Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/mRemoteNG/PuTTYNG.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'crypto/rsa.c')
-rw-r--r--crypto/rsa.c1158
1 files changed, 1158 insertions, 0 deletions
diff --git a/crypto/rsa.c b/crypto/rsa.c
new file mode 100644
index 00000000..aa0e08a6
--- /dev/null
+++ b/crypto/rsa.c
@@ -0,0 +1,1158 @@
+/*
+ * RSA implementation for PuTTY.
+ */
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <assert.h>
+
+#include "ssh.h"
+#include "mpint.h"
+#include "misc.h"
+
+void BinarySource_get_rsa_ssh1_pub(
+ BinarySource *src, RSAKey *rsa, RsaSsh1Order order)
+{
+ unsigned bits;
+ mp_int *e, *m;
+
+ bits = get_uint32(src);
+ if (order == RSA_SSH1_EXPONENT_FIRST) {
+ e = get_mp_ssh1(src);
+ m = get_mp_ssh1(src);
+ } else {
+ m = get_mp_ssh1(src);
+ e = get_mp_ssh1(src);
+ }
+
+ if (rsa) {
+ rsa->bits = bits;
+ rsa->exponent = e;
+ rsa->modulus = m;
+ rsa->bytes = (mp_get_nbits(m) + 7) / 8;
+ } else {
+ mp_free(e);
+ mp_free(m);
+ }
+}
+
+void BinarySource_get_rsa_ssh1_priv(
+ BinarySource *src, RSAKey *rsa)
+{
+ rsa->private_exponent = get_mp_ssh1(src);
+}
+
+key_components *rsa_components(RSAKey *rsa)
+{
+ key_components *kc = key_components_new();
+ key_components_add_text(kc, "key_type", "RSA");
+ key_components_add_mp(kc, "public_modulus", rsa->modulus);
+ key_components_add_mp(kc, "public_exponent", rsa->exponent);
+ if (rsa->private_exponent) {
+ key_components_add_mp(kc, "private_exponent", rsa->private_exponent);
+ key_components_add_mp(kc, "private_p", rsa->p);
+ key_components_add_mp(kc, "private_q", rsa->q);
+ key_components_add_mp(kc, "private_inverse_q_mod_p", rsa->iqmp);
+ }
+ return kc;
+}
+
+RSAKey *BinarySource_get_rsa_ssh1_priv_agent(BinarySource *src)
+{
+ RSAKey *rsa = snew(RSAKey);
+ memset(rsa, 0, sizeof(RSAKey));
+
+ get_rsa_ssh1_pub(src, rsa, RSA_SSH1_MODULUS_FIRST);
+ get_rsa_ssh1_priv(src, rsa);
+
+ /* SSH-1 names p and q the other way round, i.e. we have the
+ * inverse of p mod q and not of q mod p. We swap the names,
+ * because our internal RSA wants iqmp. */
+ rsa->iqmp = get_mp_ssh1(src);
+ rsa->q = get_mp_ssh1(src);
+ rsa->p = get_mp_ssh1(src);
+
+ return rsa;
+}
+
+void duprsakey(RSAKey *dst, const RSAKey *src)
+{
+ dst->bits = src->bits;
+ dst->bytes = src->bytes;
+ dst->modulus = mp_copy(src->modulus);
+ dst->exponent = mp_copy(src->exponent);
+ dst->private_exponent = src->private_exponent ?
+ mp_copy(src->private_exponent) : NULL;
+ dst->p = mp_copy(src->p);
+ dst->q = mp_copy(src->q);
+ dst->iqmp = mp_copy(src->iqmp);
+ dst->comment = src->comment ? dupstr(src->comment) : NULL;
+ dst->sshk.vt = src->sshk.vt;
+}
+
+bool rsa_ssh1_encrypt(unsigned char *data, int length, RSAKey *key)
+{
+ mp_int *b1, *b2;
+ int i;
+ unsigned char *p;
+
+ if (key->bytes < length + 4)
+ return false; /* RSA key too short! */
+
+ memmove(data + key->bytes - length, data, length);
+ data[0] = 0;
+ data[1] = 2;
+
+ size_t npad = key->bytes - length - 3;
+ /*
+ * Generate a sequence of nonzero padding bytes. We do this in a
+ * reasonably uniform way and without having to loop round
+ * retrying the random number generation, by first generating an
+ * integer in [0,2^n) for an appropriately large n; then we
+ * repeatedly multiply by 255 to give an integer in [0,255*2^n),
+ * extract the top 8 bits to give an integer in [0,255), and mask
+ * those bits off before multiplying up again for the next digit.
+ * This gives us a sequence of numbers in [0,255), and of course
+ * adding 1 to each of them gives numbers in [1,256) as we wanted.
+ *
+ * (You could imagine this being a sort of fixed-point operation:
+ * given a uniformly random binary _fraction_, multiplying it by k
+ * and subtracting off the integer part will yield you a sequence
+ * of integers each in [0,k). I'm just doing that scaled up by a
+ * power of 2 to avoid the fractions.)
+ */
+ size_t random_bits = (npad + 16) * 8;
+ mp_int *randval = mp_new(random_bits + 8);
+ mp_int *tmp = mp_random_bits(random_bits);
+ mp_copy_into(randval, tmp);
+ mp_free(tmp);
+ for (i = 2; i < key->bytes - length - 1; i++) {
+ mp_mul_integer_into(randval, randval, 255);
+ uint8_t byte = mp_get_byte(randval, random_bits / 8);
+ assert(byte != 255);
+ data[i] = byte + 1;
+ mp_reduce_mod_2to(randval, random_bits);
+ }
+ mp_free(randval);
+ data[key->bytes - length - 1] = 0;
+
+ b1 = mp_from_bytes_be(make_ptrlen(data, key->bytes));
+
+ b2 = mp_modpow(b1, key->exponent, key->modulus);
+
+ p = data;
+ for (i = key->bytes; i--;) {
+ *p++ = mp_get_byte(b2, i);
+ }
+
+ mp_free(b1);
+ mp_free(b2);
+
+ return true;
+}
+
+/*
+ * Compute (base ^ exp) % mod, provided mod == p * q, with p,q
+ * distinct primes, and iqmp is the multiplicative inverse of q mod p.
+ * Uses Chinese Remainder Theorem to speed computation up over the
+ * obvious implementation of a single big modpow.
+ */
+static mp_int *crt_modpow(mp_int *base, mp_int *exp, mp_int *mod,
+ mp_int *p, mp_int *q, mp_int *iqmp)
+{
+ mp_int *pm1, *qm1, *pexp, *qexp, *presult, *qresult;
+ mp_int *diff, *multiplier, *ret0, *ret;
+
+ /*
+ * Reduce the exponent mod phi(p) and phi(q), to save time when
+ * exponentiating mod p and mod q respectively. Of course, since p
+ * and q are prime, phi(p) == p-1 and similarly for q.
+ */
+ pm1 = mp_copy(p);
+ mp_sub_integer_into(pm1, pm1, 1);
+ qm1 = mp_copy(q);
+ mp_sub_integer_into(qm1, qm1, 1);
+ pexp = mp_mod(exp, pm1);
+ qexp = mp_mod(exp, qm1);
+
+ /*
+ * Do the two modpows.
+ */
+ mp_int *base_mod_p = mp_mod(base, p);
+ presult = mp_modpow(base_mod_p, pexp, p);
+ mp_free(base_mod_p);
+ mp_int *base_mod_q = mp_mod(base, q);
+ qresult = mp_modpow(base_mod_q, qexp, q);
+ mp_free(base_mod_q);
+
+ /*
+ * Recombine the results. We want a value which is congruent to
+ * qresult mod q, and to presult mod p.
+ *
+ * We know that iqmp * q is congruent to 1 * mod p (by definition
+ * of iqmp) and to 0 mod q (obviously). So we start with qresult
+ * (which is congruent to qresult mod both primes), and add on
+ * (presult-qresult) * (iqmp * q) which adjusts it to be congruent
+ * to presult mod p without affecting its value mod q.
+ *
+ * (If presult-qresult < 0, we add p to it to keep it positive.)
+ */
+ unsigned presult_too_small = mp_cmp_hs(qresult, presult);
+ mp_cond_add_into(presult, presult, p, presult_too_small);
+
+ diff = mp_sub(presult, qresult);
+ multiplier = mp_mul(iqmp, q);
+ ret0 = mp_mul(multiplier, diff);
+ mp_add_into(ret0, ret0, qresult);
+
+ /*
+ * Finally, reduce the result mod n.
+ */
+ ret = mp_mod(ret0, mod);
+
+ /*
+ * Free all the intermediate results before returning.
+ */
+ mp_free(pm1);
+ mp_free(qm1);
+ mp_free(pexp);
+ mp_free(qexp);
+ mp_free(presult);
+ mp_free(qresult);
+ mp_free(diff);
+ mp_free(multiplier);
+ mp_free(ret0);
+
+ return ret;
+}
+
+/*
+ * Wrapper on crt_modpow that looks up all the right values from an
+ * RSAKey.
+ */
+static mp_int *rsa_privkey_op(mp_int *input, RSAKey *key)
+{
+ return crt_modpow(input, key->private_exponent,
+ key->modulus, key->p, key->q, key->iqmp);
+}
+
+mp_int *rsa_ssh1_decrypt(mp_int *input, RSAKey *key)
+{
+ return rsa_privkey_op(input, key);
+}
+
+bool rsa_ssh1_decrypt_pkcs1(mp_int *input, RSAKey *key,
+ strbuf *outbuf)
+{
+ strbuf *data = strbuf_new_nm();
+ bool success = false;
+ BinarySource src[1];
+
+ {
+ mp_int *b = rsa_ssh1_decrypt(input, key);
+ for (size_t i = (mp_get_nbits(key->modulus) + 7) / 8; i-- > 0 ;) {
+ put_byte(data, mp_get_byte(b, i));
+ }
+ mp_free(b);
+ }
+
+ BinarySource_BARE_INIT(src, data->u, data->len);
+
+ /* Check PKCS#1 formatting prefix */
+ if (get_byte(src) != 0) goto out;
+ if (get_byte(src) != 2) goto out;
+ while (1) {
+ unsigned char byte = get_byte(src);
+ if (get_err(src)) goto out;
+ if (byte == 0)
+ break;
+ }
+
+ /* Everything else is the payload */
+ success = true;
+ put_data(outbuf, get_ptr(src), get_avail(src));
+
+ out:
+ strbuf_free(data);
+ return success;
+}
+
+static void append_hex_to_strbuf(strbuf *sb, mp_int *x)
+{
+ if (sb->len > 0)
+ put_byte(sb, ',');
+ put_data(sb, "0x", 2);
+ char *hex = mp_get_hex(x);
+ size_t hexlen = strlen(hex);
+ put_data(sb, hex, hexlen);
+ smemclr(hex, hexlen);
+ sfree(hex);
+}
+
+char *rsastr_fmt(RSAKey *key)
+{
+ strbuf *sb = strbuf_new();
+
+ append_hex_to_strbuf(sb, key->exponent);
+ append_hex_to_strbuf(sb, key->modulus);
+
+ return strbuf_to_str(sb);
+}
+
+/*
+ * Generate a fingerprint string for the key. Compatible with the
+ * OpenSSH fingerprint code.
+ */
+char *rsa_ssh1_fingerprint(RSAKey *key)
+{
+ unsigned char digest[16];
+ strbuf *out;
+ int i;
+
+ /*
+ * The hash preimage for SSH-1 key fingerprinting consists of the
+ * modulus and exponent _without_ any preceding length field -
+ * just the minimum number of bytes to represent each integer,
+ * stored big-endian, concatenated with no marker at the division
+ * between them.
+ */
+
+ ssh_hash *hash = ssh_hash_new(&ssh_md5);
+ for (size_t i = (mp_get_nbits(key->modulus) + 7) / 8; i-- > 0 ;)
+ put_byte(hash, mp_get_byte(key->modulus, i));
+ for (size_t i = (mp_get_nbits(key->exponent) + 7) / 8; i-- > 0 ;)
+ put_byte(hash, mp_get_byte(key->exponent, i));
+ ssh_hash_final(hash, digest);
+
+ out = strbuf_new();
+ put_fmt(out, "%"SIZEu" ", mp_get_nbits(key->modulus));
+ for (i = 0; i < 16; i++)
+ put_fmt(out, "%s%02x", i ? ":" : "", digest[i]);
+ if (key->comment)
+ put_fmt(out, " %s", key->comment);
+ return strbuf_to_str(out);
+}
+
+/*
+ * Wrap the output of rsa_ssh1_fingerprint up into the same kind of
+ * structure that comes from ssh2_all_fingerprints.
+ */
+char **rsa_ssh1_fake_all_fingerprints(RSAKey *key)
+{
+ char **ret = snewn(SSH_N_FPTYPES, char *);
+ for (unsigned i = 0; i < SSH_N_FPTYPES; i++)
+ ret[i] = NULL;
+ ret[SSH_FPTYPE_MD5] = rsa_ssh1_fingerprint(key);
+ return ret;
+}
+
+/*
+ * Verify that the public data in an RSA key matches the private
+ * data. We also check the private data itself: we ensure that p >
+ * q and that iqmp really is the inverse of q mod p.
+ */
+bool rsa_verify(RSAKey *key)
+{
+ mp_int *n, *ed, *pm1, *qm1;
+ unsigned ok = 1;
+
+ /* Preliminary checks: p,q can't be 0 or 1. (Of course no other
+ * very small value is any good either, but these are the values
+ * we _must_ check for to avoid assertion failures further down
+ * this function.) */
+ if (!(mp_hs_integer(key->p, 2) & mp_hs_integer(key->q, 2)))
+ return false;
+
+ /* n must equal pq. */
+ n = mp_mul(key->p, key->q);
+ ok &= mp_cmp_eq(n, key->modulus);
+ mp_free(n);
+
+ /* e * d must be congruent to 1, modulo (p-1) and modulo (q-1). */
+ pm1 = mp_copy(key->p);
+ mp_sub_integer_into(pm1, pm1, 1);
+ ed = mp_modmul(key->exponent, key->private_exponent, pm1);
+ mp_free(pm1);
+ ok &= mp_eq_integer(ed, 1);
+ mp_free(ed);
+
+ qm1 = mp_copy(key->q);
+ mp_sub_integer_into(qm1, qm1, 1);
+ ed = mp_modmul(key->exponent, key->private_exponent, qm1);
+ mp_free(qm1);
+ ok &= mp_eq_integer(ed, 1);
+ mp_free(ed);
+
+ /*
+ * Ensure p > q.
+ *
+ * I have seen key blobs in the wild which were generated with
+ * p < q, so instead of rejecting the key in this case we
+ * should instead flip them round into the canonical order of
+ * p > q. This also involves regenerating iqmp.
+ */
+ mp_int *p_new = mp_max(key->p, key->q);
+ mp_int *q_new = mp_min(key->p, key->q);
+ mp_free(key->p);
+ mp_free(key->q);
+ mp_free(key->iqmp);
+ key->p = p_new;
+ key->q = q_new;
+ key->iqmp = mp_invert(key->q, key->p);
+
+ return ok;
+}
+
+void rsa_ssh1_public_blob(BinarySink *bs, RSAKey *key,
+ RsaSsh1Order order)
+{
+ put_uint32(bs, mp_get_nbits(key->modulus));
+ if (order == RSA_SSH1_EXPONENT_FIRST) {
+ put_mp_ssh1(bs, key->exponent);
+ put_mp_ssh1(bs, key->modulus);
+ } else {
+ put_mp_ssh1(bs, key->modulus);
+ put_mp_ssh1(bs, key->exponent);
+ }
+}
+
+void rsa_ssh1_private_blob_agent(BinarySink *bs, RSAKey *key)
+{
+ rsa_ssh1_public_blob(bs, key, RSA_SSH1_MODULUS_FIRST);
+ put_mp_ssh1(bs, key->private_exponent);
+ put_mp_ssh1(bs, key->iqmp);
+ put_mp_ssh1(bs, key->q);
+ put_mp_ssh1(bs, key->p);
+}
+
+/* Given an SSH-1 public key blob, determine its length. */
+int rsa_ssh1_public_blob_len(ptrlen data)
+{
+ BinarySource src[1];
+
+ BinarySource_BARE_INIT_PL(src, data);
+
+ /* Expect a length word, then exponent and modulus. (It doesn't
+ * even matter which order.) */
+ get_uint32(src);
+ mp_free(get_mp_ssh1(src));
+ mp_free(get_mp_ssh1(src));
+
+ if (get_err(src))
+ return -1;
+
+ /* Return the number of bytes consumed. */
+ return src->pos;
+}
+
+void freersapriv(RSAKey *key)
+{
+ if (key->private_exponent) {
+ mp_free(key->private_exponent);
+ key->private_exponent = NULL;
+ }
+ if (key->p) {
+ mp_free(key->p);
+ key->p = NULL;
+ }
+ if (key->q) {
+ mp_free(key->q);
+ key->q = NULL;
+ }
+ if (key->iqmp) {
+ mp_free(key->iqmp);
+ key->iqmp = NULL;
+ }
+}
+
+void freersakey(RSAKey *key)
+{
+ freersapriv(key);
+ if (key->modulus) {
+ mp_free(key->modulus);
+ key->modulus = NULL;
+ }
+ if (key->exponent) {
+ mp_free(key->exponent);
+ key->exponent = NULL;
+ }
+ if (key->comment) {
+ sfree(key->comment);
+ key->comment = NULL;
+ }
+}
+
+/* ----------------------------------------------------------------------
+ * Implementation of the ssh-rsa signing key type family.
+ */
+
+struct ssh2_rsa_extra {
+ unsigned signflags;
+};
+
+static void rsa2_freekey(ssh_key *key); /* forward reference */
+
+static ssh_key *rsa2_new_pub(const ssh_keyalg *self, ptrlen data)
+{
+ BinarySource src[1];
+ RSAKey *rsa;
+
+ BinarySource_BARE_INIT_PL(src, data);
+ if (!ptrlen_eq_string(get_string(src), "ssh-rsa"))
+ return NULL;
+
+ rsa = snew(RSAKey);
+ rsa->sshk.vt = self;
+ rsa->exponent = get_mp_ssh2(src);
+ rsa->modulus = get_mp_ssh2(src);
+ rsa->private_exponent = NULL;
+ rsa->p = rsa->q = rsa->iqmp = NULL;
+ rsa->comment = NULL;
+
+ if (get_err(src)) {
+ rsa2_freekey(&rsa->sshk);
+ return NULL;
+ }
+
+ return &rsa->sshk;
+}
+
+static void rsa2_freekey(ssh_key *key)
+{
+ RSAKey *rsa = container_of(key, RSAKey, sshk);
+ freersakey(rsa);
+ sfree(rsa);
+}
+
+static char *rsa2_cache_str(ssh_key *key)
+{
+ RSAKey *rsa = container_of(key, RSAKey, sshk);
+ return rsastr_fmt(rsa);
+}
+
+static key_components *rsa2_components(ssh_key *key)
+{
+ RSAKey *rsa = container_of(key, RSAKey, sshk);
+ return rsa_components(rsa);
+}
+
+static bool rsa2_has_private(ssh_key *key)
+{
+ RSAKey *rsa = container_of(key, RSAKey, sshk);
+ return rsa->private_exponent != NULL;
+}
+
+static void rsa2_public_blob(ssh_key *key, BinarySink *bs)
+{
+ RSAKey *rsa = container_of(key, RSAKey, sshk);
+
+ put_stringz(bs, "ssh-rsa");
+ put_mp_ssh2(bs, rsa->exponent);
+ put_mp_ssh2(bs, rsa->modulus);
+}
+
+static void rsa2_private_blob(ssh_key *key, BinarySink *bs)
+{
+ RSAKey *rsa = container_of(key, RSAKey, sshk);
+
+ put_mp_ssh2(bs, rsa->private_exponent);
+ put_mp_ssh2(bs, rsa->p);
+ put_mp_ssh2(bs, rsa->q);
+ put_mp_ssh2(bs, rsa->iqmp);
+}
+
+static ssh_key *rsa2_new_priv(const ssh_keyalg *self,
+ ptrlen pub, ptrlen priv)
+{
+ BinarySource src[1];
+ ssh_key *sshk;
+ RSAKey *rsa;
+
+ sshk = rsa2_new_pub(self, pub);
+ if (!sshk)
+ return NULL;
+
+ rsa = container_of(sshk, RSAKey, sshk);
+ BinarySource_BARE_INIT_PL(src, priv);
+ rsa->private_exponent = get_mp_ssh2(src);
+ rsa->p = get_mp_ssh2(src);
+ rsa->q = get_mp_ssh2(src);
+ rsa->iqmp = get_mp_ssh2(src);
+
+ if (get_err(src) || !rsa_verify(rsa)) {
+ rsa2_freekey(&rsa->sshk);
+ return NULL;
+ }
+
+ return &rsa->sshk;
+}
+
+static ssh_key *rsa2_new_priv_openssh(const ssh_keyalg *self,
+ BinarySource *src)
+{
+ RSAKey *rsa;
+
+ rsa = snew(RSAKey);
+ rsa->sshk.vt = &ssh_rsa;
+ rsa->comment = NULL;
+
+ rsa->modulus = get_mp_ssh2(src);
+ rsa->exponent = get_mp_ssh2(src);
+ rsa->private_exponent = get_mp_ssh2(src);
+ rsa->iqmp = get_mp_ssh2(src);
+ rsa->p = get_mp_ssh2(src);
+ rsa->q = get_mp_ssh2(src);
+
+ if (get_err(src) || !rsa_verify(rsa)) {
+ rsa2_freekey(&rsa->sshk);
+ return NULL;
+ }
+
+ return &rsa->sshk;
+}
+
+static void rsa2_openssh_blob(ssh_key *key, BinarySink *bs)
+{
+ RSAKey *rsa = container_of(key, RSAKey, sshk);
+
+ put_mp_ssh2(bs, rsa->modulus);
+ put_mp_ssh2(bs, rsa->exponent);
+ put_mp_ssh2(bs, rsa->private_exponent);
+ put_mp_ssh2(bs, rsa->iqmp);
+ put_mp_ssh2(bs, rsa->p);
+ put_mp_ssh2(bs, rsa->q);
+}
+
+static int rsa2_pubkey_bits(const ssh_keyalg *self, ptrlen pub)
+{
+ ssh_key *sshk;
+ RSAKey *rsa;
+ int ret;
+
+ sshk = rsa2_new_pub(self, pub);
+ if (!sshk)
+ return -1;
+
+ rsa = container_of(sshk, RSAKey, sshk);
+ ret = mp_get_nbits(rsa->modulus);
+ rsa2_freekey(&rsa->sshk);
+
+ return ret;
+}
+
+static inline const ssh_hashalg *rsa2_hash_alg_for_flags(
+ unsigned flags, const char **protocol_id_out)
+{
+ const ssh_hashalg *halg;
+ const char *protocol_id;
+
+ if (flags & SSH_AGENT_RSA_SHA2_256) {
+ halg = &ssh_sha256;
+ protocol_id = "rsa-sha2-256";
+ } else if (flags & SSH_AGENT_RSA_SHA2_512) {
+ halg = &ssh_sha512;
+ protocol_id = "rsa-sha2-512";
+ } else {
+ halg = &ssh_sha1;
+ protocol_id = "ssh-rsa";
+ }
+
+ if (protocol_id_out)
+ *protocol_id_out = protocol_id;
+
+ return halg;
+}
+
+static inline ptrlen rsa_pkcs1_prefix_for_hash(const ssh_hashalg *halg)
+{
+ if (halg == &ssh_sha1) {
+ /*
+ * This is the magic ASN.1/DER prefix that goes in the decoded
+ * signature, between the string of FFs and the actual SHA-1
+ * hash value. The meaning of it is:
+ *
+ * 00 -- this marks the end of the FFs; not part of the ASN.1
+ * bit itself
+ *
+ * 30 21 -- a constructed SEQUENCE of length 0x21
+ * 30 09 -- a constructed sub-SEQUENCE of length 9
+ * 06 05 -- an object identifier, length 5
+ * 2B 0E 03 02 1A -- object id { 1 3 14 3 2 26 }
+ * (the 1,3 comes from 0x2B = 43 = 40*1+3)
+ * 05 00 -- NULL
+ * 04 14 -- a primitive OCTET STRING of length 0x14
+ * [0x14 bytes of hash data follows]
+ *
+ * The object id in the middle there is listed as `id-sha1' in
+ * ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1d2.asn
+ * (the ASN module for PKCS #1) and its expanded form is as
+ * follows:
+ *
+ * id-sha1 OBJECT IDENTIFIER ::= {
+ * iso(1) identified-organization(3) oiw(14) secsig(3)
+ * algorithms(2) 26 }
+ */
+ static const unsigned char sha1_asn1_prefix[] = {
+ 0x00, 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2B,
+ 0x0E, 0x03, 0x02, 0x1A, 0x05, 0x00, 0x04, 0x14,
+ };
+ return PTRLEN_FROM_CONST_BYTES(sha1_asn1_prefix);
+ }
+
+ if (halg == &ssh_sha256) {
+ /*
+ * A similar piece of ASN.1 used for signatures using SHA-256,
+ * in the same format but differing only in various length
+ * fields and OID.
+ */
+ static const unsigned char sha256_asn1_prefix[] = {
+ 0x00, 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60,
+ 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01,
+ 0x05, 0x00, 0x04, 0x20,
+ };
+ return PTRLEN_FROM_CONST_BYTES(sha256_asn1_prefix);
+ }
+
+ if (halg == &ssh_sha512) {
+ /*
+ * And one more for SHA-512.
+ */
+ static const unsigned char sha512_asn1_prefix[] = {
+ 0x00, 0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60,
+ 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03,
+ 0x05, 0x00, 0x04, 0x40,
+ };
+ return PTRLEN_FROM_CONST_BYTES(sha512_asn1_prefix);
+ }
+
+ unreachable("bad hash algorithm for RSA PKCS#1");
+}
+
+static inline size_t rsa_pkcs1_length_of_fixed_parts(const ssh_hashalg *halg)
+{
+ ptrlen asn1_prefix = rsa_pkcs1_prefix_for_hash(halg);
+ return halg->hlen + asn1_prefix.len + 2;
+}
+
+static unsigned char *rsa_pkcs1_signature_string(
+ size_t nbytes, const ssh_hashalg *halg, ptrlen data)
+{
+ size_t fixed_parts = rsa_pkcs1_length_of_fixed_parts(halg);
+ assert(nbytes >= fixed_parts);
+ size_t padding = nbytes - fixed_parts;
+
+ ptrlen asn1_prefix = rsa_pkcs1_prefix_for_hash(halg);
+
+ unsigned char *bytes = snewn(nbytes, unsigned char);
+
+ bytes[0] = 0;
+ bytes[1] = 1;
+
+ memset(bytes + 2, 0xFF, padding);
+
+ memcpy(bytes + 2 + padding, asn1_prefix.ptr, asn1_prefix.len);
+
+ ssh_hash *h = ssh_hash_new(halg);
+ put_datapl(h, data);
+ ssh_hash_final(h, bytes + 2 + padding + asn1_prefix.len);
+
+ return bytes;
+}
+
+static bool rsa2_verify(ssh_key *key, ptrlen sig, ptrlen data)
+{
+ RSAKey *rsa = container_of(key, RSAKey, sshk);
+ BinarySource src[1];
+ ptrlen type, in_pl;
+ mp_int *in, *out;
+
+ const struct ssh2_rsa_extra *extra =
+ (const struct ssh2_rsa_extra *)key->vt->extra;
+
+ const ssh_hashalg *halg = rsa2_hash_alg_for_flags(extra->signflags, NULL);
+
+ /* Start by making sure the key is even long enough to encode a
+ * signature. If not, everything fails to verify. */
+ size_t nbytes = (mp_get_nbits(rsa->modulus) + 7) / 8;
+ if (nbytes < rsa_pkcs1_length_of_fixed_parts(halg))
+ return false;
+
+ BinarySource_BARE_INIT_PL(src, sig);
+ type = get_string(src);
+ /*
+ * RFC 4253 section 6.6: the signature integer in an ssh-rsa
+ * signature is 'without lengths or padding'. That is, we _don't_
+ * expect the usual leading zero byte if the topmost bit of the
+ * first byte is set. (However, because of the possibility of
+ * BUG_SSH2_RSA_PADDING at the other end, we tolerate it if it's
+ * there.) So we can't use get_mp_ssh2, which enforces that
+ * leading-byte scheme; instead we use get_string and
+ * mp_from_bytes_be, which will tolerate anything.
+ */
+ in_pl = get_string(src);
+ if (get_err(src) || !ptrlen_eq_string(type, key->vt->ssh_id))
+ return false;
+
+ in = mp_from_bytes_be(in_pl);
+ out = mp_modpow(in, rsa->exponent, rsa->modulus);
+ mp_free(in);
+
+ unsigned diff = 0;
+
+ unsigned char *bytes = rsa_pkcs1_signature_string(nbytes, halg, data);
+ for (size_t i = 0; i < nbytes; i++)
+ diff |= bytes[nbytes-1 - i] ^ mp_get_byte(out, i);
+ smemclr(bytes, nbytes);
+ sfree(bytes);
+ mp_free(out);
+
+ return diff == 0;
+}
+
+static void rsa2_sign(ssh_key *key, ptrlen data,
+ unsigned flags, BinarySink *bs)
+{
+ RSAKey *rsa = container_of(key, RSAKey, sshk);
+ unsigned char *bytes;
+ size_t nbytes;
+ mp_int *in, *out;
+ const ssh_hashalg *halg;
+ const char *sign_alg_name;
+
+ const struct ssh2_rsa_extra *extra =
+ (const struct ssh2_rsa_extra *)key->vt->extra;
+ flags |= extra->signflags;
+
+ halg = rsa2_hash_alg_for_flags(flags, &sign_alg_name);
+
+ nbytes = (mp_get_nbits(rsa->modulus) + 7) / 8;
+
+ bytes = rsa_pkcs1_signature_string(nbytes, halg, data);
+ in = mp_from_bytes_be(make_ptrlen(bytes, nbytes));
+ smemclr(bytes, nbytes);
+ sfree(bytes);
+
+ out = rsa_privkey_op(in, rsa);
+ mp_free(in);
+
+ put_stringz(bs, sign_alg_name);
+ nbytes = (mp_get_nbits(out) + 7) / 8;
+ put_uint32(bs, nbytes);
+ for (size_t i = 0; i < nbytes; i++)
+ put_byte(bs, mp_get_byte(out, nbytes - 1 - i));
+
+ mp_free(out);
+}
+
+static char *rsa2_invalid(ssh_key *key, unsigned flags)
+{
+ RSAKey *rsa = container_of(key, RSAKey, sshk);
+ size_t bits = mp_get_nbits(rsa->modulus), nbytes = (bits + 7) / 8;
+ const char *sign_alg_name;
+ const ssh_hashalg *halg = rsa2_hash_alg_for_flags(flags, &sign_alg_name);
+ if (nbytes < rsa_pkcs1_length_of_fixed_parts(halg)) {
+ return dupprintf(
+ "%"SIZEu"-bit RSA key is too short to generate %s signatures",
+ bits, sign_alg_name);
+ }
+
+ return NULL;
+}
+
+static unsigned ssh_rsa_supported_flags(const ssh_keyalg *self)
+{
+ return SSH_AGENT_RSA_SHA2_256 | SSH_AGENT_RSA_SHA2_512;
+}
+
+static const char *ssh_rsa_alternate_ssh_id(
+ const ssh_keyalg *self, unsigned flags)
+{
+ if (flags & SSH_AGENT_RSA_SHA2_512)
+ return ssh_rsa_sha512.ssh_id;
+ if (flags & SSH_AGENT_RSA_SHA2_256)
+ return ssh_rsa_sha256.ssh_id;
+ return self->ssh_id;
+}
+
+static char *rsa2_alg_desc(const ssh_keyalg *self) { return dupstr("RSA"); }
+
+static const struct ssh2_rsa_extra
+ rsa_extra = { 0 },
+ rsa_sha256_extra = { SSH_AGENT_RSA_SHA2_256 },
+ rsa_sha512_extra = { SSH_AGENT_RSA_SHA2_512 };
+
+#define COMMON_KEYALG_FIELDS \
+ .new_pub = rsa2_new_pub, \
+ .new_priv = rsa2_new_priv, \
+ .new_priv_openssh = rsa2_new_priv_openssh, \
+ .freekey = rsa2_freekey, \
+ .invalid = rsa2_invalid, \
+ .sign = rsa2_sign, \
+ .verify = rsa2_verify, \
+ .public_blob = rsa2_public_blob, \
+ .private_blob = rsa2_private_blob, \
+ .openssh_blob = rsa2_openssh_blob, \
+ .has_private = rsa2_has_private, \
+ .cache_str = rsa2_cache_str, \
+ .components = rsa2_components, \
+ .base_key = nullkey_base_key, \
+ .pubkey_bits = rsa2_pubkey_bits, \
+ .alg_desc = rsa2_alg_desc, \
+ .variable_size = nullkey_variable_size_yes, \
+ .cache_id = "rsa2"
+
+const ssh_keyalg ssh_rsa = {
+ COMMON_KEYALG_FIELDS,
+ .ssh_id = "ssh-rsa",
+ .supported_flags = ssh_rsa_supported_flags,
+ .alternate_ssh_id = ssh_rsa_alternate_ssh_id,
+ .extra = &rsa_extra,
+};
+
+const ssh_keyalg ssh_rsa_sha256 = {
+ COMMON_KEYALG_FIELDS,
+ .ssh_id = "rsa-sha2-256",
+ .supported_flags = nullkey_supported_flags,
+ .alternate_ssh_id = nullkey_alternate_ssh_id,
+ .extra = &rsa_sha256_extra,
+};
+
+const ssh_keyalg ssh_rsa_sha512 = {
+ COMMON_KEYALG_FIELDS,
+ .ssh_id = "rsa-sha2-512",
+ .supported_flags = nullkey_supported_flags,
+ .alternate_ssh_id = nullkey_alternate_ssh_id,
+ .extra = &rsa_sha512_extra,
+};
+
+RSAKey *ssh_rsakex_newkey(ptrlen data)
+{
+ ssh_key *sshk = rsa2_new_pub(&ssh_rsa, data);
+ if (!sshk)
+ return NULL;
+ return container_of(sshk, RSAKey, sshk);
+}
+
+void ssh_rsakex_freekey(RSAKey *key)
+{
+ rsa2_freekey(&key->sshk);
+}
+
+int ssh_rsakex_klen(RSAKey *rsa)
+{
+ return mp_get_nbits(rsa->modulus);
+}
+
+static void oaep_mask(const ssh_hashalg *h, void *seed, int seedlen,
+ void *vdata, int datalen)
+{
+ unsigned char *data = (unsigned char *)vdata;
+ unsigned count = 0;
+
+ ssh_hash *s = ssh_hash_new(h);
+
+ while (datalen > 0) {
+ int i, max = (datalen > h->hlen ? h->hlen : datalen);
+ unsigned char hash[MAX_HASH_LEN];
+
+ ssh_hash_reset(s);
+ assert(h->hlen <= MAX_HASH_LEN);
+ put_data(s, seed, seedlen);
+ put_uint32(s, count);
+ ssh_hash_digest(s, hash);
+ count++;
+
+ for (i = 0; i < max; i++)
+ data[i] ^= hash[i];
+
+ data += max;
+ datalen -= max;
+ }
+
+ ssh_hash_free(s);
+}
+
+strbuf *ssh_rsakex_encrypt(RSAKey *rsa, const ssh_hashalg *h, ptrlen in)
+{
+ mp_int *b1, *b2;
+ int k, i;
+ char *p;
+ const int HLEN = h->hlen;
+
+ /*
+ * Here we encrypt using RSAES-OAEP. Essentially this means:
+ *
+ * - we have a SHA-based `mask generation function' which
+ * creates a pseudo-random stream of mask data
+ * deterministically from an input chunk of data.
+ *
+ * - we have a random chunk of data called a seed.
+ *
+ * - we use the seed to generate a mask which we XOR with our
+ * plaintext.
+ *
+ * - then we use _the masked plaintext_ to generate a mask
+ * which we XOR with the seed.
+ *
+ * - then we concatenate the masked seed and the masked
+ * plaintext, and RSA-encrypt that lot.
+ *
+ * The result is that the data input to the encryption function
+ * is random-looking and (hopefully) contains no exploitable
+ * structure such as PKCS1-v1_5 does.
+ *
+ * For a precise specification, see RFC 3447, section 7.1.1.
+ * Some of the variable names below are derived from that, so
+ * it'd probably help to read it anyway.
+ */
+
+ /* k denotes the length in octets of the RSA modulus. */
+ k = (7 + mp_get_nbits(rsa->modulus)) / 8;
+
+ /* The length of the input data must be at most k - 2hLen - 2. */
+ assert(in.len > 0 && in.len <= k - 2*HLEN - 2);
+
+ /* The length of the output data wants to be precisely k. */
+ strbuf *toret = strbuf_new_nm();
+ int outlen = k;
+ unsigned char *out = strbuf_append(toret, outlen);
+
+ /*
+ * Now perform EME-OAEP encoding. First set up all the unmasked
+ * output data.
+ */
+ /* Leading byte zero. */
+ out[0] = 0;
+ /* At position 1, the seed: HLEN bytes of random data. */
+ random_read(out + 1, HLEN);
+ /* At position 1+HLEN, the data block DB, consisting of: */
+ /* The hash of the label (we only support an empty label here) */
+ hash_simple(h, PTRLEN_LITERAL(""), out + HLEN + 1);
+ /* A bunch of zero octets */
+ memset(out + 2*HLEN + 1, 0, outlen - (2*HLEN + 1));
+ /* A single 1 octet, followed by the input message data. */
+ out[outlen - in.len - 1] = 1;
+ memcpy(out + outlen - in.len, in.ptr, in.len);
+
+ /*
+ * Now use the seed data to mask the block DB.
+ */
+ oaep_mask(h, out+1, HLEN, out+HLEN+1, outlen-HLEN-1);
+
+ /*
+ * And now use the masked DB to mask the seed itself.
+ */
+ oaep_mask(h, out+HLEN+1, outlen-HLEN-1, out+1, HLEN);
+
+ /*
+ * Now `out' contains precisely the data we want to
+ * RSA-encrypt.
+ */
+ b1 = mp_from_bytes_be(make_ptrlen(out, outlen));
+ b2 = mp_modpow(b1, rsa->exponent, rsa->modulus);
+ p = (char *)out;
+ for (i = outlen; i--;) {
+ *p++ = mp_get_byte(b2, i);
+ }
+ mp_free(b1);
+ mp_free(b2);
+
+ /*
+ * And we're done.
+ */
+ return toret;
+}
+
+mp_int *ssh_rsakex_decrypt(
+ RSAKey *rsa, const ssh_hashalg *h, ptrlen ciphertext)
+{
+ mp_int *b1, *b2;
+ int outlen, i;
+ unsigned char *out;
+ unsigned char labelhash[64];
+ BinarySource src[1];
+ const int HLEN = h->hlen;
+
+ /*
+ * Decryption side of the RSA key exchange operation.
+ */
+
+ /* The length of the encrypted data should be exactly the length
+ * in octets of the RSA modulus.. */
+ outlen = (7 + mp_get_nbits(rsa->modulus)) / 8;
+ if (ciphertext.len != outlen)
+ return NULL;
+
+ /* Do the RSA decryption, and extract the result into a byte array. */
+ b1 = mp_from_bytes_be(ciphertext);
+ b2 = rsa_privkey_op(b1, rsa);
+ out = snewn(outlen, unsigned char);
+ for (i = 0; i < outlen; i++)
+ out[i] = mp_get_byte(b2, outlen-1-i);
+ mp_free(b1);
+ mp_free(b2);
+
+ /* Do the OAEP masking operations, in the reverse order from encryption */
+ oaep_mask(h, out+HLEN+1, outlen-HLEN-1, out+1, HLEN);
+ oaep_mask(h, out+1, HLEN, out+HLEN+1, outlen-HLEN-1);
+
+ /* Check the leading byte is zero. */
+ if (out[0] != 0) {
+ sfree(out);
+ return NULL;
+ }
+ /* Check the label hash at position 1+HLEN */
+ assert(HLEN <= lenof(labelhash));
+ hash_simple(h, PTRLEN_LITERAL(""), labelhash);
+ if (memcmp(out + HLEN + 1, labelhash, HLEN)) {
+ sfree(out);
+ return NULL;
+ }
+ /* Expect zero bytes followed by a 1 byte */
+ for (i = 1 + 2 * HLEN; i < outlen; i++) {
+ if (out[i] == 1) {
+ i++; /* skip over the 1 byte */
+ break;
+ } else if (out[i] != 0) {
+ sfree(out);
+ return NULL;
+ }
+ }
+ /* And what's left is the input message data, which should be
+ * encoded as an ordinary SSH-2 mpint. */
+ BinarySource_BARE_INIT(src, out + i, outlen - i);
+ b1 = get_mp_ssh2(src);
+ sfree(out);
+ if (get_err(src) || get_avail(src) != 0) {
+ mp_free(b1);
+ return NULL;
+ }
+
+ /* Success! */
+ return b1;
+}
+
+static const struct ssh_rsa_kex_extra ssh_rsa_kex_extra_sha1 = { 1024 };
+static const struct ssh_rsa_kex_extra ssh_rsa_kex_extra_sha256 = { 2048 };
+
+static const ssh_kex ssh_rsa_kex_sha1 = {
+ .name = "rsa1024-sha1",
+ .main_type = KEXTYPE_RSA,
+ .hash = &ssh_sha1,
+ .extra = &ssh_rsa_kex_extra_sha1,
+};
+
+static const ssh_kex ssh_rsa_kex_sha256 = {
+ .name = "rsa2048-sha256",
+ .main_type = KEXTYPE_RSA,
+ .hash = &ssh_sha256,
+ .extra = &ssh_rsa_kex_extra_sha256,
+};
+
+static const ssh_kex *const rsa_kex_list[] = {
+ &ssh_rsa_kex_sha256,
+ &ssh_rsa_kex_sha1
+};
+
+const ssh_kexes ssh_rsa_kex = { lenof(rsa_kex_list), rsa_kex_list };