Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/mRemoteNG/PuTTYNG.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'keygen/prime.c')
-rw-r--r--keygen/prime.c762
1 files changed, 762 insertions, 0 deletions
diff --git a/keygen/prime.c b/keygen/prime.c
new file mode 100644
index 00000000..d9bdebba
--- /dev/null
+++ b/keygen/prime.c
@@ -0,0 +1,762 @@
+/*
+ * Prime generation.
+ */
+
+#include <assert.h>
+#include <math.h>
+
+#include "ssh.h"
+#include "mpint.h"
+#include "mpunsafe.h"
+#include "sshkeygen.h"
+
+/* ----------------------------------------------------------------------
+ * Standard probabilistic prime-generation algorithm:
+ *
+ * - get a number from our PrimeCandidateSource which will at least
+ * avoid being divisible by any prime under 2^16
+ *
+ * - perform the Miller-Rabin primality test enough times to
+ * ensure the probability of it being composite is 2^-80 or
+ * less
+ *
+ * - go back to square one if any M-R test fails.
+ */
+
+static PrimeGenerationContext *probprime_new_context(
+ const PrimeGenerationPolicy *policy)
+{
+ PrimeGenerationContext *ctx = snew(PrimeGenerationContext);
+ ctx->vt = policy;
+ return ctx;
+}
+
+static void probprime_free_context(PrimeGenerationContext *ctx)
+{
+ sfree(ctx);
+}
+
+static ProgressPhase probprime_add_progress_phase(
+ const PrimeGenerationPolicy *policy,
+ ProgressReceiver *prog, unsigned bits)
+{
+ /*
+ * The density of primes near x is 1/(log x). When x is about 2^b,
+ * that's 1/(b log 2).
+ *
+ * But we're only doing the expensive part of the process (the M-R
+ * checks) for a number that passes the initial winnowing test of
+ * having no factor less than 2^16 (at least, unless the prime is
+ * so small that PrimeCandidateSource gives up on that winnowing).
+ * The density of _those_ numbers is about 1/19.76. So the odds of
+ * hitting a prime per expensive attempt are boosted by a factor
+ * of 19.76.
+ */
+ const double log_2 = 0.693147180559945309417232121458;
+ double winnow_factor = (bits < 32 ? 1.0 : 19.76);
+ double prob = winnow_factor / (bits * log_2);
+
+ /*
+ * Estimate the cost of prime generation as the cost of the M-R
+ * modexps.
+ */
+ double cost = (miller_rabin_checks_needed(bits) *
+ estimate_modexp_cost(bits));
+ return progress_add_probabilistic(prog, cost, prob);
+}
+
+static mp_int *probprime_generate(
+ PrimeGenerationContext *ctx,
+ PrimeCandidateSource *pcs, ProgressReceiver *prog)
+{
+ pcs_ready(pcs);
+
+ while (true) {
+ progress_report_attempt(prog);
+
+ mp_int *p = pcs_generate(pcs);
+ if (!p) {
+ pcs_free(pcs);
+ return NULL;
+ }
+
+ MillerRabin *mr = miller_rabin_new(p);
+ bool known_bad = false;
+ unsigned nchecks = miller_rabin_checks_needed(mp_get_nbits(p));
+ for (unsigned check = 0; check < nchecks; check++) {
+ if (!miller_rabin_test_random(mr)) {
+ known_bad = true;
+ break;
+ }
+ }
+ miller_rabin_free(mr);
+
+ if (!known_bad) {
+ /*
+ * We have a prime!
+ */
+ pcs_free(pcs);
+ return p;
+ }
+
+ mp_free(p);
+ }
+}
+
+static strbuf *null_mpu_certificate(PrimeGenerationContext *ctx, mp_int *p)
+{
+ return NULL;
+}
+
+const PrimeGenerationPolicy primegen_probabilistic = {
+ probprime_add_progress_phase,
+ probprime_new_context,
+ probprime_free_context,
+ probprime_generate,
+ null_mpu_certificate,
+};
+
+/* ----------------------------------------------------------------------
+ * Alternative provable-prime algorithm, based on the following paper:
+ *
+ * [MAURER] Maurer, U.M. Fast generation of prime numbers and secure
+ * public-key cryptographic parameters. J. Cryptology 8, 123–155
+ * (1995). https://doi.org/10.1007/BF00202269
+ */
+
+typedef enum SubprimePolicy {
+ SPP_FAST,
+ SPP_MAURER_SIMPLE,
+ SPP_MAURER_COMPLEX,
+} SubprimePolicy;
+
+typedef struct ProvablePrimePolicyExtra {
+ SubprimePolicy spp;
+} ProvablePrimePolicyExtra;
+
+typedef struct ProvablePrimeContext ProvablePrimeContext;
+struct ProvablePrimeContext {
+ Pockle *pockle;
+ PrimeGenerationContext pgc;
+ const ProvablePrimePolicyExtra *extra;
+};
+
+static PrimeGenerationContext *provableprime_new_context(
+ const PrimeGenerationPolicy *policy)
+{
+ ProvablePrimeContext *ppc = snew(ProvablePrimeContext);
+ ppc->pgc.vt = policy;
+ ppc->pockle = pockle_new();
+ ppc->extra = policy->extra;
+ return &ppc->pgc;
+}
+
+static void provableprime_free_context(PrimeGenerationContext *ctx)
+{
+ ProvablePrimeContext *ppc = container_of(ctx, ProvablePrimeContext, pgc);
+ pockle_free(ppc->pockle);
+ sfree(ppc);
+}
+
+static ProgressPhase provableprime_add_progress_phase(
+ const PrimeGenerationPolicy *policy,
+ ProgressReceiver *prog, unsigned bits)
+{
+ /*
+ * Estimating the cost of making a _provable_ prime is difficult
+ * because of all the recursions to smaller sizes.
+ *
+ * Once you have enough factors of p-1 to certify primality of p,
+ * the remaining work in provable prime generation is not very
+ * different from probabilistic: you generate a random candidate,
+ * test its primality probabilistically, and use the witness value
+ * generated as a byproduct of that test for the full Pocklington
+ * verification. The expensive part, as usual, is made of modpows.
+ *
+ * The Pocklington test needs at least two modpows (one for the
+ * Fermat check, and one per known factor of p-1).
+ *
+ * The prior M-R step needs an unknown number, because we iterate
+ * until we find a value whose order is divisible by the largest
+ * power of 2 that divides p-1, say 2^j. That excludes half the
+ * possible witness values (specifically, the quadratic residues),
+ * so we expect to need on average two M-R operations to find one.
+ * But that's only if the number _is_ prime - as usual, it's also
+ * possible that we hit a non-prime and have to try again.
+ *
+ * So, if we were only estimating the cost of that final step, it
+ * would look a lot like the probabilistic version: we'd have to
+ * estimate the expected total number of modexps by knowing
+ * something about the density of primes among our candidate
+ * integers, and then multiply that by estimate_modexp_cost(bits).
+ * But the problem is that we also have to _find_ a smaller prime,
+ * so we have to recurse.
+ *
+ * In the MAURER_SIMPLE version of the algorithm, you recurse to
+ * any one of a range of possible smaller sizes i, each with
+ * probability proportional to 1/i. So your expected time to
+ * generate an n-bit prime is given by a horrible recurrence of
+ * the form E_n = S_n + (sum E_i/i) / (sum 1/i), in which S_n is
+ * the expected cost of the final step once you have your smaller
+ * primes, and both sums are over ceil(n/2) <= i <= n-20.
+ *
+ * At this point I ran out of effort to actually do the maths
+ * rigorously, so instead I did the empirical experiment of
+ * generating that sequence in Python and plotting it on a graph.
+ * My Python code is here, in case I need it again:
+
+from math import log
+
+alpha = log(3)/log(2) + 1 # exponent for modexp using Karatsuba mult
+
+E = [1] * 16 # assume generating tiny primes is trivial
+
+for n in range(len(E), 4096):
+
+ # Expected time for sub-generations, as a weighted mean of prior
+ # values of the same sequence.
+ lo = (n+1)//2
+ hi = n-20
+ if lo <= hi:
+ subrange = range(lo, hi+1)
+ num = sum(E[i]/i for i in subrange)
+ den = sum(1/i for i in subrange)
+ else:
+ num, den = 0, 1
+
+ # Constant term (cost of final step).
+ # Similar to probprime_add_progress_phase.
+ winnow_factor = 1 if n < 32 else 19.76
+ prob = winnow_factor / (n * log(2))
+ cost = 4 * n**alpha / prob
+
+ E.append(cost + num / den)
+
+for i, p in enumerate(E):
+ try:
+ print(log(i), log(p))
+ except ValueError:
+ continue
+
+ * The output loop prints the logs of both i and E_i, so that when
+ * I plot the resulting data file in gnuplot I get a log-log
+ * diagram. That showed me some early noise and then a very
+ * straight-looking line; feeding the straight part of the graph
+ * to linear-regression analysis reported that it fits the line
+ *
+ * log E_n = -1.7901825337965498 + 3.6199197179662517 * log(n)
+ * => E_n = 0.16692969657466802 * n^3.6199197179662517
+ *
+ * So my somewhat empirical estimate is that Maurer prime
+ * generation costs about 0.167 * bits^3.62, in the same arbitrary
+ * time units used by estimate_modexp_cost.
+ */
+
+ return progress_add_linear(prog, 0.167 * pow(bits, 3.62));
+}
+
+static mp_int *primegen_small(Pockle *pockle, PrimeCandidateSource *pcs)
+{
+ assert(pcs_get_bits(pcs) <= 32);
+
+ pcs_ready(pcs);
+
+ while (true) {
+ mp_int *p = pcs_generate(pcs);
+ if (!p) {
+ pcs_free(pcs);
+ return NULL;
+ }
+ if (pockle_add_small_prime(pockle, p) == POCKLE_OK) {
+ pcs_free(pcs);
+ return p;
+ }
+ mp_free(p);
+ }
+}
+
+#ifdef DEBUG_PRIMEGEN
+static void timestamp(FILE *fp)
+{
+ struct timespec ts;
+ clock_gettime(CLOCK_MONOTONIC, &ts);
+ fprintf(fp, "%lu.%09lu: ", (unsigned long)ts.tv_sec,
+ (unsigned long)ts.tv_nsec);
+}
+static PRINTF_LIKE(1, 2) void debug_f(const char *fmt, ...)
+{
+ va_list ap;
+ va_start(ap, fmt);
+ timestamp(stderr);
+ vfprintf(stderr, fmt, ap);
+ fputc('\n', stderr);
+ va_end(ap);
+}
+static void debug_f_mp(const char *fmt, mp_int *x, ...)
+{
+ va_list ap;
+ va_start(ap, x);
+ timestamp(stderr);
+ vfprintf(stderr, fmt, ap);
+ mp_dump(stderr, "", x, "\n");
+ va_end(ap);
+}
+#else
+#define debug_f(...) ((void)0)
+#define debug_f_mp(...) ((void)0)
+#endif
+
+static double uniform_random_double(void)
+{
+ unsigned char randbuf[8];
+ random_read(randbuf, 8);
+ return GET_64BIT_MSB_FIRST(randbuf) * 0x1.0p-64;
+}
+
+static mp_int *mp_ceil_div(mp_int *n, mp_int *d)
+{
+ mp_int *nplus = mp_add(n, d);
+ mp_sub_integer_into(nplus, nplus, 1);
+ mp_int *toret = mp_div(nplus, d);
+ mp_free(nplus);
+ return toret;
+}
+
+static mp_int *provableprime_generate_inner(
+ ProvablePrimeContext *ppc, PrimeCandidateSource *pcs,
+ ProgressReceiver *prog, double progress_origin, double progress_scale)
+{
+ unsigned bits = pcs_get_bits(pcs);
+ assert(bits > 1);
+
+ if (bits <= 32) {
+ debug_f("ppgi(%u) -> small", bits);
+ return primegen_small(ppc->pockle, pcs);
+ }
+
+ unsigned min_bits_needed, max_bits_needed;
+ {
+ /*
+ * Find the product of all the prime factors we already know
+ * about.
+ */
+ mp_int *size_got = mp_from_integer(1);
+ size_t nfactors;
+ mp_int **factors = pcs_get_known_prime_factors(pcs, &nfactors);
+ for (size_t i = 0; i < nfactors; i++) {
+ mp_int *to_free = size_got;
+ size_got = mp_unsafe_shrink(mp_mul(size_got, factors[i]));
+ mp_free(to_free);
+ }
+
+ /*
+ * Find the largest cofactor we might be able to use, and the
+ * smallest one we can get away with.
+ */
+ mp_int *upperbound = pcs_get_upper_bound(pcs);
+ mp_int *size_needed = mp_nthroot(upperbound, 3, NULL);
+ debug_f_mp("upperbound = ", upperbound);
+ {
+ mp_int *to_free = upperbound;
+ upperbound = mp_unsafe_shrink(mp_div(upperbound, size_got));
+ mp_free(to_free);
+ }
+ debug_f_mp("size_needed = ", size_needed);
+ {
+ mp_int *to_free = size_needed;
+ size_needed = mp_unsafe_shrink(mp_ceil_div(size_needed, size_got));
+ mp_free(to_free);
+ }
+
+ max_bits_needed = pcs_get_bits_remaining(pcs);
+
+ /*
+ * We need a prime that is greater than or equal to
+ * 'size_needed' in order for the product of all our known
+ * factors of p-1 to exceed the cube root of the largest value
+ * p might take.
+ *
+ * Since pcs_new wants a size specified in bits, we must count
+ * the bits in size_needed and then add 1. Otherwise we might
+ * get a value with the same bit count as size_needed but
+ * slightly smaller than it.
+ *
+ * An exception is if size_needed = 1. In that case the
+ * product of existing known factors is _already_ enough, so
+ * we don't need to generate an extra factor at all.
+ */
+ if (mp_hs_integer(size_needed, 2)) {
+ min_bits_needed = mp_get_nbits(size_needed) + 1;
+ } else {
+ min_bits_needed = 0;
+ }
+
+ mp_free(upperbound);
+ mp_free(size_needed);
+ mp_free(size_got);
+ }
+
+ double progress = 0.0;
+
+ if (min_bits_needed) {
+ debug_f("ppgi(%u) recursing, need [%u,%u] more bits",
+ bits, min_bits_needed, max_bits_needed);
+
+ unsigned *sizes = NULL;
+ size_t nsizes = 0, sizesize = 0;
+
+ unsigned real_min = max_bits_needed / 2;
+ unsigned real_max = (max_bits_needed >= 20 ?
+ max_bits_needed - 20 : 0);
+ if (real_min < min_bits_needed)
+ real_min = min_bits_needed;
+ if (real_max < real_min)
+ real_max = real_min;
+ debug_f("ppgi(%u) revised bits interval = [%u,%u]",
+ bits, real_min, real_max);
+
+ switch (ppc->extra->spp) {
+ case SPP_FAST:
+ /*
+ * Always pick the smallest subsidiary prime we can get
+ * away with: just over n/3 bits.
+ *
+ * This is not a good mode for cryptographic prime
+ * generation, because it skews the distribution of primes
+ * greatly, and worse, it skews them in a direction that
+ * heads away from the properties crypto algorithms tend
+ * to like.
+ *
+ * (For both discrete-log systems and RSA, people have
+ * tended to recommend in the past that p-1 should have a
+ * _large_ factor if possible. There's some disagreement
+ * on which algorithms this is really necessary for, but
+ * certainly I've never seen anyone recommend arranging a
+ * _small_ factor on purpose.)
+ *
+ * I originally implemented this mode because it was
+ * convenient for debugging - it wastes as little time as
+ * possible on finding a sub-prime and lets you get to the
+ * interesting part! And I leave it in the code because it
+ * might still be useful for _something_. Because it's
+ * cryptographically questionable, it's not selectable in
+ * the UI of either version of PuTTYgen proper; but it can
+ * be accessed through testcrypt, and if for some reason a
+ * definite prime is needed for non-crypto purposes, it
+ * may still be the fastest way to put your hands on one.
+ */
+ debug_f("ppgi(%u) fast mode, just ask for %u bits",
+ bits, min_bits_needed);
+ sgrowarray(sizes, sizesize, nsizes);
+ sizes[nsizes++] = min_bits_needed;
+ break;
+ case SPP_MAURER_SIMPLE: {
+ /*
+ * Select the size of the subsidiary prime at random from
+ * sqrt(outputprime) up to outputprime/2^20, in such a way
+ * that the probability distribution matches that of the
+ * largest prime factor of a random n-bit number.
+ *
+ * Per [MAURER] section 3.4, the cumulative distribution
+ * function of this relative size is 1+log2(x), for x in
+ * [1/2,1]. You can generate a value from the distribution
+ * given by a cdf by applying the inverse cdf to a uniform
+ * value in [0,1]. Simplifying that in this case, what we
+ * have to do is raise 2 to the power of a random real
+ * number between -1 and 0. (And that gives you the number
+ * of _bits_ in the sub-prime, as a factor of the desired
+ * output number of bits.)
+ *
+ * We also require that the subsidiary prime q is at least
+ * 20 bits smaller than the output one, to give us a
+ * fighting chance of there being _any_ prime we can find
+ * such that q | p-1.
+ *
+ * (But these rules have to be applied in an order that
+ * still leaves us _some_ interval of possible sizes we
+ * can pick!)
+ */
+ maurer_simple:
+ debug_f("ppgi(%u) Maurer simple mode", bits);
+
+ unsigned sub_bits;
+ do {
+ double uniform = uniform_random_double();
+ sub_bits = real_max * pow(2.0, uniform - 1) + 0.5;
+ debug_f(" ... %.6f -> %u?", uniform, sub_bits);
+ } while (!(real_min <= sub_bits && sub_bits <= real_max));
+
+ debug_f("ppgi(%u) asking for %u bits", bits, sub_bits);
+ sgrowarray(sizes, sizesize, nsizes);
+ sizes[nsizes++] = sub_bits;
+
+ break;
+ }
+ case SPP_MAURER_COMPLEX: {
+ /*
+ * In this mode, we may generate multiple factors of p-1
+ * which between them add up to at least n/2 bits, in such
+ * a way that those are guaranteed to be the largest
+ * factors of p-1 and that they have the same probability
+ * distribution as the largest k factors would have in a
+ * random integer. The idea is that this more elaborate
+ * procedure gets as close as possible to the same
+ * probability distribution you'd get by selecting a
+ * completely random prime (if you feasibly could).
+ *
+ * Algorithm from Appendix 1 of [MAURER]: we generate
+ * random real numbers that sum to at most 1, by choosing
+ * each one uniformly from the range [0, 1 - sum of all
+ * the previous ones]. We maintain them in a list in
+ * decreasing order, and we stop as soon as we find an
+ * initial subsequence of the list s_1,...,s_r such that
+ * s_1 + ... + s_{r-1} + 2 s_r > 1. In particular, this
+ * guarantees that the sum of that initial subsequence is
+ * at least 1/2, so we end up with enough factors to
+ * satisfy Pocklington.
+ */
+
+ if (max_bits_needed / 2 + 1 > real_max) {
+ /* Early exit path in the case where this algorithm
+ * can't possibly generate a value in the range we
+ * need. In that situation, fall back to Maurer
+ * simple. */
+ debug_f("ppgi(%u) skipping GenerateSizeList, "
+ "real_max too small", bits);
+ goto maurer_simple; /* sorry! */
+ }
+
+ double *s = NULL;
+ size_t ns, ssize = 0;
+
+ while (true) {
+ debug_f("ppgi(%u) starting GenerateSizeList", bits);
+ ns = 0;
+ double range = 1.0;
+ while (true) {
+ /* Generate the next number */
+ double u = uniform_random_double() * range;
+ range -= u;
+ debug_f(" u_%"SIZEu" = %g", ns, u);
+
+ /* Insert it in the list */
+ sgrowarray(s, ssize, ns);
+ size_t i;
+ for (i = ns; i > 0 && s[i-1] < u; i--)
+ s[i] = s[i-1];
+ s[i] = u;
+ ns++;
+ debug_f(" inserting as s[%"SIZEu"]", i);
+
+ /* Look for a suitable initial subsequence */
+ double sum = 0;
+ for (i = 0; i < ns; i++) {
+ sum += s[i];
+ if (sum + s[i] > 1.0) {
+ debug_f(" s[0..%"SIZEu"] works!", i);
+
+ /* Truncate the sequence here, and stop
+ * generating random real numbers. */
+ ns = i+1;
+ goto got_list;
+ }
+ }
+ }
+
+ got_list:;
+ /*
+ * Now translate those real numbers into actual bit
+ * counts, and do a last-minute check to make sure
+ * their product is going to be in range.
+ *
+ * We have to check both the min and max sizes of the
+ * total. A b-bit number is in [2^{b-1},2^b). So the
+ * product of numbers of sizes b_1,...,b_k is at least
+ * 2^{\sum (b_i-1)}, and less than 2^{\sum b_i}.
+ */
+ nsizes = 0;
+
+ unsigned min_total = 0, max_total = 0;
+
+ for (size_t i = 0; i < ns; i++) {
+ /* These sizes are measured in actual entropy, so
+ * add 1 bit each time to account for the
+ * zero-information leading 1 */
+ unsigned this_size = max_bits_needed * s[i] + 1;
+ debug_f(" bits[%"SIZEu"] = %u", i, this_size);
+ sgrowarray(sizes, sizesize, nsizes);
+ sizes[nsizes++] = this_size;
+
+ min_total += this_size - 1;
+ max_total += this_size;
+ }
+
+ debug_f(" total bits = [%u,%u)", min_total, max_total);
+ if (min_total < real_min || max_total > real_max+1) {
+ debug_f(" total out of range, try again");
+ } else {
+ debug_f(" success! %"SIZEu" sub-primes totalling [%u,%u) "
+ "bits", nsizes, min_total, max_total);
+ break;
+ }
+ }
+
+ smemclr(s, ssize * sizeof(*s));
+ sfree(s);
+ break;
+ }
+ default:
+ unreachable("bad subprime policy");
+ }
+
+ for (size_t i = 0; i < nsizes; i++) {
+ unsigned sub_bits = sizes[i];
+ double progress_in_this_prime = (double)sub_bits / bits;
+ mp_int *q = provableprime_generate_inner(
+ ppc, pcs_new(sub_bits),
+ prog, progress_origin + progress_scale * progress,
+ progress_scale * progress_in_this_prime);
+ progress += progress_in_this_prime;
+ assert(q);
+ debug_f_mp("ppgi(%u) got factor ", q, bits);
+ pcs_require_residue_1_mod_prime(pcs, q);
+ mp_free(q);
+ }
+
+ smemclr(sizes, sizesize * sizeof(*sizes));
+ sfree(sizes);
+ } else {
+ debug_f("ppgi(%u) no need to recurse", bits);
+ }
+
+ debug_f("ppgi(%u) ready, %u bits remaining",
+ bits, pcs_get_bits_remaining(pcs));
+ pcs_ready(pcs);
+
+ while (true) {
+ mp_int *p = pcs_generate(pcs);
+ if (!p) {
+ pcs_free(pcs);
+ return NULL;
+ }
+
+ debug_f_mp("provable_step p=", p);
+
+ MillerRabin *mr = miller_rabin_new(p);
+ debug_f("provable_step mr setup done");
+ mp_int *witness = miller_rabin_find_potential_primitive_root(mr);
+ miller_rabin_free(mr);
+
+ if (!witness) {
+ debug_f("provable_step mr failed");
+ mp_free(p);
+ continue;
+ }
+
+ size_t nfactors;
+ mp_int **factors = pcs_get_known_prime_factors(pcs, &nfactors);
+ PockleStatus st = pockle_add_prime(
+ ppc->pockle, p, factors, nfactors, witness);
+
+ if (st != POCKLE_OK) {
+ debug_f("provable_step proof failed %d", (int)st);
+
+ /*
+ * Check by assertion that the error status is not one of
+ * the ones we ought to have ruled out already by
+ * construction. If there's a bug in this code that means
+ * we can _never_ pass this test (e.g. picking products of
+ * factors that never quite reach cbrt(n)), we'd rather
+ * fail an assertion than loop forever.
+ */
+ assert(st == POCKLE_DISCRIMINANT_IS_SQUARE ||
+ st == POCKLE_WITNESS_POWER_IS_1 ||
+ st == POCKLE_WITNESS_POWER_NOT_COPRIME);
+
+ mp_free(p);
+ if (witness)
+ mp_free(witness);
+ continue;
+ }
+
+ mp_free(witness);
+ pcs_free(pcs);
+ debug_f_mp("ppgi(%u) done, got ", p, bits);
+ progress_report(prog, progress_origin + progress_scale);
+ return p;
+ }
+}
+
+static mp_int *provableprime_generate(
+ PrimeGenerationContext *ctx,
+ PrimeCandidateSource *pcs, ProgressReceiver *prog)
+{
+ ProvablePrimeContext *ppc = container_of(ctx, ProvablePrimeContext, pgc);
+ mp_int *p = provableprime_generate_inner(ppc, pcs, prog, 0.0, 1.0);
+
+ return p;
+}
+
+static inline strbuf *provableprime_mpu_certificate(
+ PrimeGenerationContext *ctx, mp_int *p)
+{
+ ProvablePrimeContext *ppc = container_of(ctx, ProvablePrimeContext, pgc);
+ return pockle_mpu(ppc->pockle, p);
+}
+
+#define DECLARE_POLICY(name, policy) \
+ static const struct ProvablePrimePolicyExtra \
+ pppextra_##name = {policy}; \
+ const PrimeGenerationPolicy name = { \
+ provableprime_add_progress_phase, \
+ provableprime_new_context, \
+ provableprime_free_context, \
+ provableprime_generate, \
+ provableprime_mpu_certificate, \
+ &pppextra_##name, \
+ }
+
+DECLARE_POLICY(primegen_provable_fast, SPP_FAST);
+DECLARE_POLICY(primegen_provable_maurer_simple, SPP_MAURER_SIMPLE);
+DECLARE_POLICY(primegen_provable_maurer_complex, SPP_MAURER_COMPLEX);
+
+/* ----------------------------------------------------------------------
+ * Reusable null implementation of the progress-reporting API.
+ */
+
+static inline ProgressPhase null_progress_add(void) {
+ ProgressPhase ph = { .n = 0 };
+ return ph;
+}
+ProgressPhase null_progress_add_linear(
+ ProgressReceiver *prog, double c) { return null_progress_add(); }
+ProgressPhase null_progress_add_probabilistic(
+ ProgressReceiver *prog, double c, double p) { return null_progress_add(); }
+void null_progress_ready(ProgressReceiver *prog) {}
+void null_progress_start_phase(ProgressReceiver *prog, ProgressPhase phase) {}
+void null_progress_report(ProgressReceiver *prog, double progress) {}
+void null_progress_report_attempt(ProgressReceiver *prog) {}
+void null_progress_report_phase_complete(ProgressReceiver *prog) {}
+const ProgressReceiverVtable null_progress_vt = {
+ .add_linear = null_progress_add_linear,
+ .add_probabilistic = null_progress_add_probabilistic,
+ .ready = null_progress_ready,
+ .start_phase = null_progress_start_phase,
+ .report = null_progress_report,
+ .report_attempt = null_progress_report_attempt,
+ .report_phase_complete = null_progress_report_phase_complete,
+};
+
+/* ----------------------------------------------------------------------
+ * Helper function for progress estimation.
+ */
+
+double estimate_modexp_cost(unsigned bits)
+{
+ /*
+ * A modexp of n bits goes roughly like O(n^2.58), on the grounds
+ * that our modmul is O(n^1.58) (Karatsuba) and you need O(n) of
+ * them in a modexp.
+ */
+ return pow(bits, 2.58);
+}