw = size_t_max(a->nw, b->nw);
+ return mp_add_masked_into(NULL, rw, a, b, ~(BignumInt)0, ~(BignumInt)0, 1);
+}
+
+unsigned mp_hs_integer(mp_int *x, uintmax_t n)
+{
+ BignumInt carry = 1;
+ size_t nwords = sizeof(n)/BIGNUM_INT_BYTES;
+ for (size_t i = 0, e = size_t_max(x->nw, nwords); i < e; i++) {
+ BignumInt nword = n;
+ n = shift_right_by_one_word(n);
+ BignumInt dummy_out;
+ BignumADC(dummy_out, carry, mp_word(x, i), ~nword, carry);
+ (void)dummy_out;
+ }
+ return carry;
+}
+
+/*
+ * Equality comparison is done by bitwise XOR of the input numbers,
+ * ORing together all the output words, and normalising the result
+ * using our careful normalise_to_1 helper function.
+ */
+unsigned mp_cmp_eq(mp_int *a, mp_int *b)
+{
+ BignumInt diff = 0;
+ for (size_t i = 0, limit = size_t_max(a->nw, b->nw); i < limit; i++)
+ diff |= mp_word(a, i) ^ mp_word(b, i);
+ return 1 ^ normalise_to_1(diff); /* return 1 if diff _is_ zero */
+}
+
+unsigned mp_eq_integer(mp_int *x, uintmax_t n)
+{
+ BignumInt diff = 0;
+ size_t nwords = sizeof(n)/BIGNUM_INT_BYTES;
+ for (size_t i = 0, e = size_t_max(x->nw, nwords); i < e; i++) {
+ BignumInt nword = n;
+ n = shift_right_by_one_word(n);
+ diff |= mp_word(x, i) ^ nword;
+ }
+ return 1 ^ normalise_to_1(diff); /* return 1 if diff _is_ zero */
+}
+
+static void mp_neg_into(mp_int *r, mp_int *a)
+{
+ mp_int zero;
+ zero.nw = 0;
+ mp_sub_into(r, &zero, a);
+}
+
+mp_int *mp_add(mp_int *x, mp_int *y)
+{
+ mp_int *r = mp_make_sized(size_t_max(x->nw, y->nw) + 1);
+ mp_add_into(r, x, y);
+ return r;
+}
+
+mp_int *mp_sub(mp_int *x, mp_int *y)
+{
+ mp_int *r = mp_make_sized(size_t_max(x->nw, y->nw));
+ mp_sub_into(r, x, y);
+ return r;
+}
+
+/*
+ * Internal routine: multiply and accumulate in the trivial O(N^2)
+ * way. Sets r <- r + a*b.
+ */
+static void mp_mul_add_simple(mp_int *r, mp_int *a, mp_int *b)
+{
+ BignumInt *aend = a->w + a->nw, *bend = b->w + b->nw, *rend = r->w + r->nw;
+
+ for (BignumInt *ap = a->w, *rp = r->w;
+ ap < aend && rp < rend; ap++, rp++) {
+
+ BignumInt adata = *ap, carry = 0, *rq = rp;
+
+ for (BignumInt *bp = b->w; bp < bend && rq < rend; bp++, rq++) {
+ BignumInt bdata = bp < bend ? *bp : 0;
+ BignumMULADD2(carry, *rq, adata, bdata, *rq, carry);
+ }
+
+ for (; rq < rend; rq++)
+ BignumADC(*rq, carry, carry, *rq, 0);
+ }
+}
+
+#ifndef KARATSUBA_THRESHOLD /* allow redefinition via -D for testing */
+#define KARATSUBA_THRESHOLD 24
+#endif
+
+static inline size_t mp_mul_scratchspace_unary(size_t n)
+{
+ /*
+ * Simplistic and overcautious bound on the amount of scratch
+ * space that the recursive multiply function will need.
+ *
+ * The rationale is: on the main Karatsuba branch of
+ * mp_mul_internal, which is the most space-intensive one, we
+ * allocate space for (a0+a1) and (b0+b1) (each just over half the
+ * input length n) and their product (the sum of those sizes, i.e.
+ * just over n itself). Then in order to actually compute the
+ * product, we do a recursive multiplication of size just over n.
+ *
+ * If all those 'just over' weren't there, and everything was
+ * _exactly_ half the length, you'd get the amount of space for a
+ * size-n multiply defined by the recurrence M(n) = 2n + M(n/2),
+ * which is satisfied by M(n) = 4n. But instead it's (2n plus a
+ * word or two) and M(n/2 plus a word or two). On the assumption
+ * that there's still some constant k such that M(n) <= kn, this
+ * gives us kn = 2n + w + k(n/2 + w), where w is a small constant
+ * (one or two words). That simplifies to kn/2 = 2n + (k+1)w, and
+ * since we don't even _start_ needing scratch space until n is at
+ * least 50, we can bound 2n + (k+1)w above by 3n, giving k=6.
+ *
+ * So I claim that 6n words of scratch space will suffice, and I
+ * check that by assertion at every stage of the recursion.
+ */
+ return n * 6;
+}
+
+static size_t mp_mul_scratchspace(size_t rw, size_t aw, size_t bw)
+{
+ size_t inlen = size_t_min(rw, size_t_max(aw, bw));
+ return mp_mul_scratchspace_unary(inlen);
+}
+
+static void mp_mul_internal(mp_int *r, mp_int *a, mp_int *b, mp_int scratch)
+{
+ size_t inlen = size_t_min(r->nw, size_t_max(a->nw, b->nw));
+ assert(scratch.nw >= mp_mul_scratchspace_unary(inlen));
+
+ mp_clear(r);
+
+ if (inlen < KARATSUBA_THRESHOLD || a->nw == 0 || b->nw == 0) {
+ /*
+ * The input numbers are too small to bother optimising. Go
+ * straight to the simple primitive approach.
+ */
+ mp_mul_add_simple(r, a, b);
+ return;
+ }
+
+ /*
+ * Karatsuba divide-and-conquer algorithm. We cut each input in
+ * half, so that it's expressed as two big 'digits' in a giant
+ * base D:
+ *
+ * a = a_1 D + a_0
+ * b = b_1 D + b_0
+ *
+ * Then the product is of course
+ *
+ * ab = a_1 b_1 D^2 + (a_1 b_0 + a_0 b_1) D + a_0 b_0
+ *
+ * and we compute the three coefficients by recursively calling
+ * ourself to do half-length multiplications.
+ *
+ * The clever bit that makes this worth doing is that we only need
+ * _one_ half-length multiplication for the central coefficient
+ * rather than the two that it obviouly looks like, because we can
+ * use a single multiplication to compute
+ *
+ * (a_1 + a_0) (b_1 + b_0) = a_1 b_1 + a_1 b_0 + a_0 b_1 + a_0 b_0
+ *
+ * and then we subtract the other two coefficients (a_1 b_1 and
+ * a_0 b_0) which we were computing anyway.
+ *
+ * Hence we get to multiply two numbers of length N in about three
+ * times as much work as it takes to multiply numbers of length
+ * N/2, which is obviously better than the four times as much work
+ * it would take if we just did a long conventional multiply.
+ */
+
+ /* Break up the input as botlen + toplen, with botlen >= toplen.
+ * The 'base' D is equal to 2^{botlen * BIGNUM_INT_BITS}. */
+ size_t toplen = inlen / 2;
+ size_t botlen = inlen - toplen;
+
+ /* Alias bignums that address the two halves of a,b, and useful
+ * pieces of r. */
+ mp_int a0 = mp_make_alias(a, 0, botlen);
+ mp_int b0 = mp_make_alias(b, 0, botlen);
+ mp_int a1 = mp_make_alias(a, botlen, toplen);
+ mp_int b1 = mp_make_alias(b, botlen, toplen);
+ mp_int r0 = mp_make_alias(r, 0, botlen*2);
+ mp_int r1 = mp_make_alias(r, botlen, r->nw);
+ mp_int r2 = mp_make_alias(r, botlen*2, r->nw);
+
+ /* Recurse to compute a0*b0 and a1*b1, in their correct positions
+ * in the output bignum. They can't overlap. */
+ mp_mul_internal(&r0, &a0, &b0, scratch);
+ mp_mul_internal(&r2, &a1, &b1, scratch);
+
+ if (r->nw < inlen*2) {
+ /*
+ * The output buffer isn't large enough to require the whole
+ * product, so some of a1*b1 won't have been stored. In that
+ * case we won't try to do the full Karatsuba optimisation;
+ * we'll just recurse again to compute a0*b1 and a1*b0 - or at
+ * least as much of them as the output buffer size requires -
+ * and add each one in.
+ */
+ mp_int s = mp_alloc_from_scratch(
+ &scratch, size_t_min(botlen+toplen, r1.nw));
+
+ mp_mul_internal(&s, &a0, &b1, scratch);
+ mp_add_into(&r1, &r1, &s);
+ mp_mul_internal(&s, &a1, &b0, scratch);
+ mp_add_into(&r1, &r1, &s);
+ return;
+ }
+
+ /* a0+a1 and b0+b1 */
+ mp_int asum = mp_alloc_from_scratch(&scratch, botlen+1);
+ mp_int bsum = mp_alloc_from_scratch(&scratch, botlen+1);
+ mp_add_into(&asum, &a0, &a1);
+ mp_add_into(&bsum, &b0, &b1);
+
+ /* Their product */
+ mp_int product = mp_alloc_from_scratch(&scratch, botlen*2+1);
+ mp_mul_internal(&product, &asum, &bsum, scratch);
+
+ /* Subtract off the outer terms we already have */
+ mp_sub_into(&product, &product, &r0);
+ mp_sub_into(&product, &product, &r2);
+
+ /* And add it in with the right offset. */
+ mp_add_into(&r1, &r1, &product);
+}
+
+void mp_mul_into(mp_int *r, mp_int *a, mp_int *b)
+{
+ mp_int *scratch = mp_make_sized(mp_mul_scratchspace(r->nw, a->nw, b->nw));
+ mp_mul_internal(r, a, b, *scratch);
+ mp_free(scratch);
+}
+
+mp_int *mp_mul(mp_int *x, mp_int *y)
+{
+ mp_int *r = mp_make_sized(x->nw + y->nw);
+ mp_mul_into(r, x, y);
+ return r;
+}
+
+void mp_lshift_fixed_into(mp_int *r, mp_int *a, size_t bits)
+{
+ size_t words = bits / BIGNUM_INT_BITS;
+ size_t bitoff = bits % BIGNUM_INT_BITS;
+
+ for (size_t i = r->nw; i-- > 0 ;) {
+ if (i < words) {
+ r->w[i] = 0;
+ } else {
+ r->w[i] = mp_word(a, i - words);
+ if (bitoff != 0) {
+ r->w[i] <<= bitoff;
+ if (i > words)
+ r->w[i] |= mp_word(a, i - words - 1) >>
+ (BIGNUM_INT_BITS - bitoff);
+ }
+ }
+ }
+}
+
+void mp_rshift_fixed_into(mp_int *r, mp_int *a, size_t bits)
+{
+ size_t words = bits / BIGNUM_INT_BITS;
+ size_t bitoff = bits % BIGNUM_INT_BITS;
+
+ for (size_t i = 0; i < r->nw; i++) {
+ r->w[i] = mp_word(a, i + words);
+ if (bitoff != 0) {
+ r->w[i] >>= bitoff;
+ r->w[i] |= mp_word(a, i + words + 1) << (BIGNUM_INT_BITS - bitoff);
+ }
+ }
+}
+
+mp_int *mp_lshift_fixed(mp_int *x, size_t bits)
+{
+ size_t words = (bits + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS;
+ mp_int *r = mp_make_sized(x->nw + words);
+ mp_lshift_fixed_into(r, x, bits);
+ return r;
+}
+
+mp_int *mp_rshift_fixed(mp_int *x, size_t bits)
+{
+ size_t words = bits / BIGNUM_INT_BITS;
+ size_t nw = x->nw - size_t_min(x->nw, words);
+ mp_int *r = mp_make_sized(size_t_max(nw, 1));
+ mp_rshift_fixed_into(r, x, bits);
+ return r;
+}
+
+/*
+ * Safe right shift is done using the same technique as
+ * trim_leading_zeroes above: you make an n-word left shift by
+ * composing an appropriate subset of power-of-2-sized shifts, so it
+ * takes log_2(n) loop iterations each of which does a different shift
+ * by a power of 2 words, using the usual bit twiddling to make the
+ * whole shift conditional on the appropriate bit of n.
+ */
+static void mp_rshift_safe_in_place(mp_int *r, size_t bits)
+{
+ size_t wordshift = bits / BIGNUM_INT_BITS;
+ size_t bitshift = bits % BIGNUM_INT_BITS;
+
+ unsigned clear = (r->nw - wordshift) >> (CHAR_BIT * sizeof(size_t) - 1);
+ mp_cond_clear(r, clear);
+
+ for (unsigned bit = 0; r->nw >> bit; bit++) {
+ size_t word_offset = (size_t)1 << bit;
+ BignumInt mask = -(BignumInt)((wordshift >> bit) & 1);
+ for (size_t i = 0; i < r->nw; i++) {
+ BignumInt w = mp_word(r, i + word_offset);
+ r->w[i] ^= (r->w[i] ^ w) & mask;
+ }
+ }
+
+ /*
+ * That's done the shifting by words; now we do the shifting by
+ * bits.
+ */
+ for (unsigned bit = 0; bit < BIGNUM_INT_BITS_BITS; bit++) {
+ unsigned shift = 1 << bit, upshift = BIGNUM_INT_BITS - shift;
+ BignumInt mask = -(BignumInt)((bitshift >> bit) & 1);
+ for (size_t i = 0; i < r->nw; i++) {
+ BignumInt w = ((r->w[i] >> shift) | (mp_word(r, i+1) << upshift));
+ r->w[i] ^= (r->w[i] ^ w) & mask;
+ }
+ }
+}
+
+mp_int *mp_rshift_safe(mp_int *x, size_t bits)
+{
+ mp_int *r = mp_copy(x);
+ mp_rshift_safe_in_place(r, bits);
+ return r;
+}
+
+void mp_rshift_safe_into(mp_int *r, mp_int *x, size_t bits)
+{
+ mp_copy_into(r, x);
+ mp_rshift_safe_in_place(r, bits);
+}
+
+static void mp_lshift_safe_in_place(mp_int *r, size_t bits)
+{
+ size_t wordshift = bits / BIGNUM_INT_BITS;
+ size_t bitshift = bits % BIGNUM_INT_BITS;
+
+ /*
+ * Same strategy as mp_rshift_safe_in_place, but of course the
+ * other way up.
+ */
+
+ unsigned clear = (r->nw - wordshift) >> (CHAR_BIT * sizeof(size_t) - 1);
+ mp_cond_clear(r, clear);
+
+ for (unsigned bit = 0; r->nw >> bit; bit++) {
+ size_t word_offset = (size_t)1 << bit;
+ BignumInt mask = -(BignumInt)((wordshift >> bit) & 1);
+ for (size_t i = r->nw; i-- > 0 ;) {
+ BignumInt w = mp_word(r, i - word_offset);
+ r->w[i] ^= (r->w[i] ^ w) & mask;
+ }
+ }
+
+ size_t downshift = BIGNUM_INT_BITS - bitshift;
+ size_t no_shift = (downshift >> BIGNUM_INT_BITS_BITS);
+ downshift &= ~-(size_t)no_shift;
+ BignumInt downshifted_mask = ~-(BignumInt)no_shift;
+
+ for (size_t i = r->nw; i-- > 0 ;) {
+ r->w[i] = (r->w[i] << bitshift) |
+ ((mp_word(r, i-1) >> downshift) & downshifted_mask);
+ }
+}
+
+void mp_lshift_safe_into(mp_int *r, mp_int *x, size_t bits)
+{
+ mp_copy_into(r, x);
+ mp_lshift_safe_in_place(r, bits);
+}
+
+void mp_reduce_mod_2to(mp_int *x, size_t p)
+{
+ size_t word = p / BIGNUM_INT_BITS;
+ size_t mask = ((size_t)1 << (p % BIGNUM_INT_BITS)) - 1;
+ for (; word < x->nw; word++) {
+ x->w[word] &= mask;
+ mask = 0;
+ }
+}
+
+/*
+ * Inverse mod 2^n is computed by an iterative technique which doubles
+ * the number of bits at each step.
+ */
+mp_int *mp_invert_mod_2to(mp_int *x, size_t p)
+{
+ /* Input checks: x must be coprime to the modulus, i.e. odd, and p
+ * can't be zero */
+ assert(x->nw > 0);
+ assert(x->w[0] & 1);
+ assert(p > 0);
+
+ size_t rw = (p + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS;
+ rw = size_t_max(rw, 1);
+ mp_int *r = mp_make_sized(rw);
+
+ size_t mul_scratchsize = mp_mul_scratchspace(2*rw, rw, rw);
+ mp_int *scratch_orig = mp_make_sized(6 * rw + mul_scratchsize);
+ mp_int scratch_per_iter = *scratch_orig;
+ mp_int mul_scratch = mp_alloc_from_scratch(
+ &scratch_per_iter, mul_scratchsize);
+
+ r->w[0] = 1;
+
+ for (size_t b = 1; b < p; b <<= 1) {
+ /*
+ * In each step of this iteration, we have the inverse of x
+ * mod 2^b, and we want the inverse of x mod 2^{2b}.
+ *
+ * Write B = 2^b for convenience, so we want x^{-1} mod B^2.
+ * Let x = x_0 + B x_1 + k B^2, with 0 <= x_0,x_1 < B.
+ *
+ * We want to find r_0 and r_1 such that
+ * (r_1 B + r_0) (x_1 B + x_0) == 1 (mod B^2)
+ *
+ * To begin with, we know r_0 must be the inverse mod B of
+ * x_0, i.e. of x, i.e. it is the inverse we computed in the
+ * previous iteration. So now all we need is r_1.
+ *
+ * Multiplying out, neglecting multiples of B^2, and writing
+ * x_0 r_0 = K B + 1, we have
+ *
+ * r_1 x_0 B + r_0 x_1 B + K B == 0 (mod B^2)
+ * => r_1 x_0 B == - r_0 x_1 B - K B (mod B^2)
+ * => r_1 x_0 == - r_0 x_1 - K (mod B)
+ * => r_1 == r_0 (- r_0 x_1 - K) (mod B)
+ *
+ * (the last step because we multiply through by the inverse
+ * of x_0, which we already know is r_0).
+ */
+
+ mp_int scratch_this_iter = scratch_per_iter;
+ size_t Bw = (b + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS;
+ size_t B2w = (2*b + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS;
+
+ /* Start by finding K: multiply x_0 by r_0, and shift down. */
+ mp_int x0 = mp_alloc_from_scratch(&scratch_this_iter, Bw);
+ mp_copy_into(&x0, x);
+ mp_reduce_mod_2to(&x0, b);
+ mp_int r0 = mp_make_alias(r, 0, Bw);
+ mp_int Kshift = mp_alloc_from_scratch(&scratch_this_iter, B2w);
+ mp_mul_internal(&Kshift, &x0, &r0, mul_scratch);
+ mp_int K = mp_alloc_from_scratch(&scratch_this_iter, Bw);
+ mp_rshift_fixed_into(&K, &Kshift, b);
+
+ /* Now compute the product r_0 x_1, reusing the space of Kshift. */
+ mp_int x1 = mp_alloc_from_scratch(&scratch_this_iter, Bw);
+ mp_rshift_fixed_into(&x1, x, b);
+ mp_reduce_mod_2to(&x1, b);
+ mp_int r0x1 = mp_make_alias(&Kshift, 0, Bw);
+ mp_mul_internal(&r0x1, &r0, &x1, mul_scratch);
+
+ /* Add K to that. */
+ mp_add_into(&r0x1, &r0x1, &K);
+
+ /* Negate it. */
+ mp_neg_into(&r0x1, &r0x1);
+
+ /* Multiply by r_0. */
+ mp_int r1 = mp_alloc_from_scratch(&scratch_this_iter, Bw);
+ mp_mul_internal(&r1, &r0, &r0x1, mul_scratch);
+ mp_reduce_mod_2to(&r1, b);
+
+ /* That's our r_1, so add it on to r_0 to get the full inverse
+ * output from this iteration. */
+ mp_lshift_fixed_into(&K, &r1, (b % BIGNUM_INT_BITS));
+ size_t Bpos = b / BIGNUM_INT_BITS;
+ mp_int r1_position = mp_make_alias(r, Bpos, B2w-Bpos);
+ mp_add_into(&r1_position, &r1_position, &K);
+ }
+
+ /* Finally, reduce mod the precise desired number of bits. */
+ mp_reduce_mod_2to(r, p);
+
+ mp_free(scratch_orig);
+ return r;
+}
+
+static size_t monty_scratch_size(MontyContext *mc)
+{
+ return 3*mc->rw + mc->pw + mp_mul_scratchspace(mc->pw, mc->rw, mc->rw);
+}
+
+MontyContext *monty_new(mp_int *modulus)
+{
+ MontyContext *mc = snew(MontyContext);
+
+ mc->rw = modulus->nw;
+ mc->rbits = mc->rw * BIGNUM_INT_BITS;
+ mc->pw = mc->rw * 2 + 1;
+
+ mc->m = mp_copy(modulus);
+
+ mc->minus_minv_mod_r = mp_invert_mod_2to(mc->m, mc->rbits);
+ mp_neg_into(mc->minus_minv_mod_r, mc->minus_minv_mod_r);
+
+ mp_int *r = mp_make_sized(mc->rw + 1);
+ r->w[mc->rw] = 1;
+ mc->powers_of_r_mod_m[0] = mp_mod(r, mc->m);
+ mp_free(r);
+
+ for (size_t j = 1; j < lenof(mc->powers_of_r_mod_m); j++)
+ mc->powers_of_r_mod_m[j] = mp_modmul(
+ mc->powers_of_r_mod_m[0], mc->powers_of_r_mod_m[j-1], mc->m);
+
+ mc->scratch = mp_make_sized(monty_scratch_size(mc));
+
+ return mc;
+}
+
+void monty_free(MontyContext *mc)
+{
+ mp_free(mc->m);
+ for (size_t j = 0; j < 3; j++)
+ mp_free(mc->powers_of_r_mod_m[j]);
+ mp_free(mc->minus_minv_mod_r);
+ mp_free(mc->scratch);
+ smemclr(mc, sizeof(*mc));
+ sfree(mc);
+}
+
+/*
+ * The main Montgomery reduction step.
+ */
+static mp_int monty_reduce_internal(MontyContext *mc, mp_int *x, mp_int scratch)
+{
+ /*
+ * The trick with Montgomery reduction is that on the one hand we
+ * want to reduce the size of the input by a factor of about r,
+ * and on the other hand, the two numbers we just multiplied were
+ * both stored with an extra factor of r multiplied in. So we
+ * computed ar*br = ab r^2, but we want to return abr, so we need
+ * to divide by r - and if we can do that by _actually dividing_
+ * by r then this also reduces the size of the number.
+ *
+ * But we can only do that if the number we're dividing by r is a
+ * multiple of r. So first we must add an adjustment to it which
+ * clears its bottom 'rbits' bits. That adjustment must be a
+ * multiple of m in order to leave the residue mod n unchanged, so
+ * the question is, what multiple of m can we add to x to make it
+ * congruent to 0 mod r? And the answer is, x * (-m)^{-1} mod r.
+ */
+
+ /* x mod r */
+ mp_int x_lo = mp_make_alias(x, 0, mc->rbits);
+
+ /* x * (-m)^{-1}, i.e. the number we want to multiply by m */
+ mp_int k = mp_alloc_from_scratch(&scratch, mc->rw);
+ mp_mul_internal(&k, &x_lo, mc->minus_minv_mod_r, scratch);
+
+ /* m times that, i.e. the number we want to add to x */
+ mp_int mk = mp_alloc_from_scratch(&scratch, mc->pw);
+ mp_mul_internal(&mk, mc->m, &k, scratch);
+
+ /* Add it to x */
+ mp_add_into(&mk, x, &mk);
+
+ /* Reduce mod r, by simply making an alias to the upper words of x */
+ mp_int toret = mp_make_alias(&mk, mc->rw, mk.nw - mc->rw);
+
+ /*
+ * We'll generally be doing this after a multiplication of two
+ * fully reduced values. So our input could be anything up to m^2,
+ * and then we added up to rm to it. Hence, the maximum value is
+ * rm+m^2, and after dividing by r, that becomes r + m(m/r) < 2r.
+ * So a single trial-subtraction will finish reducing to the
+ * interval [0,m).
+ */
+ mp_cond_sub_into(&toret, &toret, mc->m, mp_cmp_hs(&toret, mc->m));
+ return toret;
+}
+
+void monty_mul_into(MontyContext *mc, mp_int *r, mp_int *x, mp_int *y)
+{
+ assert(x->nw <= mc->rw);
+ assert(y->nw <= mc->rw);
+
+ mp_int scratch = *mc->scratch;
+ mp_int tmp = mp_alloc_from_scratch(&scratch, 2*mc->rw);
+ mp_mul_into(&tmp, x, y);
+ mp_int reduced = monty_reduce_internal(mc, &tmp, scratch);
+ mp_copy_into(r, &reduced);
+ mp_clear(mc->scratch);
+}
+
+mp_int *monty_mul(MontyContext *mc, mp_int *x, mp_int *y)
+{
+ mp_int *toret = mp_make_sized(mc->rw);
+ monty_mul_into(mc, toret, x, y);
+ return toret;
+}
+
+mp_int *monty_modulus(MontyContext *mc)
+{
+ return mc->m;
+}
+
+mp_int *monty_identity(MontyContext *mc)
+{
+ return mc->powers_of_r_mod_m[0];
+}
+
+mp_int *monty_invert(MontyContext *mc, mp_int *x)
+{
+ /* Given xr, we want to return x^{-1}r = (xr)^{-1} r^2 =
+ * monty_reduce((xr)^{-1} r^3) */
+ mp_int *tmp = mp_invert(x, mc->m);
+ mp_int *toret = monty_mul(mc, tmp, mc->powers_of_r_mod_m[2]);
+ mp_free(tmp);
+ return toret;
+}
+
+/*
+ * Importing a number into Montgomery representation involves
+ * multiplying it by r and reducing mod m. We use the general-purpose
+ * mp_modmul for this, in case the input number is out of range.
+ */
+mp_int *monty_import(MontyContext *mc, mp_int *x)
+{
+ return mp_modmul(x, mc->powers_of_r_mod_m[0], mc->m);
+}
+
+void monty_import_into(MontyContext *mc, mp_int *r, mp_int *x)
+{
+ mp_int *imported = monty_import(mc, x);
+ mp_copy_into(r, imported);
+ mp_free(imported);
+}
+
+/*
+ * Exporting a number means multiplying it by r^{-1}, which is exactly
+ * what monty_reduce does anyway, so we just do that.
+ */
+void monty_export_into(MontyContext *mc, mp_int *r, mp_int *x)
+{
+ assert(x->nw <= 2*mc->rw);
+ mp_int reduced = monty_reduce_internal(mc, x, *mc->scratch);
+ mp_copy_into(r, &reduced);
+ mp_clear(mc->scratch);
+}
+
+mp_int *monty_export(MontyContext *mc, mp_int *x)
+{
+ mp_int *toret = mp_make_sized(mc->rw);
+ monty_export_into(mc, toret, x);
+ return toret;
+}
+
+#define MODPOW_LOG2_WINDOW_SIZE 5
+#define MODPOW_WINDOW_SIZE (1 << MODPOW_LOG2_WINDOW_SIZE)
+mp_int *monty_pow(MontyContext *mc, mp_int *base, mp_int *exponent)
+{
+ /*
+ * Modular exponentiation is done from the top down, using a
+ * fixed-window technique.
+ *
+ * We have a table storing every power of the base from base^0 up
+ * to base^{w-1}, where w is a small power of 2, say 2^k. (k is
+ * defined above as MODPOW_LOG2_WINDOW_SIZE, and w = 2^k is
+ * defined as MODPOW_WINDOW_SIZE.)
+ *
+ * We break the exponent up into k-bit chunks, from the bottom up,
+ * that is
+ *
+ * exponent = c_0 + 2^k c_1 + 2^{2k} c_2 + ... + 2^{nk} c_n
+ *
+ * and we compute base^exponent by computing in turn
+ *
+ * base^{c_n}
+ * base^{2^k c_n + c_{n-1}}
+ * base^{2^{2k} c_n + 2^k c_{n-1} + c_{n-2}}
+ * ...
+ *
+ * where each line is obtained by raising the previous line to the
+ * power 2^k (i.e. squaring it k times) and then multiplying in
+ * a value base^{c_i}, which we can look up in our table.
+ *
+ * Side-channel considerations: the exponent is secret, so
+ * actually doing a single table lookup by using a chunk of
+ * exponent bits as an array index would be an obvious leak of
+ * secret information into the cache. So instead, in each
+ * iteration, we read _all_ the table entries, and do a sequence
+ * of mp_select operations to leave just the one we wanted in the
+ * variable that will go into the multiplication. In other
+ * contexts (like software AES) that technique is so prohibitively
+ * slow that it makes you choose a strategy that doesn't use table
+ * lookups at all (we do bitslicing in preference); but here, this
+ * iteration through 2^k table elements is replacing k-1 bignum
+ * _multiplications_ that you'd have to use instead if you did
+ * simple square-and-multiply, and that makes it still a win.
+ */
+
+ /* Table that holds base^0, ..., base^{w-1} */
+ mp_int *table[MODPOW_WINDOW_SIZE];
+ table[0] = mp_copy(monty_identity(mc));
+ for (size_t i = 1; i < MODPOW_WINDOW_SIZE; i++)
+ table[i] = monty_mul(mc, table[i-1], base);
+
+ /* out accumulates the output value */
+ mp_int *out = mp_make_sized(mc->rw);
+ mp_copy_into(out, monty_identity(mc));
+
+ /* table_entry will hold each value we get out of the table */
+ mp_int *table_entry = mp_make_sized(mc->rw);
+
+ /* Bit index of the chunk of bits we're working on. Start with the
+ * highest multiple of k strictly less than the size of our
+ * bignum, i.e. the highest-index chunk of bits that might
+ * conceivably contain any nonzero bit. */
+ size_t i = (exponent->nw * BIGNUM_INT_BITS) - 1;
+ i -= i % MODPOW_LOG2_WINDOW_SIZE;
+
+ bool first_iteration = true;
+
+ while (true) {
+ /* Construct the table index */
+ unsigned table_index = 0;
+ for (size_t j = 0; j < MODPOW_LOG2_WINDOW_SIZE; j++)
+ table_index |= mp_get_bit(exponent, i+j) << j;
+
+ /* Iterate through the table to do a side-channel-safe lookup,
+ * ending up with table_entry = table[table_index] */
+ mp_copy_into(table_entry, table[0]);
+ for (size_t j = 1; j < MODPOW_WINDOW_SIZE; j++) {
+ unsigned not_this_one =
+ ((table_index ^ j) + MODPOW_WINDOW_SIZE - 1)
+ >> MODPOW_LOG2_WINDOW_SIZE;
+ mp_select_into(table_entry, table[j], table_entry, not_this_one);
+ }
+
+ if (!first_iteration) {
+ /* Multiply into the output */
+ monty_mul_into(mc, out, out, table_entry);
+ } else {
+ /* On the first iteration, we can save one multiplication
+ * by just copying */
+ mp_copy_into(out, table_entry);
+ first_iteration = false;
+ }
+
+ /* If that was the bottommost chunk of bits, we're done */
+ if (i == 0)
+ break;
+
+ /* Otherwise, square k times and go round again. */
+ for (size_t j = 0; j < MODPOW_LOG2_WINDOW_SIZE; j++)
+ monty_mul_into(mc, out, out, out);
+
+ i-= MODPOW_LOG2_WINDOW_SIZE;
+ }
+
+ for (size_t i = 0; i < MODPOW_WINDOW_SIZE; i++)
+ mp_free(table[i]);
+ mp_free(table_entry);
+ mp_clear(mc->scratch);
+ return out;
+}
+
+mp_int *mp_modpow(mp_int *base, mp_int *exponent, mp_int *modulus)
+{
+ assert(modulus->nw > 0);
+ assert(modulus->w[0] & 1);
+
+ MontyContext *mc = monty_new(modulus);
+ mp_int *m_base = monty_import(mc, base);
+ mp_int *m_out = monty_pow(mc, m_base, exponent);
+ mp_int *out = monty_export(mc, m_out);
+ mp_free(m_base);
+ mp_free(m_out);
+ monty_free(mc);
+ return out;
+}
+
+/*
+ * Given two input integers a,b which are not both even, computes d =
+ * gcd(a,b) and also two integers A,B such that A*a - B*b = d. A,B
+ * will be the minimal non-negative pair satisfying that criterion,
+ * which is equivalent to saying that 0 <= A < b/d and 0 <= B < a/d.
+ *
+ * This algorithm is an adapted form of Stein's algorithm, which
+ * computes gcd(a,b) using only addition and bit shifts (i.e. without
+ * needing general division), using the following rules:
+ *
+ * - if both of a,b are even, divide off a common factor of 2
+ * - if one of a,b (WLOG a) is even, then gcd(a,b) = gcd(a/2,b), so
+ * just divide a by 2
+ * - if both of a,b are odd, then WLOG a>b, and gcd(a,b) =
+ * gcd(b,(a-b)/2).
+ *
+ * Sometimes this function is used for modular inversion, in which
+ * case we already know we expect the two inputs to be coprime, so to
+ * save time the 'both even' initial case is assumed not to arise (or
+ * to have been handled already by the caller). So this function just
+ * performs a sequence of reductions in the following form:
+ *
+ * - if a,b are both odd, sort them so that a > b, and replace a with
+ * b-a; otherwise sort them so that a is the even one
+ * - either way, now a is even and b is odd, so divide a by 2.
+ *
+ * The big change to Stein's algorithm is that we need the Bezout
+ * coefficients as output, not just the gcd. So we need to know how to
+ * generate those in each case, based on the coefficients from the
+ * reduced pair of numbers:
+ *
+ * - If a is even, and u,v are such that u*(a/2) + v*b = d:
+ * + if u is also even, then this is just (u/2)*a + v*b = d
+ * + otherwise, (u+b)*(a/2) + (v-a/2)*b is also equal to d, and
+ * since u and b are both odd, (u+b)/2 is an integer, so we have
+ * ((u+b)/2)*a + (v-a/2)*b = d.
+ *
+ * - If a,b are both odd, and u,v are such that u*b + v*(a-b) = d,
+ * then v*a + (u-v)*b = d.
+ *
+ * In the case where we passed from (a,b) to (b,(a-b)/2), we regard it
+ * as having first subtracted b from a and then halved a, so both of
+ * these transformations must be done in sequence.
+ *
+ * The code below transforms this from a recursive to an iterative
+ * algorithm. We first reduce a,b to 0,1, recording at each stage
+ * whether we did the initial subtraction, and whether we had to swap
+ * the two values; then we iterate backwards over that record of what
+ * we did, applying the above rules for building up the Bezout
+ * coefficients as we go. Of course, all the case analysis is done by
+ * the usual bit-twiddling conditionalisation to avoid data-dependent
+ * control flow.
+ *
+ * Also, since these mp_ints are generally treated as unsigned, we
+ * store the coefficients by absolute value, with the semantics that
+ * they always have opposite sign, and in the unwinding loop we keep a
+ * bit indicating whether Aa-Bb is currently expected to be +d or -d,
+ * so that we can do one final conditional adjustment if it's -d.
+ *
+ * Once the reduction rules have managed to reduce the input numbers
+ * to (0,d), then they are stable (the next reduction will always
+ * divide the even one by 2, which maps 0 to 0). So it doesn't matter
+ * if we do more steps of the algorithm than necessary; hence, for
+ * constant time, we just need to find the maximum number we could
+ * _possibly_ require, and do that many.
+ *
+ * If a,b < 2^n, at most 2n iterations are required. Proof: consider
+ * the quantity Q = log_2(a) + log_2(b). Every step halves one of the
+ * numbers (and may also reduce one of them further by doing a
+ * subtraction beforehand, but in the worst case, not by much or not
+ * at all). So Q reduces by at least 1 per iteration, and it starts
+ * off with a value at most 2n.
+ *
+ * The worst case inputs (I think) are where x=2^{n-1} and y=2^n-1
+ * (i.e. x is a power of 2 and y is all 1s). In that situation, the
+ * first n-1 steps repeatedly halve x until it's 1, and then there are
+ * n further steps each of which subtracts 1 from y and halves it.
+ */
+static void mp_bezout_into(mp_int *a_coeff_out, mp_int *b_coeff_out,
+ mp_int *gcd_out, mp_int *a_in, mp_int *b_in)
+{
+ size_t nw = size_t_max(1, size_t_max(a_in->nw, b_in->nw));
+
+ /* Make mutable copies of the input numbers */
+ mp_int *a = mp_make_sized(nw), *b = mp_make_sized(nw);
+ mp_copy_into(a, a_in);
+ mp_copy_into(b, b_in);
+
+ /* Space to build up the output coefficients, with an extra word
+ * so that intermediate values can overflow off the top and still
+ * right-shift back down to the correct value */
+ mp_int *ac = mp_make_sized(nw + 1), *bc = mp_make_sized(nw + 1);
+
+ /* And a general-purpose temp register */
+ mp_int *tmp = mp_make_sized(nw);
+
+ /* Space to record the sequence of reduction steps to unwind. We
+ * make it a BignumInt for no particular reason except that (a)
+ * mp_make_sized conveniently zeroes the allocation and mp_free
+ * wipes it, and (b) this way I can use mp_dump() if I have to
+ * debug this code. */
+ size_t steps = 2 * nw * BIGNUM_INT_BITS;
+ mp_int *record = mp_make_sized(
+ (steps*2 + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS);
+
+ for (size_t step = 0; step < steps; step++) {
+ /*
+ * If a and b are both odd, we want to sort them so that a is
+ * larger. But if one is even, we want to sort them so that a
+ * is the even one.
+ */
+ unsigned swap_if_both_odd = mp_cmp_hs(b, a);
+ unsigned swap_if_one_even = a->w[0] & 1;
+ unsigned both_odd = a->w[0] & b->w[0] & 1;
+ unsigned swap = swap_if_one_even ^ (
+ (swap_if_both_odd ^ swap_if_one_even) & both_odd);
+
+ mp_cond_swap(a, b, swap);
+
+ /*
+ * If a,b are both odd, then a is the larger number, so
+ * subtract the smaller one from it.
+ */
+ mp_cond_sub_into(a, a, b, both_odd);
+
+ /*
+ * Now a is even, so divide it by two.
+ */
+ mp_rshift_fixed_into(a, a, 1);
+
+ /*
+ * Record the two 1-bit values both_odd and swap.
+ */
+ mp_set_bit(record, step*2, both_odd);
+ mp_set_bit(record, step*2+1, swap);
+ }
+
+ /*
+ * Now we expect to have reduced the two numbers to 0 and d,
+ * although we don't know which way round. (But we avoid checking
+ * this by assertion; sometimes we'll need to do this computation
+ * without giving away that we already know the inputs were bogus.
+ * So we'd prefer to just press on and return nonsense.)
+ */
+
+ if (gcd_out) {
+ /*
+ * At this point we can return the actual gcd. Since one of
+ * a,b is it and the other is zero, the easiest way to get it
+ * is to add them together.
+ */
+ mp_add_into(gcd_out, a, b);
+ }
+
+ /*
+ * If the caller _only_ wanted the gcd, and neither Bezout
+ * coefficient is even required, we can skip the entire unwind
+ * stage.
+ */
+ if (a_coeff_out || b_coeff_out) {
+
+ /*
+ * The Bezout coefficients of a,b at this point are simply 0
+ * for whichever of a,b is zero, and 1 for whichever is
+ * nonzero. The nonzero number equals gcd(a,b), which by
+ * assumption is odd, so we can do this by just taking the low
+ * bit of each one.
+ */
+ ac->w[0] = mp_get_bit(a, 0);
+ bc->w[0] = mp_get_bit(b, 0);
+
+ /*
+ * Overwrite a,b themselves with those same numbers. This has
+ * the effect of dividing both of them by d, which will
+ * arrange that during the unwind stage we generate the
+ * minimal coefficients instead of a larger pair.
+ */
+ mp_copy_into(a, ac);
+ mp_copy_into(b, bc);
+
+ /*
+ * We'll maintain the invariant as we unwind that ac * a - bc
+ * * b is either +d or -d (or rather, +1/-1 after scaling by
+ * d), and we'll remember which. (We _could_ keep it at +d the
+ * whole time, but it would cost more work every time round
+ * the loop, so it's cheaper to fix that up once at the end.)
+ *
+ * Initially, the result is +d if a was the nonzero value after
+ * reduction, and -d if b was.
+ */
+ unsigned minus_d = b->w[0];
+
+ for (size_t step = steps; step-- > 0 ;) {
+ /*
+ * Recover the data from the step we're unwinding.
+ */
+ unsigned both_odd = mp_get_bit(record, step*2);
+ unsigned swap = mp_get_bit(record, step*2+1);
+
+ /*
+ * Unwind the division: if our coefficient of a is odd, we
+ * adjust the coefficients by +b and +a respectively.
+ */
+ unsigned adjust = ac->w[0] & 1;
+ mp_cond_add_into(ac, ac, b, adjust);
+ mp_cond_add_into(bc, bc, a, adjust);
+
+ /*
+ * Now ac is definitely even, so we divide it by two.
+ */
+ mp_rshift_fixed_into(ac, ac, 1);
+
+ /*
+ * Now unwind the subtraction, if there was one, by adding
+ * ac to bc.
+ */
+ mp_cond_add_into(bc, bc, ac, both_odd);
+
+ /*
+ * Undo the transformation of the input numbers, by
+ * multiplying a by 2 and then adding b to a (the latter
+ * only if both_odd).
+ */
+ mp_lshift_fixed_into(a, a, 1);
+ mp_cond_add_into(a, a, b, both_odd);
+
+ /*
+ * Finally, undo the swap. If we do swap, this also
+ * reverses the sign of the current result ac*a+bc*b.
+ */
+ mp_cond_swap(a, b, swap);
+ mp_cond_swap(ac, bc, swap);
+ minus_d ^= swap;
+ }
+
+ /*
+ * Now we expect to have recovered the input a,b (or rather,
+ * the versions of them divided by d). But we might find that
+ * our current result is -d instead of +d, that is, we have
+ * A',B' such that A'a - B'b = -d.
+ *
+ * In that situation, we set A = b-A' and B = a-B', giving us
+ * Aa-Bb = ab - A'a - ab + B'b = +1.
+ */
+ mp_sub_into(tmp, b, ac);
+ mp_select_into(ac, ac, tmp, minus_d);
+ mp_sub_into(tmp, a, bc);
+ mp_select_into(bc, bc, tmp, minus_d);
+
+ /*
+ * Now we really are done. Return the outputs.
+ */
+ if (a_coeff_out)
+ mp_copy_into(a_coeff_out, ac);
+ if (b_coeff_out)
+ mp_copy_into(b_coeff_out, bc);
+
+ }
+
+ mp_free(a);
+ mp_free(b);
+ mp_free(ac);
+ mp_free(bc);
+ mp_free(tmp);
+ mp_free(record);
+}
+
+mp_int *mp_invert(mp_int *x, mp_int *m)
+{
+ mp_int *result = mp_make_sized(m->nw);
+ mp_bezout_into(result, NULL, NULL, x, m);
+ return result;
+}
+
+void mp_gcd_into(mp_int *a, mp_int *b, mp_int *gcd, mp_int *A, mp_int *B)
+{
+ /*
+ * Identify shared factors of 2. To do this we OR the two numbers
+ * to get something whose lowest set bit is in the right place,
+ * remove all higher bits by ANDing it with its own negation, and
+ * use mp_get_nbits to find the location of the single remaining
+ * set bit.
+ */
+ mp_int *tmp = mp_make_sized(size_t_max(a->nw, b->nw));
+ for (size_t i = 0; i < tmp->nw; i++)
+ tmp->w[i] = mp_word(a, i) | mp_word(b, i);
+ BignumCarry carry = 1;
+ for (size_t i = 0; i < tmp->nw; i++) {
+ BignumInt negw;
+ BignumADC(negw, carry, 0, ~tmp->w[i], carry);
+ tmp->w[i] &= negw;
+ }
+ size_t shift = mp_get_nbits(tmp) - 1;
+ mp_free(tmp);
+
+ /*
+ * Make copies of a,b with those shared factors of 2 divided off,
+ * so that at least one is odd (which is the precondition for
+ * mp_bezout_into). Compute the gcd of those.
+ */
+ mp_int *as = mp_rshift_safe(a, shift);
+ mp_int *bs = mp_rshift_safe(b, shift);
+ mp_bezout_into(A, B, gcd, as, bs);
+ mp_free(as);
+ mp_free(bs);
+
+ /*
+ * And finally shift the gcd back up (unless the caller didn't
+ * even ask for it), to put the shared factors of 2 back in.
+ */
+ if (gcd)
+ mp_lshift_safe_in_place(gcd, shift);
+}
+
+mp_int *mp_gcd(mp_int *a, mp_int *b)
+{
+ mp_int *gcd = mp_make_sized(size_t_min(a->nw, b->nw));
+ mp_gcd_into(a, b, gcd, NULL, NULL);
+ return gcd;
+}
+
+unsigned mp_coprime(mp_int *a, mp_int *b)
+{
+ mp_int *gcd = mp_gcd(a, b);
+ unsigned toret = mp_eq_integer(gcd, 1);
+ mp_free(gcd);
+ return toret;
+}
+
+static uint32_t recip_approx_32(uint32_t x)
+{
+ /*
+ * Given an input x in [2^31,2^32), i.e. a uint32_t with its high
+ * bit set, this function returns an approximation to 2^63/x,
+ * computed using only multiplications and bit shifts just in case
+ * the C divide operator has non-constant time (either because the
+ * underlying machine instruction does, or because the operator
+ * expands to a library function on a CPU without hardware
+ * division).
+ *
+ * The coefficients are derived from those of the degree-9
+ * polynomial which is the minimax-optimal approximation to that
+ * function on the given interval (generated using the Remez
+ * algorithm), converted into integer arithmetic with shifts used
+ * to maximise the number of significant bits at every state. (A
+ * sort of 'static floating point' - the exponent is statically
+ * known at every point in the code, so it never needs to be
+ * stored at run time or to influence runtime decisions.)
+ *
+ * Exhaustive iteration over the whole input space shows the
+ * largest possible error to be 1686.54. (The input value
+ * attaining that bound is 4226800006 == 0xfbefd986, whose true
+ * reciprocal is 2182116973.540... == 0x8210766d.8a6..., whereas
+ * this function returns 2182115287 == 0x82106fd7.)
+ */
+ uint64_t r = 0x92db03d6ULL;
+ r = 0xf63e71eaULL - ((r*x) >> 34);
+ r = 0xb63721e8ULL - ((r*x) >> 34);
+ r = 0x9c2da00eULL - ((r*x) >> 33);
+ r = 0xaada0bb8ULL - ((r*x) >> 32);
+ r = 0xf75cd403ULL - ((r*x) >> 31);
+ r = 0xecf97a41ULL - ((r*x) >> 31);
+ r = 0x90d876cdULL - ((r*x) >> 31);
+ r = 0x6682799a0ULL - ((r*x) >> 26);
+ return r;
+}
+
+void mp_divmod_into(mp_int *n, mp_int *d, mp_int *q_out, mp_int *r_out)
+{
+ assert(!mp_eq_integer(d, 0));
+
+ /*
+ * We do division by using Newton-Raphson iteration to converge to
+ * the reciprocal of d (or rather, R/d for R a sufficiently large
+ * power of 2); then we multiply that reciprocal by n; and we
+ * finish up with conditional subtraction.
+ *
+ * But we have to do it in a fixed number of N-R iterations, so we
+ * need some error analysis to know how many we might need.
+ *
+ * The iteration is derived by defining f(r) = d - R/r.
+ * Differentiating gives f'(r) = R/r^2, and the Newton-Raphson
+ * formula applied to those functions gives
+ *
+ * r_{i+1} = r_i - f(r_i) / f'(r_i)
+ * = r_i - (d - R/r_i) r_i^2 / R
+ * = r_i (2 R - d r_i) / R
+ *
+ * Now let e_i be the error in a given iteration, in the sense
+ * that
+ *
+ * d r_i = R + e_i
+ * i.e. e_i/R = (r_i - r_true) / r_true
+ *
+ * so e_i is the _relative_ error in r_i.
+ *
+ * We must also introduce a rounding-error term, because the
+ * division by R always gives an integer. This might make the
+ * output off by up to 1 (in the negative direction, because
+ * right-shifting gives floor of the true quotient). So when we
+ * divide by R, we must imagine adding some f in [0,1). Then we
+ * have
+ *
+ * d r_{i+1} = d r_i (2 R - d r_i) / R - d f
+ * = (R + e_i) (R - e_i) / R - d f
+ * = (R^2 - e_i^2) / R - d f
+ * = R - (e_i^2 / R + d f)
+ * => e_{i+1} = - (e_i^2 / R + d f)
+ *
+ * The sum of two positive quantities is bounded above by twice
+ * their max, and max |f| = 1, so we can bound this as follows:
+ *
+ * |e_{i+1}| <= 2 max (e_i^2/R, d)
+ * |e_{i+1}/R| <= 2 max ((e_i/R)^2, d/R)
+ * log2 |R/e_{i+1}| <= min (2 log2 |R/e_i|, log2 |R/d|) - 1
+ *
+ * which tells us that the number of 'good' bits - i.e.
+ * log2(R/e_i) - very nearly doubles at every iteration (apart
+ * from that subtraction of 1), until it gets to the same size as
+ * log2(R/d). In other words, the size of R in bits has to be the
+ * size of denominator we're putting in, _plus_ the amount of
+ * precision we want to get back out.
+ *
+ * So when we multiply n (the input numerator) by our final
+ * reciprocal approximation r, but actually r differs from R/d by
+ * up to 2, then it follows that
+ *
+ * n/d - nr/R = n/d - [ n (R/d + e) ] / R
+ * = n/d - [ (n/d) R + n e ] / R
+ * = -ne/R
+ * => 0 <= n/d - nr/R < 2n/R
+ *
+ * so our computed quotient can differ from the true n/d by up to
+ * 2n/R. Hence, as long as we also choose R large enough that 2n/R
+ * is bounded above by a constant, we can guarantee a bounded
+ * number of final conditional-subtraction steps.
+ */
+
+ /*
+ * Get at least 32 of the most significant bits of the input
+ * number.
+ */
+ size_t hiword_index = 0;
+ uint64_t hibits = 0, lobits = 0;
+ mp_find_highest_nonzero_word_pair(d, 64 - BIGNUM_INT_BITS,
+ &hiword_index, &hibits, &lobits);
+
+ /*
+ * Make a shifted combination of those two words which puts the
+ * topmost bit of the number at bit 63.
+ */
+ size_t shift_up = 0;
+ for (size_t i = BIGNUM_INT_BITS_BITS; i-- > 0;) {
+ size_t sl = (size_t)1 << i; /* left shift count */
+ size_t sr = 64 - sl; /* complementary right-shift count */
+
+ /* Should we shift up? */
+ unsigned indicator = 1 ^ normalise_to_1_u64(hibits >> sr);
+
+ /* If we do, what will we get? */
+ uint64_t new_hibits = (hibits << sl) | (lobits >> sr);
+ uint64_t new_lobits = lobits << sl;
+ size_t new_shift_up = shift_up + sl;
+
+ /* Conditionally swap those values in. */
+ hibits ^= (hibits ^ new_hibits ) & -(uint64_t)indicator;
+ lobits ^= (lobits ^ new_lobits ) & -(uint64_t)indicator;
+ shift_up ^= (shift_up ^ new_shift_up ) & -(size_t) indicator;
+ }
+
+ /*
+ * So now we know the most significant 32 bits of d are at the top
+ * of hibits. Approximate the reciprocal of those bits.
+ */
+ lobits = (uint64_t)recip_approx_32(hibits >> 32) << 32;
+ hibits = 0;
+
+ /*
+ * And shift that up by as many bits as the input was shifted up
+ * just now, so that the product of this approximation and the
+ * actual input will be close to a fixed power of two regardless
+ * of where the MSB was.
+ *
+ * I do this in another log n individual passes, partly in case
+ * the CPU's register-controlled shift operation isn't
+ * time-constant, and also in case the compiler code-generates
+ * uint64_t shifts out of a variable number of smaller-word shift
+ * instructions, e.g. by splitting up into cases.
+ */
+ for (size_t i = BIGNUM_INT_BITS_BITS; i-- > 0;) {
+ size_t sl = (size_t)1 << i; /* left shift count */
+ size_t sr = 64 - sl; /* complementary right-shift count */
+
+ /* Should we shift up? */
+ unsigned indicator = 1 & (shift_up >> i);
+
+ /* If we do, what will we get? */
+ uint64_t new_hibits = (hibits << sl) | (lobits >> sr);
+ uint64_t new_lobits = lobits << sl;
+
+ /* Conditionally swap those values in. */
+ hibits ^= (hibits ^ new_hibits ) & -(uint64_t)indicator;
+ lobits ^= (lobits ^ new_lobits ) & -(uint64_t)indicator;
+ }
+
+ /*
+ * The product of the 128-bit value now in hibits:lobits with the
+ * 128-bit value we originally retrieved in the same variables
+ * will be in the vicinity of 2^191. So we'll take log2(R) to be
+ * 191, plus a multiple of BIGNUM_INT_BITS large enough to allow R
+ * to hold the combined sizes of n and d.
+ */
+ size_t log2_R;
+ {
+ size_t max_log2_n = (n->nw + d->nw) * BIGNUM_INT_BITS;
+ log2_R = max_log2_n + 3;
+ log2_R -= size_t_min(191, log2_R);
+ log2_R = (log2_R + BIGNUM_INT_BITS - 1) & ~(BIGNUM_INT_BITS - 1);
+ log2_R += 191;
+ }
+
+ /* Number of words in a bignum capable of holding numbers the size
+ * of twice R. */
+ size_t rw = ((log2_R+2) + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS;
+
+ /*
+ * Now construct our full-sized starting reciprocal approximation.
+ */
+ mp_int *r_approx = mp_make_sized(rw);
+ size_t output_bit_index;
+ {
+ /* Where in the input number did the input 128-bit value come from? */
+ size_t input_bit_index =
+ (hiword_index * BIGNUM_INT_BITS) - (128 - BIGNUM_INT_BITS);
+
+ /* So how far do we need to shift our 64-bit output, if the
+ * product of those two fixed-size values is 2^191 and we want
+ * to make it 2^log2_R instead? */
+ output_bit_index = log2_R - 191 - input_bit_index;
+
+ /* If we've done all that right, it should be a whole number
+ * of words. */
+ assert(output_bit_index % BIGNUM_INT_BITS == 0);
+ size_t output_word_index = output_bit_index / BIGNUM_INT_BITS;
+
+ mp_add_integer_into_shifted_by_words(
+ r_approx, r_approx, lobits, output_word_index);
+ mp_add_integer_into_shifted_by_words(
+ r_approx, r_approx, hibits,
+ output_word_index + 64 / BIGNUM_INT_BITS);
+ }
+
+ /*
+ * Make the constant 2*R, which we'll need in the iteration.
+ */
+ mp_int *two_R = mp_make_sized(rw);
+ BignumInt top_word = (BignumInt)1 << ((log2_R+1) % BIGNUM_INT_BITS);
+ mp_add_integer_into_shifted_by_words(
+ two_R, two_R, top_word, (log2_R+1) / BIGNUM_INT_BITS);
+
+ /*
+ * Scratch space.
+ */
+ mp_int *dr = mp_make_sized(rw + d->nw);
+ mp_int *diff = mp_make_sized(size_t_max(rw, dr->nw));
+ mp_int *product = mp_make_sized(rw + diff->nw);
+ size_t scratchsize = size_t_max(
+ mp_mul_scratchspace(dr->nw, r_approx->nw, d->nw),
+ mp_mul_scratchspace(product->nw, r_approx->nw, diff->nw));
+ mp_int *scratch = mp_make_sized(scratchsize);
+ mp_int product_shifted = mp_make_alias(
+ product, log2_R / BIGNUM_INT_BITS, product->nw);
+
+ /*
+ * Initial error estimate: the 32-bit output of recip_approx_32
+ * differs by less than 2048 (== 2^11) from the true top 32 bits
+ * of the reciprocal, so the relative error is at most 2^11
+ * divided by the 32-bit reciprocal, which at worst is 2^11/2^31 =
+ * 2^-20. So even in the worst case, we have 20 good bits of
+ * reciprocal to start with.
+ */
+ size_t good_bits = 31 - 11;
+ size_t good_bits_needed = BIGNUM_INT_BITS * n->nw + 4; /* add a few */
+
+ /*
+ * Now do Newton-Raphson iterations until we have reason to think
+ * they're not converging any more.
+ */
+ while (good_bits < good_bits_needed) {
+ /*
+ * Compute the next iterate.
+ */
+ mp_mul_internal(dr, r_approx, d, *scratch);
+ mp_sub_into(diff, two_R, dr);
+ mp_mul_internal(product, r_approx, diff, *scratch);
+ mp_rshift_fixed_into(r_approx, &product_shifted,
+ log2_R % BIGNUM_INT_BITS);
+
+ /*
+ * Adjust the error estimate.
+ */
+ good_bits = good_bits * 2 - 1;
+ }
+
+ mp_free(dr);
+ mp_free(diff);
+ mp_free(product);
+ mp_free(scratch);
+
+ /*
+ * Now we've got our reciprocal, we can compute the quotient, by
+ * multiplying in n and then shifting down by log2_R bits.
+ */
+ mp_int *quotient_full = mp_mul(r_approx, n);
+ mp_int quotient_alias = mp_make_alias(
+ quotient_full, log2_R / BIGNUM_INT_BITS, quotient_full->nw);
+ mp_int *quotient = mp_make_sized(n->nw);
+ mp_rshift_fixed_into(quotient, &quotient_alias, log2_R % BIGNUM_INT_BITS);
+
+ /*
+ * Next, compute the remainder.
+ */
+ mp_int *remainder = mp_make_sized(d->nw);
+ mp_mul_into(remainder, quotient, d);
+ mp_sub_into(remainder, n, remainder);
+
+ /*
+ * Finally, two conditional subtractions to fix up any remaining
+ * rounding error. (I _think_ one should be enough, but this
+ * routine isn't time-critical enough to take chances.)
+ */
+ unsigned q_correction = 0;
+ for (unsigned iter = 0; iter < 2; iter++) {
+ unsigned need_correction = mp_cmp_hs(remainder, d);
+ mp_cond_sub_into(remainder, remainder, d, need_correction);
+ q_correction += need_correction;
+ }
+ mp_add_integer_into(quotient, quotient, q_correction);
+
+ /*
+ * Now we should have a perfect answer, i.e. 0 <= r < d.
+ */
+ assert(!mp_cmp_hs(remainder, d));
+
+ if (q_out)
+ mp_copy_into(q_out, quotient);
+ if (r_out)
+ mp_copy_into(r_out, remainder);
+
+ mp_free(r_approx);
+ mp_free(two_R);
+ mp_free(quotient_full);
+ mp_free(quotient);
+ mp_free(remainder);
+}
+
+mp_int *mp_div(mp_int *n, mp_int *d)
+{
+ mp_int *q = mp_make_sized(n->nw);
+ mp_divmod_into(n, d, q, NULL);
+ return q;
+}
+
+mp_int *mp_mod(mp_int *n, mp_int *d)
+{
+ mp_int *r = mp_make_sized(d->nw);
+ mp_divmod_into(n, d, NULL, r);
+ return r;
+}
+
+uint32_t mp_mod_known_integer(mp_int *x, uint32_t m)
+{
+ uint64_t reciprocal = ((uint64_t)1 << 48) / m;
+ uint64_t accumulator = 0;
+ for (size_t i = mp_max_bytes(x); i-- > 0 ;) {
+ accumulator = 0x100 * accumulator + mp_get_byte(x, i);
+ /*
+ * Let A be the value in 'accumulator' at this point, and let
+ * R be the value it will have after we subtract quot*m below.
+ *
+ * Lemma 1: if A < 2^48, then R < 2m.
+ *
+ * Proof:
+ *
+ * By construction, we have 2^48/m - 1 < reciprocal <= 2^48/m.
+ * Multiplying that by the accumulator gives
+ *
+ * A/m * 2^48 - A < unshifted_quot <= A/m * 2^48
+ * i.e. 0 <= (A/m * 2^48) - unshifted_quot < A
+ * i.e. 0 <= A/m - unshifted_quot/2^48 < A/2^48
+ *
+ * So when we shift this quotient right by 48 bits, i.e. take
+ * the floor of (unshifted_quot/2^48), the value we take the
+ * floor of is at most A/2^48 less than the true rational
+ * value A/m that we _wanted_ to take the floor of.
+ *
+ * Provided A < 2^48, this is less than 1. So the quotient
+ * 'quot' that we've just produced is either the true quotient
+ * floor(A/m), or one less than it. Hence, the output value R
+ * is less than 2m. []
+ *
+ * Lemma 2: if A < 2^16 m, then the multiplication of
+ * accumulator*reciprocal does not overflow.
+ *
+ * Proof: as above, we have reciprocal <= 2^48/m. Multiplying
+ * by A gives unshifted_quot <= 2^48 * A / m < 2^48 * 2^16 =
+ * 2^64. []
+ */
+ uint64_t unshifted_quot = accumulator * reciprocal;
+ uint64_t quot = unshifted_quot >> 48;
+ accumulator -= quot * m;
+ }
+
+ /*
+ * Theorem 1: accumulator < 2m at the end of every iteration of
+ * this loop.
+ *
+ * Proof: induction on the above loop.
+ *
+ * Base case: at the start of the first loop iteration, the
+ * accumulator is 0, which is certainly < 2m.
+ *
+ * Inductive step: in each loop iteration, we take a value at most
+ * 2m-1, multiply it by 2^8, and add another byte less than 2^8 to
+ * generate the input value A to the reduction process above. So
+ * we have A < 2m * 2^8 - 1. We know m < 2^32 (because it was
+ * passed in as a uint32_t), so A < 2^41, which is enough to allow
+ * us to apply Lemma 1, showing that the value of 'accumulator' at
+ * the end of the loop is still < 2m. []
+ *
+ * Corollary: we need at most one final subtraction of m to
+ * produce the canonical residue of x mod m, i.e. in the range
+ * [0,m).
+ *
+ * Theorem 2: no multiplication in the inner loop overflows.
+ *
+ * Proof: in Theorem 1 we established A < 2m * 2^8 - 1 in every
+ * iteration. That is less than m * 2^16, so Lemma 2 applies.
+ *
+ * The other multiplication, of quot * m, cannot overflow because
+ * quot is at most A/m, so quot*m <= A < 2^64. []
+ */
+
+ uint32_t result = accumulator;
+ uint32_t reduced = result - m;
+ uint32_t select = -(reduced >> 31);
+ result = reduced ^ ((result ^ reduced) & select);
+ assert(result < m);
+ return result;
+}
+
+mp_int *mp_nthroot(mp_int *y, unsigned n, mp_int *remainder_out)
+{
+ /*
+ * Allocate scratch space.
+ */
+ mp_int **alloc, **powers, **newpowers, *scratch;
+ size_t nalloc = 2*(n+1)+1;
+ alloc = snewn(nalloc, mp_int *);
+ for (size_t i = 0; i < nalloc; i++)
+ alloc[i] = mp_make_sized(y->nw + 1);
+ powers = alloc;
+ newpowers = alloc + (n+1);
+ scratch = alloc[2*n+2];
+
+ /*
+ * We're computing the rounded-down nth root of y, i.e. the
+ * maximal x such that x^n <= y. We try to add 2^i to it for each
+ * possible value of i, starting from the largest one that might
+ * fit (i.e. such that 2^{n*i} fits in the size of y) downwards to
+ * i=0.
+ *
+ * We track all the smaller powers of x in the array 'powers'. In
+ * each iteration, if we update x, we update all of those values
+ * to match.
+ */
+ mp_copy_integer_into(powers[0], 1);
+ for (size_t s = mp_max_bits(y) / n + 1; s-- > 0 ;) {
+ /*
+ * Let b = 2^s. We need to compute the powers (x+b)^i for each
+ * i, starting from our recorded values of x^i.
+ */
+ for (size_t i = 0; i < n+1; i++) {
+ /*
+ * (x+b)^i = x^i
+ * + (i choose 1) x^{i-1} b
+ * + (i choose 2) x^{i-2} b^2
+ * + ...
+ * + b^i
+ */
+ uint16_t binom = 1; /* coefficient of b^i */
+ mp_copy_into(newpowers[i], powers[i]);
+ for (size_t j = 0; j < i; j++) {
+ /* newpowers[i] += binom * powers[j] * 2^{(i-j)*s} */
+ mp_mul_integer_into(scratch, powers[j], binom);
+ mp_lshift_fixed_into(scratch, scratch, (i-j) * s);
+ mp_add_into(newpowers[i], newpowers[i], scratch);
+
+ uint32_t binom_mul = binom;
+ binom_mul *= (i-j);
+ binom_mul /= (j+1);
+ assert(binom_mul < 0x10000);
+ binom = binom_mul;
+ }
+ }
+
+ /*
+ * Now, is the new value of x^n still <= y? If so, update.
+ */
+ unsigned newbit = mp_cmp_hs(y, newpowers[n]);
+ for (size_t i = 0; i < n+1; i++)
+ mp_select_into(powers[i], powers[i], newpowers[i], newbit);
+ }
+
+ if (remainder_out)
+ mp_sub_into(remainder_out, y, powers[n]);
+
+ mp_int *root = mp_new(mp_max_bits(y) / n);
+ mp_copy_into(root, powers[1]);
+
+ for (size_t i = 0; i < nalloc; i++)
+ mp_free(alloc[i]);
+ sfree(alloc);
+
+ return root;
+}
+
+mp_int *mp_modmul(mp_int *x, mp_int *y, mp_int *modulus)
+{
+ mp_int *product = mp_mul(x, y);
+ mp_int *reduced = mp_mod(product, modulus);
+ mp_free(product);
+ return reduced;
+}
+
+mp_int *mp_modadd(mp_int *x, mp_int *y, mp_int *modulus)
+{
+ mp_int *sum = mp_add(x, y);
+ mp_int *reduced = mp_mod(sum, modulus);
+ mp_free(sum);
+ return reduced;
+}
+
+mp_int *mp_modsub(mp_int *x, mp_int *y, mp_int *modulus)
+{
+ mp_int *diff = mp_make_sized(size_t_max(x->nw, y->nw));
+ mp_sub_into(diff, x, y);
+ unsigned negate = mp_cmp_hs(y, x);
+ mp_cond_negate(diff, diff, negate);
+ mp_int *residue = mp_mod(diff, modulus);
+ mp_cond_negate(residue, residue, negate);
+ /* If we've just negated the residue, then it will be < 0 and need
+ * the modulus adding to it to make it positive - *except* if the
+ * residue was zero when we negated it. */
+ unsigned make_positive = negate & ~mp_eq_integer(residue, 0);
+ mp_cond_add_into(residue, residue, modulus, make_positive);
+ mp_free(diff);
+ return residue;
+}
+
+static mp_int *mp_modadd_in_range(mp_int *x, mp_int *y, mp_int *modulus)
+{
+ mp_int *sum = mp_make_sized(modulus->nw);
+ unsigned carry = mp_add_into_internal(sum, x, y);
+ mp_cond_sub_into(sum, sum, modulus, carry | mp_cmp_hs(sum, modulus));
+ return sum;
+}
+
+static mp_int *mp_modsub_in_range(mp_int *x, mp_int *y, mp_int *modulus)
+{
+ mp_int *diff = mp_make_sized(modulus->nw);
+ mp_sub_into(diff, x, y);
+ mp_cond_add_into(diff, diff, modulus, 1 ^ mp_cmp_hs(x, y));
+ return diff;
+}
+
+mp_int *monty_add(MontyContext *mc, mp_int *x, mp_int *y)
+{
+ return mp_modadd_in_range(x, y, mc->m);
+}
+
+mp_int *monty_sub(MontyContext *mc, mp_int *x, mp_int *y)
+{
+ return mp_modsub_in_range(x, y, mc->m);
+}
+
+void mp_min_into(mp_int *r, mp_int *x, mp_int *y)
+{
+ mp_select_into(r, x, y, mp_cmp_hs(x, y));
+}
+
+void mp_max_into(mp_int *r, mp_int *x, mp_int *y)
+{
+ mp_select_into(r, y, x, mp_cmp_hs(x, y));
+}
+
+mp_int *mp_min(mp_int *x, mp_int *y)
+{
+ mp_int *r = mp_make_sized(size_t_min(x->nw, y->nw));
+ mp_min_into(r, x, y);
+ return r;
+}
+
+mp_int *mp_max(mp_int *x, mp_int *y)
+{
+ mp_int *r = mp_make_sized(size_t_max(x->nw, y->nw));
+ mp_max_into(r, x, y);
+ return r;
+}
+
+mp_int *mp_power_2(size_t power)
+{
+ mp_int *x = mp_new(power + 1);
+ mp_set_bit(x, power, 1);
+ return x;
+}
+
+struct ModsqrtContext {
+ mp_int *p; /* the prime */
+ MontyContext *mc; /* for doing arithmetic mod p */
+
+ /* Decompose p-1 as 2^e k, for positive integer e and odd k */
+ size_t e;
+ mp_int *k;
+ mp_int *km1o2; /* (k-1)/2 */
+
+ /* The user-provided value z which is not a quadratic residue mod
+ * p, and its kth power. Both in Montgomery form. */
+ mp_int *z, *zk;
+};
+
+ModsqrtContext *modsqrt_new(mp_int *p, mp_int *any_nonsquare_mod_p)
+{
+ ModsqrtContext *sc = snew(ModsqrtContext);
+ memset(sc, 0, sizeof(ModsqrtContext));
+
+ sc->p = mp_copy(p);
+ sc->mc = monty_new(sc->p);
+ sc->z = monty_import(sc->mc, any_nonsquare_mod_p);
+
+ /* Find the lowest set bit in p-1. Since this routine expects p to
+ * be non-secret (typically a well-known standard elliptic curve
+ * parameter), for once we don't need clever bit tricks. */
+ for (sc->e = 1; sc->e < BIGNUM_INT_BITS * p->nw; sc->e++)
+ if (mp_get_bit(p, sc->e))
+ break;
+
+ sc->k = mp_rshift_fixed(p, sc->e);
+ sc->km1o2 = mp_rshift_fixed(sc->k, 1);
+
+ /* Leave zk to be filled in lazily, since it's more expensive to
+ * compute. If this context turns out never to be needed, we can
+ * save the bulk of the setup time this way. */
+
+ return sc;
+}
+
+static void modsqrt_lazy_setup(ModsqrtContext *sc)
+{
+ if (!sc->zk)
+ sc->zk = monty_pow(sc->mc, sc->z, sc->k);
+}
+
+void modsqrt_free(ModsqrtContext *sc)
+{
+ monty_free(sc->mc);
+ mp_free(sc->p);
+ mp_free(sc->z);
+ mp_free(sc->k);
+ mp_free(sc->km1o2);
+
+ if (sc->zk)
+ mp_free(sc->zk);
+
+ sfree(sc);
+}
+
+mp_int *mp_modsqrt(ModsqrtContext *sc, mp_int *x, unsigned *success)
+{
+ mp_int *mx = monty_import(sc->mc, x);
+ mp_int *mroot = monty_modsqrt(sc, mx, success);
+ mp_free(mx);
+ mp_int *root = monty_export(sc->mc, mroot);
+ mp_free(mroot);
+ return root;
+}
+
+/*
+ * Modular square root, using an algorithm more or less similar to
+ * Tonelli-Shanks but adapted for constant time.
+ *
+ * The basic idea is to write p-1 = k 2^e, where k is odd and e > 0.
+ * Then the multiplicative group mod p (call it G) has a sequence of
+ * e+1 nested subgroups G = G_0 > G_1 > G_2 > ... > G_e, where each
+ * G_i is exactly half the size of G_{i-1} and consists of all the
+ * squares of elements in G_{i-1}. So the innermost group G_e has
+ * order k, which is odd, and hence within that group you can take a
+ * square root by raising to the power (k+1)/2.
+ *
+ * Our strategy is to iterate over these groups one by one and make
+ * sure the number x we're trying to take the square root of is inside
+ * each one, by adjusting it if it isn't.
+ *
+ * Suppose g is a primitive root of p, i.e. a generator of G_0. (We
+ * don't actually need to know what g _is_; we just imagine it for the
+ * sake of understanding.) Then G_i consists of precisely the (2^i)th
+ * powers of g, and hence, you can tell if a number is in G_i if
+ * raising it to the power k 2^{e-i} gives 1. So the conceptual
+ * algorithm goes: for each i, test whether x is in G_i by that
+ * method. If it isn't, then the previous iteration ensured it's in
+ * G_{i-1}, so it will be an odd power of g^{2^{i-1}}, and hence
+ * multiplying by any other odd power of g^{2^{i-1}} will give x' in
+ * G_i. And we have one of those, because our non-square z is an odd
+ * power of g, so z^{2^{i-1}} is an odd power of g^{2^{i-1}}.
+ *
+ * (There's a special case in the very first iteration, where we don't
+ * have a G_{i-1}. If it turns out that x is not even in G_1, that
+ * means it's not a square, so we set *success to 0. We still run the
+ * rest of the algorithm anyway, for the sake of constant time, but we
+ * don't give a hoot what it returns.)
+ *
+ * When we get to the end and have x in G_e, then we can take its
+ * square root by raising to (k+1)/2. But of course that's not the
+ * square root of the original input - it's only the square root of
+ * the adjusted version we produced during the algorithm. To get the
+ * true output answer we also have to multiply by a power of z,
+ * namely, z to the power of _half_ whatever we've been multiplying in
+ * as we go along. (The power of z we multiplied in must have been
+ * even, because the case in which we would have multiplied in an odd
+ * power of z is the i=0 case, in which we instead set the failure
+ * flag.)
+ *
+ * The code below is an optimised version of that basic idea, in which
+ * we _start_ by computing x^k so as to be able to test membership in
+ * G_i by only a few squarings rather than a full from-scratch modpow
+ * every time; we also start by computing our candidate output value
+ * x^{(k+1)/2}. So when the above description says 'adjust x by z^i'
+ * for some i, we have to adjust our running values of x^k and
+ * x^{(k+1)/2} by z^{ik} and z^{ik/2} respectively (the latter is safe
+ * because, as above, i is always even). And it turns out that we
+ * don't actually have to store the adjusted version of x itself at
+ * all - we _only_ keep those two powers of it.
+ */
+mp_int *monty_modsqrt(ModsqrtContext *sc, mp_int *x, unsigned *success)
+{
+ modsqrt_lazy_setup(sc);
+
+ mp_int *scratch_to_free = mp_make_sized(3 * sc->mc->rw);
+ mp_int scratch = *scratch_to_free;
+
+ /*
+ * Compute toret = x^{(k+1)/2}, our starting point for the output
+ * square root, and also xk = x^k which we'll use as we go along
+ * for knowing when to apply correction factors. We do this by
+ * first computing x^{(k-1)/2}, then multiplying it by x, then
+ * multiplying the two together.
+ */
+ mp_int *toret = monty_pow(sc->mc, x, sc->km1o2);
+ mp_int xk = mp_alloc_from_scratch(&scratch, sc->mc->rw);
+ mp_copy_into(&xk, toret);
+ monty_mul_into(sc->mc, toret, toret, x);
+ monty_mul_into(sc->mc, &xk, toret, &xk);
+
+ mp_int tmp = mp_alloc_from_scratch(&scratch, sc->mc->rw);
+
+ mp_int power_of_zk = mp_alloc_from_scratch(&scratch, sc->mc->rw);
+ mp_copy_into(&power_of_zk, sc->zk);
+
+ for (size_t i = 0; i < sc->e; i++) {
+ mp_copy_into(&tmp, &xk);
+ for (size_t j = i+1; j < sc->e; j++)
+ monty_mul_into(sc->mc, &tmp, &tmp, &tmp);
+ unsigned eq1 = mp_cmp_eq(&tmp, monty_identity(sc->mc));
+
+ if (i == 0) {
+ /* One special case: if x=0, then no power of x will ever
+ * equal 1, but we should still report success on the
+ * grounds that 0 does have a square root mod p. */
+ *success = eq1 | mp_eq_integer(x, 0);
+ } else {
+ monty_mul_into(sc->mc, &tmp, toret, &power_of_zk);
+ mp_select_into(toret, &tmp, toret, eq1);
+
+ monty_mul_into(sc->mc, &power_of_zk,
+ &power_of_zk, &power_of_zk);
+
+ monty_mul_into(sc->mc, &tmp, &xk, &power_of_zk);
+ mp_select_into(&xk, &tmp, &xk, eq1);
+ }
+ }
+
+ mp_free(scratch_to_free);
+
+ return toret;
+}
+
+mp_int *mp_random_bits_fn(size_t bits, random_read_fn_t random_read)
+{
+ size_t bytes = (bits + 7) / 8;
+ uint8_t *randbuf = snewn(bytes, uint8_t);
+ random_read(randbuf, bytes);
+ if (bytes)
+ randbuf[0] &= (2 << ((bits-1) & 7)) - 1;
+ mp_int *toret = mp_from_bytes_be(make_ptrlen(randbuf, bytes));
+ smemclr(randbuf, bytes);
+ sfree(randbuf);
+ return toret;
+}
+
+mp_int *mp_random_upto_fn(mp_int *limit, random_read_fn_t rf)
+{
+ /*
+ * It would be nice to generate our random numbers in such a way
+ * as to make every possible outcome literally equiprobable. But
+ * we can't do that in constant time, so we have to go for a very
+ * close approximation instead. I'm going to take the view that a
+ * factor of (1+2^-128) between the probabilities of two outcomes
+ * is acceptable on the grounds that you'd have to examine so many
+ * outputs to even detect it.
+ */
+ mp_int *unreduced = mp_random_bits_fn(mp_max_bits(limit) + 128, rf);
+ mp_int *reduced = mp_mod(unreduced, limit);
+ mp_free(unreduced);
+ return reduced;
+}
+
+mp_int *mp_random_in_range_fn(mp_int *lo, mp_int *hi, random_read_fn_t rf)
+{
+ mp_int *n_outcomes = mp_sub(hi, lo);
+ mp_int *addend = mp_random_upto_fn(n_outcomes, rf);
+ mp_int *result = mp_make_sized(hi->nw);
+ mp_add_into(result, addend, lo);
+ mp_free(addend);
+ mp_free(n_outcomes);
+ return result;
+}