Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/mRemoteNG/PuTTYNG.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'keygen/primecandidate.c')
-rw-r--r--keygen/primecandidate.c447
1 files changed, 447 insertions, 0 deletions
diff --git a/keygen/primecandidate.c b/keygen/primecandidate.c
new file mode 100644
index 00000000..fca2b297
--- /dev/null
+++ b/keygen/primecandidate.c
@@ -0,0 +1,447 @@
+/*
+ * primecandidate.c: implementation of the PrimeCandidateSource
+ * abstraction declared in sshkeygen.h.
+ */
+
+#include <assert.h>
+#include "ssh.h"
+#include "mpint.h"
+#include "mpunsafe.h"
+#include "sshkeygen.h"
+
+struct avoid {
+ unsigned mod, res;
+};
+
+struct PrimeCandidateSource {
+ unsigned bits;
+ bool ready, try_sophie_germain;
+ bool one_shot, thrown_away_my_shot;
+
+ /* We'll start by making up a random number strictly less than this ... */
+ mp_int *limit;
+
+ /* ... then we'll multiply by 'factor', and add 'addend'. */
+ mp_int *factor, *addend;
+
+ /* Then we'll try to add a small multiple of 'factor' to it to
+ * avoid it being a multiple of any small prime. Also, for RSA, we
+ * may need to avoid it being _this_ multiple of _this_: */
+ unsigned avoid_residue, avoid_modulus;
+
+ /* Once we're actually running, this will be the complete list of
+ * (modulus, residue) pairs we want to avoid. */
+ struct avoid *avoids;
+ size_t navoids, avoidsize;
+
+ /* List of known primes that our number will be congruent to 1 modulo */
+ mp_int **kps;
+ size_t nkps, kpsize;
+};
+
+PrimeCandidateSource *pcs_new_with_firstbits(unsigned bits,
+ unsigned first, unsigned nfirst)
+{
+ PrimeCandidateSource *s = snew(PrimeCandidateSource);
+
+ assert(first >> (nfirst-1) == 1);
+
+ s->bits = bits;
+ s->ready = false;
+ s->try_sophie_germain = false;
+ s->one_shot = false;
+ s->thrown_away_my_shot = false;
+
+ s->kps = NULL;
+ s->nkps = s->kpsize = 0;
+
+ s->avoids = NULL;
+ s->navoids = s->avoidsize = 0;
+
+ /* Make the number that's the lower limit of our range */
+ mp_int *firstmp = mp_from_integer(first);
+ mp_int *base = mp_lshift_fixed(firstmp, bits - nfirst);
+ mp_free(firstmp);
+
+ /* Set the low bit of that, because all (nontrivial) primes are odd */
+ mp_set_bit(base, 0, 1);
+
+ /* That's our addend. Now initialise factor to 2, to ensure we
+ * only generate odd numbers */
+ s->factor = mp_from_integer(2);
+ s->addend = base;
+
+ /* And that means the limit of our random numbers must be one
+ * factor of two _less_ than the position of the low bit of
+ * 'first', because we'll be multiplying the random number by
+ * 2 immediately afterwards. */
+ s->limit = mp_power_2(bits - nfirst - 1);
+
+ /* avoid_modulus == 0 signals that there's no extra residue to avoid */
+ s->avoid_residue = 1;
+ s->avoid_modulus = 0;
+
+ return s;
+}
+
+PrimeCandidateSource *pcs_new(unsigned bits)
+{
+ return pcs_new_with_firstbits(bits, 1, 1);
+}
+
+void pcs_free(PrimeCandidateSource *s)
+{
+ mp_free(s->limit);
+ mp_free(s->factor);
+ mp_free(s->addend);
+ for (size_t i = 0; i < s->nkps; i++)
+ mp_free(s->kps[i]);
+ sfree(s->avoids);
+ sfree(s->kps);
+ sfree(s);
+}
+
+void pcs_try_sophie_germain(PrimeCandidateSource *s)
+{
+ s->try_sophie_germain = true;
+}
+
+void pcs_set_oneshot(PrimeCandidateSource *s)
+{
+ s->one_shot = true;
+}
+
+static void pcs_require_residue_inner(PrimeCandidateSource *s,
+ mp_int *mod, mp_int *res)
+{
+ /*
+ * We already have a factor and addend. Ensure this one doesn't
+ * contradict it.
+ */
+ mp_int *gcd = mp_gcd(mod, s->factor);
+ mp_int *test1 = mp_mod(s->addend, gcd);
+ mp_int *test2 = mp_mod(res, gcd);
+ assert(mp_cmp_eq(test1, test2));
+ mp_free(test1);
+ mp_free(test2);
+
+ /*
+ * Reduce our input factor and addend, which are constraints on
+ * the ultimate output number, so that they're constraints on the
+ * initial cofactor we're going to make up.
+ *
+ * If we're generating x and we want to ensure ax+b == r (mod m),
+ * how does that work? We've already checked that b == r modulo g
+ * = gcd(a,m), i.e. r-b is a multiple of g, and so are a and m. So
+ * let's write a=gA, m=gM, (r-b)=gR, and then we can start by
+ * dividing that off:
+ *
+ * ax == r-b (mod m )
+ * => gAx == gR (mod gM)
+ * => Ax == R (mod M)
+ *
+ * Now the moduli A,M are coprime, which makes things easier.
+ *
+ * We're going to need to generate the x in this equation by
+ * generating a new smaller value y, multiplying it by M, and
+ * adding some constant K. So we have x = My + K, and we need to
+ * work out what K will satisfy the above equation. In other
+ * words, we need A(My+K) == R (mod M), and the AMy term vanishes,
+ * so we just need AK == R (mod M). So our congruence is solved by
+ * setting K to be R * A^{-1} mod M.
+ */
+ mp_int *A = mp_div(s->factor, gcd);
+ mp_int *M = mp_div(mod, gcd);
+ mp_int *Rpre = mp_modsub(res, s->addend, mod);
+ mp_int *R = mp_div(Rpre, gcd);
+ mp_int *Ainv = mp_invert(A, M);
+ mp_int *K = mp_modmul(R, Ainv, M);
+
+ mp_free(gcd);
+ mp_free(Rpre);
+ mp_free(Ainv);
+ mp_free(A);
+ mp_free(R);
+
+ /*
+ * So we know we have to transform our existing (factor, addend)
+ * pair into (factor * M, addend * factor * K). Now we just need
+ * to work out what the limit should be on the random value we're
+ * generating.
+ *
+ * If we need My+K < old_limit, then y < (old_limit-K)/M. But the
+ * RHS is a fraction, so in integers, we need y < ceil of it.
+ */
+ assert(!mp_cmp_hs(K, s->limit));
+ mp_int *dividend = mp_add(s->limit, M);
+ mp_sub_integer_into(dividend, dividend, 1);
+ mp_sub_into(dividend, dividend, K);
+ mp_free(s->limit);
+ s->limit = mp_div(dividend, M);
+ mp_free(dividend);
+
+ /*
+ * Now just update the real factor and addend, and we're done.
+ */
+
+ mp_int *addend_old = s->addend;
+ mp_int *tmp = mp_mul(s->factor, K); /* use the _old_ value of factor */
+ s->addend = mp_add(s->addend, tmp);
+ mp_free(tmp);
+ mp_free(addend_old);
+
+ mp_int *factor_old = s->factor;
+ s->factor = mp_mul(s->factor, M);
+ mp_free(factor_old);
+
+ mp_free(M);
+ mp_free(K);
+ s->factor = mp_unsafe_shrink(s->factor);
+ s->addend = mp_unsafe_shrink(s->addend);
+ s->limit = mp_unsafe_shrink(s->limit);
+}
+
+void pcs_require_residue(PrimeCandidateSource *s,
+ mp_int *mod, mp_int *res_orig)
+{
+ /*
+ * Reduce the input residue to its least non-negative value, in
+ * case it was given as a larger equivalent value.
+ */
+ mp_int *res_reduced = mp_mod(res_orig, mod);
+ pcs_require_residue_inner(s, mod, res_reduced);
+ mp_free(res_reduced);
+}
+
+void pcs_require_residue_1(PrimeCandidateSource *s, mp_int *mod)
+{
+ mp_int *res = mp_from_integer(1);
+ pcs_require_residue(s, mod, res);
+ mp_free(res);
+}
+
+void pcs_require_residue_1_mod_prime(PrimeCandidateSource *s, mp_int *mod)
+{
+ pcs_require_residue_1(s, mod);
+
+ sgrowarray(s->kps, s->kpsize, s->nkps);
+ s->kps[s->nkps++] = mp_copy(mod);
+}
+
+void pcs_avoid_residue_small(PrimeCandidateSource *s,
+ unsigned mod, unsigned res)
+{
+ assert(!s->avoid_modulus); /* can't cope with more than one */
+ s->avoid_modulus = mod;
+ s->avoid_residue = res % mod; /* reduce, just in case */
+}
+
+static int avoid_cmp(const void *av, const void *bv)
+{
+ const struct avoid *a = (const struct avoid *)av;
+ const struct avoid *b = (const struct avoid *)bv;
+ return a->mod < b->mod ? -1 : a->mod > b->mod ? +1 : 0;
+}
+
+static uint64_t invert(uint64_t a, uint64_t m)
+{
+ int64_t v0 = a, i0 = 1;
+ int64_t v1 = m, i1 = 0;
+ while (v0) {
+ int64_t tmp, q = v1 / v0;
+ tmp = v0; v0 = v1 - q*v0; v1 = tmp;
+ tmp = i0; i0 = i1 - q*i0; i1 = tmp;
+ }
+ assert(v1 == 1 || v1 == -1);
+ return i1 * v1;
+}
+
+void pcs_ready(PrimeCandidateSource *s)
+{
+ /*
+ * List all the small (modulus, residue) pairs we want to avoid.
+ */
+
+ init_smallprimes();
+
+#define ADD_AVOID(newmod, newres) do { \
+ sgrowarray(s->avoids, s->avoidsize, s->navoids); \
+ s->avoids[s->navoids].mod = (newmod); \
+ s->avoids[s->navoids].res = (newres); \
+ s->navoids++; \
+ } while (0)
+
+ unsigned limit = (mp_hs_integer(s->addend, 65536) ? 65536 :
+ mp_get_integer(s->addend));
+
+ /*
+ * Don't be divisible by any small prime, or at least, any prime
+ * smaller than our output number might actually manage to be. (If
+ * asked to generate a really small prime, it would be
+ * embarrassing to rule out legitimate answers on the grounds that
+ * they were divisible by themselves.)
+ */
+ for (size_t i = 0; i < NSMALLPRIMES && smallprimes[i] < limit; i++)
+ ADD_AVOID(smallprimes[i], 0);
+
+ if (s->try_sophie_germain) {
+ /*
+ * If we're aiming to generate a Sophie Germain prime (i.e. p
+ * such that 2p+1 is also prime), then we also want to ensure
+ * 2p+1 is not congruent to 0 mod any small prime, because if
+ * it is, we'll waste a lot of time generating a p for which
+ * 2p+1 can't possibly work. So we have to avoid an extra
+ * residue mod each odd q.
+ *
+ * We can simplify: 2p+1 == 0 (mod q)
+ * => 2p == -1 (mod q)
+ * => p == -2^{-1} (mod q)
+ *
+ * There's no need to do Euclid's algorithm to compute those
+ * inverses, because for any odd q, the modular inverse of -2
+ * mod q is just (q-1)/2. (Proof: multiplying it by -2 gives
+ * 1-q, which is congruent to 1 mod q.)
+ */
+ for (size_t i = 0; i < NSMALLPRIMES && smallprimes[i] < limit; i++)
+ if (smallprimes[i] != 2)
+ ADD_AVOID(smallprimes[i], (smallprimes[i] - 1) / 2);
+ }
+
+ /*
+ * Finally, if there's a particular modulus and residue we've been
+ * told to avoid, put it on the list.
+ */
+ if (s->avoid_modulus)
+ ADD_AVOID(s->avoid_modulus, s->avoid_residue);
+
+#undef ADD_AVOID
+
+ /*
+ * Sort our to-avoid list by modulus. Partly this is so that we'll
+ * check the smaller moduli first during the live runs, which lets
+ * us spot most failing cases earlier rather than later. Also, it
+ * brings equal moduli together, so that we can reuse the residue
+ * we computed from a previous one.
+ */
+ qsort(s->avoids, s->navoids, sizeof(*s->avoids), avoid_cmp);
+
+ /*
+ * Next, adjust each of these moduli to take account of our factor
+ * and addend. If we want factor*x+addend to avoid being congruent
+ * to 'res' modulo 'mod', then x itself must avoid being congruent
+ * to (res - addend) * factor^{-1}.
+ *
+ * If factor == 0 modulo mod, then the answer will have a fixed
+ * residue anyway, so we can discard it from our list to test.
+ */
+ int64_t factor_m = 0, addend_m = 0, last_mod = 0;
+
+ size_t out = 0;
+ for (size_t i = 0; i < s->navoids; i++) {
+ int64_t mod = s->avoids[i].mod, res = s->avoids[i].res;
+ if (mod != last_mod) {
+ last_mod = mod;
+ addend_m = mp_mod_known_integer(s->addend, mod);
+ factor_m = mp_mod_known_integer(s->factor, mod);
+ }
+
+ if (factor_m == 0) {
+ assert(res != addend_m);
+ continue;
+ }
+
+ res = (res - addend_m) * invert(factor_m, mod);
+ res %= mod;
+ if (res < 0)
+ res += mod;
+
+ s->avoids[out].mod = mod;
+ s->avoids[out].res = res;
+ out++;
+ }
+
+ s->navoids = out;
+
+ s->ready = true;
+}
+
+mp_int *pcs_generate(PrimeCandidateSource *s)
+{
+ assert(s->ready);
+ if (s->one_shot) {
+ if (s->thrown_away_my_shot)
+ return NULL;
+ s->thrown_away_my_shot = true;
+ }
+
+ while (true) {
+ mp_int *x = mp_random_upto(s->limit);
+
+ int64_t x_res = 0, last_mod = 0;
+ bool ok = true;
+
+ for (size_t i = 0; i < s->navoids; i++) {
+ int64_t mod = s->avoids[i].mod, avoid_res = s->avoids[i].res;
+
+ if (mod != last_mod) {
+ last_mod = mod;
+ x_res = mp_mod_known_integer(x, mod);
+ }
+
+ if (x_res == avoid_res) {
+ ok = false;
+ break;
+ }
+ }
+
+ if (!ok) {
+ mp_free(x);
+ if (s->one_shot)
+ return NULL;
+ continue; /* try a new x */
+ }
+
+ /*
+ * We've found a viable x. Make the final output value.
+ */
+ mp_int *toret = mp_new(s->bits);
+ mp_mul_into(toret, x, s->factor);
+ mp_add_into(toret, toret, s->addend);
+ mp_free(x);
+ return toret;
+ }
+}
+
+void pcs_inspect(PrimeCandidateSource *pcs, mp_int **limit_out,
+ mp_int **factor_out, mp_int **addend_out)
+{
+ *limit_out = mp_copy(pcs->limit);
+ *factor_out = mp_copy(pcs->factor);
+ *addend_out = mp_copy(pcs->addend);
+}
+
+unsigned pcs_get_bits(PrimeCandidateSource *pcs)
+{
+ return pcs->bits;
+}
+
+unsigned pcs_get_bits_remaining(PrimeCandidateSource *pcs)
+{
+ return mp_get_nbits(pcs->limit);
+}
+
+mp_int *pcs_get_upper_bound(PrimeCandidateSource *pcs)
+{
+ /* Compute (limit-1) * factor + addend */
+ mp_int *tmp = mp_mul(pcs->limit, pcs->factor);
+ mp_int *bound = mp_add(tmp, pcs->addend);
+ mp_free(tmp);
+ mp_sub_into(bound, bound, pcs->factor);
+ return bound;
+}
+
+mp_int **pcs_get_known_prime_factors(PrimeCandidateSource *pcs, size_t *nout)
+{
+ *nout = pcs->nkps;
+ return pcs->kps;
+}