Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/mRemoteNG/PuTTYNG.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'keygen/pockle.c')
-rw-r--r--keygen/pockle.c450
1 files changed, 450 insertions, 0 deletions
diff --git a/keygen/pockle.c b/keygen/pockle.c
new file mode 100644
index 00000000..2a072f18
--- /dev/null
+++ b/keygen/pockle.c
@@ -0,0 +1,450 @@
+#include <assert.h>
+#include "ssh.h"
+#include "sshkeygen.h"
+#include "mpint.h"
+#include "mpunsafe.h"
+#include "tree234.h"
+
+typedef struct PocklePrimeRecord PocklePrimeRecord;
+
+struct Pockle {
+ tree234 *tree;
+
+ PocklePrimeRecord **list;
+ size_t nlist, listsize;
+};
+
+struct PocklePrimeRecord {
+ mp_int *prime;
+ PocklePrimeRecord **factors;
+ size_t nfactors;
+ mp_int *witness;
+
+ size_t index; /* index in pockle->list */
+};
+
+static int ppr_cmp(void *av, void *bv)
+{
+ PocklePrimeRecord *a = (PocklePrimeRecord *)av;
+ PocklePrimeRecord *b = (PocklePrimeRecord *)bv;
+ return mp_cmp_hs(a->prime, b->prime) - mp_cmp_hs(b->prime, a->prime);
+}
+
+static int ppr_find(void *av, void *bv)
+{
+ mp_int *a = (mp_int *)av;
+ PocklePrimeRecord *b = (PocklePrimeRecord *)bv;
+ return mp_cmp_hs(a, b->prime) - mp_cmp_hs(b->prime, a);
+}
+
+Pockle *pockle_new(void)
+{
+ Pockle *pockle = snew(Pockle);
+ pockle->tree = newtree234(ppr_cmp);
+ pockle->list = NULL;
+ pockle->nlist = pockle->listsize = 0;
+ return pockle;
+}
+
+void pockle_free(Pockle *pockle)
+{
+ pockle_release(pockle, 0);
+ assert(count234(pockle->tree) == 0);
+ freetree234(pockle->tree);
+ sfree(pockle->list);
+ sfree(pockle);
+}
+
+static PockleStatus pockle_insert(Pockle *pockle, mp_int *p, mp_int **factors,
+ size_t nfactors, mp_int *w)
+{
+ PocklePrimeRecord *pr = snew(PocklePrimeRecord);
+ pr->prime = mp_copy(p);
+
+ PocklePrimeRecord *found = add234(pockle->tree, pr);
+ if (pr != found) {
+ /* it was already in there */
+ mp_free(pr->prime);
+ sfree(pr);
+ return POCKLE_OK;
+ }
+
+ if (w) {
+ pr->factors = snewn(nfactors, PocklePrimeRecord *);
+ for (size_t i = 0; i < nfactors; i++) {
+ pr->factors[i] = find234(pockle->tree, factors[i], ppr_find);
+ assert(pr->factors[i]);
+ }
+ pr->nfactors = nfactors;
+ pr->witness = mp_copy(w);
+ } else {
+ pr->factors = NULL;
+ pr->nfactors = 0;
+ pr->witness = NULL;
+ }
+ pr->index = pockle->nlist;
+
+ sgrowarray(pockle->list, pockle->listsize, pockle->nlist);
+ pockle->list[pockle->nlist++] = pr;
+ return POCKLE_OK;
+}
+
+size_t pockle_mark(Pockle *pockle)
+{
+ return pockle->nlist;
+}
+
+void pockle_release(Pockle *pockle, size_t mark)
+{
+ while (pockle->nlist > mark) {
+ PocklePrimeRecord *pr = pockle->list[--pockle->nlist];
+ del234(pockle->tree, pr);
+ mp_free(pr->prime);
+ if (pr->witness)
+ mp_free(pr->witness);
+ sfree(pr->factors);
+ sfree(pr);
+ }
+}
+
+PockleStatus pockle_add_small_prime(Pockle *pockle, mp_int *p)
+{
+ if (mp_hs_integer(p, (1ULL << 32)))
+ return POCKLE_SMALL_PRIME_NOT_SMALL;
+
+ uint32_t val = mp_get_integer(p);
+
+ if (val < 2)
+ return POCKLE_PRIME_SMALLER_THAN_2;
+
+ init_smallprimes();
+ for (size_t i = 0; i < NSMALLPRIMES; i++) {
+ if (val == smallprimes[i])
+ break; /* success */
+ if (val % smallprimes[i] == 0)
+ return POCKLE_SMALL_PRIME_NOT_PRIME;
+ }
+
+ return pockle_insert(pockle, p, NULL, 0, NULL);
+}
+
+PockleStatus pockle_add_prime(Pockle *pockle, mp_int *p,
+ mp_int **factors, size_t nfactors,
+ mp_int *witness)
+{
+ MontyContext *mc = NULL;
+ mp_int *x = NULL, *f = NULL, *w = NULL;
+ PockleStatus status;
+
+ /*
+ * We're going to try to verify that p is prime by using
+ * Pocklington's theorem. The idea is that we're given w such that
+ * w^{p-1} == 1 (mod p) (1)
+ * and for a collection of primes q | p-1,
+ * w^{(p-1)/q} - 1 is coprime to p. (2)
+ *
+ * Suppose r is a prime factor of p itself. Consider the
+ * multiplicative order of w mod r. By (1), r | w^{p-1}-1. But by
+ * (2), r does not divide w^{(p-1)/q}-1. So the order of w mod r
+ * is a factor of p-1, but not a factor of (p-1)/q. Hence, the
+ * largest power of q that divides p-1 must also divide ord w.
+ *
+ * Repeating this reasoning for all q, we find that the product of
+ * all the q (which we'll denote f) must divide ord w, which in
+ * turn divides r-1. So f | r-1 for any r | p.
+ *
+ * In particular, this means f < r. That is, all primes r | p are
+ * bigger than f. So if f > sqrt(p), then we've shown p is prime,
+ * because otherwise it would have to be the product of at least
+ * two factors bigger than its own square root.
+ *
+ * With an extra check, we can also show p to be prime even if
+ * we're only given enough factors to make f > cbrt(p). See below
+ * for that part, when we come to it.
+ */
+
+ /*
+ * Start by checking p > 1. It certainly can't be prime otherwise!
+ * (And since we're going to prove it prime by showing all its
+ * prime factors are large, we do also have to know it _has_ at
+ * least one prime factor for that to tell us anything.)
+ */
+ if (!mp_hs_integer(p, 2))
+ return POCKLE_PRIME_SMALLER_THAN_2;
+
+ /*
+ * Check that all the factors we've been given really are primes
+ * (in the sense that we already had them in our index). Make the
+ * product f, and check it really does divide p-1.
+ */
+ x = mp_copy(p);
+ mp_sub_integer_into(x, x, 1);
+ f = mp_from_integer(1);
+ for (size_t i = 0; i < nfactors; i++) {
+ mp_int *q = factors[i];
+
+ if (!find234(pockle->tree, q, ppr_find)) {
+ status = POCKLE_FACTOR_NOT_KNOWN_PRIME;
+ goto out;
+ }
+
+ mp_int *quotient = mp_new(mp_max_bits(x));
+ mp_int *residue = mp_new(mp_max_bits(q));
+ mp_divmod_into(x, q, quotient, residue);
+
+ unsigned exact = mp_eq_integer(residue, 0);
+ mp_free(residue);
+
+ mp_free(x);
+ x = quotient;
+
+ if (!exact) {
+ status = POCKLE_FACTOR_NOT_A_FACTOR;
+ goto out;
+ }
+
+ mp_int *tmp = f;
+ f = mp_unsafe_shrink(mp_mul(tmp, q));
+ mp_free(tmp);
+ }
+
+ /*
+ * Check that f > cbrt(p).
+ */
+ mp_int *f2 = mp_mul(f, f);
+ mp_int *f3 = mp_mul(f2, f);
+ bool too_big = mp_cmp_hs(p, f3);
+ mp_free(f3);
+ mp_free(f2);
+ if (too_big) {
+ status = POCKLE_PRODUCT_OF_FACTORS_TOO_SMALL;
+ goto out;
+ }
+
+ /*
+ * Now do the extra check that allows us to get away with only
+ * having f > cbrt(p) instead of f > sqrt(p).
+ *
+ * If we can show that f | r-1 for any r | p, then we've ruled out
+ * p being a product of _more_ than two primes (because then it
+ * would be the product of at least three things bigger than its
+ * own cube root). But we still have to rule out it being a
+ * product of exactly two.
+ *
+ * Suppose for the sake of contradiction that p is the product of
+ * two prime factors. We know both of those factors would have to
+ * be congruent to 1 mod f. So we'd have to have
+ *
+ * p = (uf+1)(vf+1) = (uv)f^2 + (u+v)f + 1 (3)
+ *
+ * We can't have uv >= f, or else that expression would come to at
+ * least f^3, i.e. it would exceed p. So uv < f. Hence, u,v < f as
+ * well.
+ *
+ * Can we have u+v >= f? If we did, then we could write v >= f-u,
+ * and hence f > uv >= u(f-u). That can be rearranged to show that
+ * u^2 > (u-1)f; decrementing the LHS makes the inequality no
+ * longer necessarily strict, so we have u^2-1 >= (u-1)f, and
+ * dividing off u-1 gives u+1 >= f. But we know u < f, so the only
+ * way this could happen would be if u=f-1, which makes v=1. But
+ * _then_ (3) gives us p = (f-1)f^2 + f^2 + 1 = f^3+1. But that
+ * can't be true if f^3 > p. So we can't have u+v >= f either, by
+ * contradiction.
+ *
+ * After all that, what have we shown? We've shown that we can
+ * write p = (uv)f^2 + (u+v)f + 1, with both uv and u+v strictly
+ * less than f. In other words, if you write down p in base f, it
+ * has exactly three digits, and they are uv, u+v and 1.
+ *
+ * But that means we can _find_ u and v: we know p and f, so we
+ * can just extract those digits of p's base-f representation.
+ * Once we've done so, they give the sum and product of the
+ * potential u,v. And given the sum and product of two numbers,
+ * you can make a quadratic which has those numbers as roots.
+ *
+ * We don't actually have to _solve_ the quadratic: all we have to
+ * do is check if its discriminant is a perfect square. If not,
+ * we'll know that no integers u,v can match this description.
+ */
+ {
+ /* We already have x = (p-1)/f. So we just need to write x in
+ * the form aF + b, and then we have a=uv and b=u+v. */
+ mp_int *a = mp_new(mp_max_bits(x));
+ mp_int *b = mp_new(mp_max_bits(f));
+ mp_divmod_into(x, f, a, b);
+ assert(!mp_cmp_hs(a, f));
+ assert(!mp_cmp_hs(b, f));
+
+ /* If a=0, then that means p < f^2, so we don't need to do
+ * this check at all: the straightforward Pocklington theorem
+ * is all we need. */
+ if (!mp_eq_integer(a, 0)) {
+ unsigned perfect_square = 0;
+
+ mp_int *bsq = mp_mul(b, b);
+ mp_lshift_fixed_into(a, a, 2);
+
+ if (mp_cmp_hs(bsq, a)) {
+ /* b^2-4a is non-negative, so it might be a square.
+ * Check it. */
+ mp_int *discriminant = mp_sub(bsq, a);
+ mp_int *remainder = mp_new(mp_max_bits(discriminant));
+ mp_int *root = mp_nthroot(discriminant, 2, remainder);
+ perfect_square = mp_eq_integer(remainder, 0);
+ mp_free(discriminant);
+ mp_free(root);
+ mp_free(remainder);
+ }
+
+ mp_free(bsq);
+
+ if (perfect_square) {
+ mp_free(b);
+ mp_free(a);
+ status = POCKLE_DISCRIMINANT_IS_SQUARE;
+ goto out;
+ }
+ }
+ mp_free(b);
+ mp_free(a);
+ }
+
+ /*
+ * Now we've done all the checks that are cheaper than a modpow,
+ * so we've ruled out as many things as possible before having to
+ * do any hard work. But there's nothing for it now: make a
+ * MontyContext.
+ */
+ mc = monty_new(p);
+ w = monty_import(mc, witness);
+
+ /*
+ * The initial Fermat check: is w^{p-1} itself congruent to 1 mod
+ * p?
+ */
+ {
+ mp_int *pm1 = mp_copy(p);
+ mp_sub_integer_into(pm1, pm1, 1);
+ mp_int *power = monty_pow(mc, w, pm1);
+ unsigned fermat_pass = mp_cmp_eq(power, monty_identity(mc));
+ mp_free(power);
+ mp_free(pm1);
+
+ if (!fermat_pass) {
+ status = POCKLE_FERMAT_TEST_FAILED;
+ goto out;
+ }
+ }
+
+ /*
+ * And now, for each factor q, is w^{(p-1)/q}-1 coprime to p?
+ */
+ for (size_t i = 0; i < nfactors; i++) {
+ mp_int *q = factors[i];
+ mp_int *exponent = mp_unsafe_shrink(mp_div(p, q));
+ mp_int *power = monty_pow(mc, w, exponent);
+ mp_int *power_extracted = monty_export(mc, power);
+ mp_sub_integer_into(power_extracted, power_extracted, 1);
+
+ unsigned coprime = mp_coprime(power_extracted, p);
+ if (!coprime) {
+ /*
+ * If w^{(p-1)/q}-1 is not coprime to p, the test has
+ * failed. But it makes a difference why. If the power of
+ * w turned out to be 1, so that we took gcd(1-1,p) =
+ * gcd(0,p) = p, that's like an inconclusive Fermat or M-R
+ * test: it might just mean you picked a witness integer
+ * that wasn't a primitive root. But if the power is any
+ * _other_ value mod p that is not coprime to p, it means
+ * we've detected that the number is *actually not prime*!
+ */
+ if (mp_eq_integer(power_extracted, 0))
+ status = POCKLE_WITNESS_POWER_IS_1;
+ else
+ status = POCKLE_WITNESS_POWER_NOT_COPRIME;
+ }
+
+ mp_free(exponent);
+ mp_free(power);
+ mp_free(power_extracted);
+
+ if (!coprime)
+ goto out; /* with the status we set up above */
+ }
+
+ /*
+ * Success! p is prime. Insert it into our tree234 of known
+ * primes, so that future calls to this function can cite it in
+ * evidence of larger numbers' primality.
+ */
+ status = pockle_insert(pockle, p, factors, nfactors, witness);
+
+ out:
+ if (x)
+ mp_free(x);
+ if (f)
+ mp_free(f);
+ if (w)
+ mp_free(w);
+ if (mc)
+ monty_free(mc);
+ return status;
+}
+
+static void mp_write_decimal(strbuf *sb, mp_int *x)
+{
+ char *s = mp_get_decimal(x);
+ ptrlen pl = ptrlen_from_asciz(s);
+ put_datapl(sb, pl);
+ smemclr(s, pl.len);
+ sfree(s);
+}
+
+strbuf *pockle_mpu(Pockle *pockle, mp_int *p)
+{
+ strbuf *sb = strbuf_new_nm();
+ PocklePrimeRecord *pr = find234(pockle->tree, p, ppr_find);
+ assert(pr);
+
+ bool *needed = snewn(pockle->nlist, bool);
+ memset(needed, 0, pockle->nlist * sizeof(bool));
+ needed[pr->index] = true;
+
+ put_fmt(sb, "[MPU - Primality Certificate]\nVersion 1.0\nBase 10\n\n"
+ "Proof for:\nN ");
+ mp_write_decimal(sb, p);
+ put_fmt(sb, "\n");
+
+ for (size_t index = pockle->nlist; index-- > 0 ;) {
+ if (!needed[index])
+ continue;
+ pr = pockle->list[index];
+
+ if (mp_get_nbits(pr->prime) <= 64) {
+ put_fmt(sb, "\nType Small\nN ");
+ mp_write_decimal(sb, pr->prime);
+ put_fmt(sb, "\n");
+ } else {
+ assert(pr->witness);
+ put_fmt(sb, "\nType BLS5\nN ");
+ mp_write_decimal(sb, pr->prime);
+ put_fmt(sb, "\n");
+ for (size_t i = 0; i < pr->nfactors; i++) {
+ put_fmt(sb, "Q[%"SIZEu"] ", i+1);
+ mp_write_decimal(sb, pr->factors[i]->prime);
+ assert(pr->factors[i]->index < index);
+ needed[pr->factors[i]->index] = true;
+ put_fmt(sb, "\n");
+ }
+ for (size_t i = 0; i < pr->nfactors + 1; i++) {
+ put_fmt(sb, "A[%"SIZEu"] ", i);
+ mp_write_decimal(sb, pr->witness);
+ put_fmt(sb, "\n");
+ }
+ put_fmt(sb, "----\n");
+ }
+ }
+ sfree(needed);
+
+ return sb;
+}