Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/mRemoteNG/PuTTYNG.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'test/testsc.c')
-rw-r--r--test/testsc.c1945
1 files changed, 1945 insertions, 0 deletions
diff --git a/test/testsc.c b/test/testsc.c
new file mode 100644
index 00000000..0a643e97
--- /dev/null
+++ b/test/testsc.c
@@ -0,0 +1,1945 @@
+/*
+ * testsc: run PuTTY's crypto primitives under instrumentation that
+ * checks for cache and timing side channels.
+ *
+ * The idea is: cryptographic code should avoid leaking secret data
+ * through timing information, or through traces of its activity left
+ * in the caches.
+ *
+ * (This property is sometimes called 'constant-time', although really
+ * that's a misnomer. It would be impossible to avoid the execution
+ * time varying for any number of reasons outside the code's control,
+ * such as the prior contents of caches and branch predictors,
+ * temperature-based CPU throttling, system load, etc. And in any case
+ * you don't _need_ the execution time to be literally constant: you
+ * just need it to be independent of your secrets. It can vary as much
+ * as it likes based on anything else.)
+ *
+ * To avoid this, you need to ensure that various aspects of the
+ * code's behaviour do not depend on the secret data. The control
+ * flow, for a start - no conditional branches based on secrets - and
+ * also the memory access pattern (no using secret data as an index
+ * into a lookup table). A couple of other kinds of CPU instruction
+ * also can't be trusted to run in constant time: we check for
+ * register-controlled shifts and hardware divisions. (But, again,
+ * it's perfectly fine to _use_ those instructions in the course of
+ * crypto code. You just can't use a secret as any time-affecting
+ * operand.)
+ *
+ * This test program works by running the same crypto primitive
+ * multiple times, with different secret input data. The relevant
+ * details of each run is logged to a file via the DynamoRIO-based
+ * instrumentation system living in the subdirectory test/sclog. Then
+ * we check over all the files and ensure they're identical.
+ *
+ * This program itself (testsc) is built by the ordinary PuTTY
+ * makefiles. But run by itself, it will do nothing useful: it needs
+ * to be run under DynamoRIO, with the sclog instrumentation library.
+ *
+ * Here's an example of how I built it:
+ *
+ * Download the DynamoRIO source. I did this by cloning
+ * https://github.com/DynamoRIO/dynamorio.git, and at the time of
+ * writing this, 259c182a75ce80112bcad329c97ada8d56ba854d was the head
+ * commit.
+ *
+ * In the DynamoRIO checkout:
+ *
+ * mkdir build
+ * cd build
+ * cmake -G Ninja ..
+ * ninja
+ *
+ * Now set the shell variable DRBUILD to be the location of the build
+ * directory you did that in. (Or not, if you prefer, but the example
+ * build commands below will assume that that's where the DynamoRIO
+ * libraries, headers and runtime can be found.)
+ *
+ * Then, in test/sclog:
+ *
+ * cmake -G Ninja -DCMAKE_PREFIX_PATH=$DRBUILD/cmake .
+ * ninja
+ *
+ * Finally, to run the actual test, set SCTMP to some temp directory
+ * you don't mind filling with large temp files (several GB at a
+ * time), and in the main PuTTY source directory (assuming that's
+ * where testsc has been built):
+ *
+ * $DRBUILD/bin64/drrun -c test/sclog/libsclog.so -- ./testsc -O $SCTMP
+ */
+
+#include <assert.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <errno.h>
+
+#include "defs.h"
+#include "putty.h"
+#include "ssh.h"
+#include "sshkeygen.h"
+#include "misc.h"
+#include "mpint.h"
+#include "crypto/ecc.h"
+#include "crypto/ntru.h"
+
+static NORETURN PRINTF_LIKE(1, 2) void fatal_error(const char *p, ...)
+{
+ va_list ap;
+ fprintf(stderr, "testsc: ");
+ va_start(ap, p);
+ vfprintf(stderr, p, ap);
+ va_end(ap);
+ fputc('\n', stderr);
+ exit(1);
+}
+
+void out_of_memory(void) { fatal_error("out of memory"); }
+
+/*
+ * A simple deterministic PRNG, without any of the Fortuna
+ * complexities, for generating test inputs in a way that's repeatable
+ * between runs of the program, even if only a subset of test cases is
+ * run.
+ */
+static uint64_t random_counter = 0;
+static const char *random_seedstr = NULL;
+static uint8_t random_buf[MAX_HASH_LEN];
+static size_t random_buf_limit = 0;
+static ssh_hash *random_hash;
+
+static void random_seed(const char *seedstr)
+{
+ random_seedstr = seedstr;
+ random_counter = 0;
+ random_buf_limit = 0;
+}
+
+static void random_advance_counter(void)
+{
+ ssh_hash_reset(random_hash);
+ put_asciz(random_hash, random_seedstr);
+ put_uint64(random_hash, random_counter);
+ random_counter++;
+ random_buf_limit = ssh_hash_alg(random_hash)->hlen;
+ ssh_hash_digest(random_hash, random_buf);
+}
+
+void random_read(void *vbuf, size_t size)
+{
+ assert(random_seedstr);
+ uint8_t *buf = (uint8_t *)vbuf;
+ while (size-- > 0) {
+ if (random_buf_limit == 0)
+ random_advance_counter();
+ *buf++ = random_buf[random_buf_limit--];
+ }
+}
+
+struct random_state {
+ const char *seedstr;
+ uint64_t counter;
+ size_t limit;
+ uint8_t buf[MAX_HASH_LEN];
+};
+
+static struct random_state random_get_state(void)
+{
+ struct random_state st;
+ st.seedstr = random_seedstr;
+ st.counter = random_counter;
+ st.limit = random_buf_limit;
+ memcpy(st.buf, random_buf, sizeof(st.buf));
+ return st;
+}
+
+static void random_set_state(struct random_state st)
+{
+ random_seedstr = st.seedstr;
+ random_counter = st.counter;
+ random_buf_limit = st.limit;
+ memcpy(random_buf, st.buf, sizeof(random_buf));
+}
+
+/*
+ * Macro that defines a function, and also a volatile function pointer
+ * pointing to it. Callers indirect through the function pointer
+ * instead of directly calling the function, to ensure that the
+ * compiler doesn't try to get clever by eliminating the call
+ * completely, or inlining it.
+ *
+ * This is used to mark functions that DynamoRIO will look for to
+ * intercept, and also to inhibit inlining and unrolling where they'd
+ * cause a failure of experimental control in the main test.
+ */
+#define VOLATILE_WRAPPED_DEFN(qualifier, rettype, fn, params) \
+ qualifier rettype fn##_real params; \
+ qualifier rettype (*volatile fn) params = fn##_real; \
+ qualifier rettype fn##_real params
+
+VOLATILE_WRAPPED_DEFN(, void, log_to_file, (const char *filename))
+{
+ /*
+ * This function is intercepted by the DynamoRIO side of the
+ * mechanism. We use it to send instructions to the DR wrapper,
+ * namely, 'please start logging to this file' or 'please stop
+ * logging' (if filename == NULL). But we don't have to actually
+ * do anything in _this_ program - all the functionality is in the
+ * DR wrapper.
+ */
+}
+
+static const char *outdir = NULL;
+char *log_filename(const char *basename, size_t index)
+{
+ return dupprintf("%s/%s.%04"SIZEu, outdir, basename, index);
+}
+
+static char *last_filename;
+static const char *test_basename;
+static size_t test_index = 0;
+void log_start(void)
+{
+ last_filename = log_filename(test_basename, test_index++);
+ log_to_file(last_filename);
+}
+void log_end(void)
+{
+ log_to_file(NULL);
+ sfree(last_filename);
+}
+
+static bool test_skipped = false;
+
+VOLATILE_WRAPPED_DEFN(, intptr_t, dry_run, (void))
+{
+ /*
+ * This is another function intercepted by DynamoRIO. In this
+ * case, DR overrides this function to return 0 rather than 1, so
+ * we can use it as a check for whether we're running under
+ * instrumentation, or whether this is just a dry run which goes
+ * through the motions but doesn't expect to find any log files
+ * created.
+ */
+ return 1;
+}
+
+static void mp_random_bits_into(mp_int *r, size_t bits)
+{
+ mp_int *x = mp_random_bits(bits);
+ mp_copy_into(r, x);
+ mp_free(x);
+}
+
+static void mp_random_fill(mp_int *r)
+{
+ mp_random_bits_into(r, mp_max_bits(r));
+}
+
+VOLATILE_WRAPPED_DEFN(static, size_t, looplimit, (size_t x))
+{
+ /*
+ * looplimit() is the identity function on size_t, but the
+ * compiler isn't allowed to rely on it being that. I use it to
+ * make loops in the test functions look less attractive to
+ * compilers' unrolling heuristics.
+ */
+ return x;
+}
+
+#if HAVE_AES_NI
+#define IF_AES_NI(x) x
+#else
+#define IF_AES_NI(x)
+#endif
+
+#if HAVE_SHA_NI
+#define IF_SHA_NI(x) x
+#else
+#define IF_SHA_NI(x)
+#endif
+
+#if HAVE_CLMUL
+#define IF_CLMUL(x) x
+#else
+#define IF_CLMUL(x)
+#endif
+
+#if HAVE_NEON_CRYPTO
+#define IF_NEON_CRYPTO(x) x
+#else
+#define IF_NEON_CRYPTO(x)
+#endif
+
+#if HAVE_NEON_SHA512
+#define IF_NEON_SHA512(x) x
+#else
+#define IF_NEON_SHA512(x)
+#endif
+
+#if HAVE_NEON_PMULL
+#define IF_NEON_PMULL(x) x
+#else
+#define IF_NEON_PMULL(x)
+#endif
+
+/* Ciphers that we expect to pass this test. Blowfish and Arcfour are
+ * intentionally omitted, because we already know they don't. */
+#define CIPHERS(X, Y) \
+ X(Y, ssh_3des_ssh1) \
+ X(Y, ssh_3des_ssh2_ctr) \
+ X(Y, ssh_3des_ssh2) \
+ X(Y, ssh_des) \
+ X(Y, ssh_des_sshcom_ssh2) \
+ X(Y, ssh_aes256_sdctr) \
+ X(Y, ssh_aes256_gcm) \
+ X(Y, ssh_aes256_cbc) \
+ X(Y, ssh_aes192_sdctr) \
+ X(Y, ssh_aes192_gcm) \
+ X(Y, ssh_aes192_cbc) \
+ X(Y, ssh_aes128_sdctr) \
+ X(Y, ssh_aes128_gcm) \
+ X(Y, ssh_aes128_cbc) \
+ X(Y, ssh_aes256_sdctr_sw) \
+ X(Y, ssh_aes256_gcm_sw) \
+ X(Y, ssh_aes256_cbc_sw) \
+ X(Y, ssh_aes192_sdctr_sw) \
+ X(Y, ssh_aes192_gcm_sw) \
+ X(Y, ssh_aes192_cbc_sw) \
+ X(Y, ssh_aes128_sdctr_sw) \
+ X(Y, ssh_aes128_gcm_sw) \
+ X(Y, ssh_aes128_cbc_sw) \
+ IF_AES_NI(X(Y, ssh_aes256_sdctr_ni)) \
+ IF_AES_NI(X(Y, ssh_aes256_gcm_ni)) \
+ IF_AES_NI(X(Y, ssh_aes256_cbc_ni)) \
+ IF_AES_NI(X(Y, ssh_aes192_sdctr_ni)) \
+ IF_AES_NI(X(Y, ssh_aes192_gcm_ni)) \
+ IF_AES_NI(X(Y, ssh_aes192_cbc_ni)) \
+ IF_AES_NI(X(Y, ssh_aes128_sdctr_ni)) \
+ IF_AES_NI(X(Y, ssh_aes128_gcm_ni)) \
+ IF_AES_NI(X(Y, ssh_aes128_cbc_ni)) \
+ IF_NEON_CRYPTO(X(Y, ssh_aes256_sdctr_neon)) \
+ IF_NEON_CRYPTO(X(Y, ssh_aes256_gcm_neon)) \
+ IF_NEON_CRYPTO(X(Y, ssh_aes256_cbc_neon)) \
+ IF_NEON_CRYPTO(X(Y, ssh_aes192_sdctr_neon)) \
+ IF_NEON_CRYPTO(X(Y, ssh_aes192_gcm_neon)) \
+ IF_NEON_CRYPTO(X(Y, ssh_aes192_cbc_neon)) \
+ IF_NEON_CRYPTO(X(Y, ssh_aes128_sdctr_neon)) \
+ IF_NEON_CRYPTO(X(Y, ssh_aes128_gcm_neon)) \
+ IF_NEON_CRYPTO(X(Y, ssh_aes128_cbc_neon)) \
+ X(Y, ssh2_chacha20_poly1305) \
+ /* end of list */
+
+#define CIPHER_TESTLIST(X, name) X(cipher_ ## name)
+
+#define SIMPLE_MACS(X, Y) \
+ X(Y, ssh_hmac_md5) \
+ X(Y, ssh_hmac_sha1) \
+ X(Y, ssh_hmac_sha1_buggy) \
+ X(Y, ssh_hmac_sha1_96) \
+ X(Y, ssh_hmac_sha1_96_buggy) \
+ X(Y, ssh_hmac_sha256) \
+ /* end of list */
+
+#define ALL_MACS(X, Y) \
+ SIMPLE_MACS(X, Y) \
+ X(Y, poly1305) \
+ X(Y, aesgcm_sw_sw) \
+ X(Y, aesgcm_sw_refpoly) \
+ IF_AES_NI(X(Y, aesgcm_ni_sw)) \
+ IF_NEON_CRYPTO(X(Y, aesgcm_neon_sw)) \
+ IF_CLMUL(X(Y, aesgcm_sw_clmul)) \
+ IF_NEON_PMULL(X(Y, aesgcm_sw_neon)) \
+ IF_AES_NI(IF_CLMUL(X(Y, aesgcm_ni_clmul))) \
+ IF_NEON_CRYPTO(IF_NEON_PMULL(X(Y, aesgcm_neon_neon))) \
+ /* end of list */
+
+#define MAC_TESTLIST(X, name) X(mac_ ## name)
+
+#define HASHES(X, Y) \
+ X(Y, ssh_md5) \
+ X(Y, ssh_sha1) \
+ X(Y, ssh_sha1_sw) \
+ X(Y, ssh_sha256) \
+ X(Y, ssh_sha256_sw) \
+ X(Y, ssh_sha384) \
+ X(Y, ssh_sha512) \
+ X(Y, ssh_sha384_sw) \
+ X(Y, ssh_sha512_sw) \
+ IF_SHA_NI(X(Y, ssh_sha256_ni)) \
+ IF_SHA_NI(X(Y, ssh_sha1_ni)) \
+ IF_NEON_CRYPTO(X(Y, ssh_sha256_neon)) \
+ IF_NEON_CRYPTO(X(Y, ssh_sha1_neon)) \
+ IF_NEON_SHA512(X(Y, ssh_sha384_neon)) \
+ IF_NEON_SHA512(X(Y, ssh_sha512_neon)) \
+ X(Y, ssh_sha3_224) \
+ X(Y, ssh_sha3_256) \
+ X(Y, ssh_sha3_384) \
+ X(Y, ssh_sha3_512) \
+ X(Y, ssh_shake256_114bytes) \
+ X(Y, ssh_blake2b) \
+ /* end of list */
+
+#define HASH_TESTLIST(X, name) X(hash_ ## name)
+
+#define TESTLIST(X) \
+ X(mp_get_nbits) \
+ X(mp_from_decimal) \
+ X(mp_from_hex) \
+ X(mp_get_decimal) \
+ X(mp_get_hex) \
+ X(mp_cmp_hs) \
+ X(mp_cmp_eq) \
+ X(mp_min) \
+ X(mp_max) \
+ X(mp_select_into) \
+ X(mp_cond_swap) \
+ X(mp_cond_clear) \
+ X(mp_add) \
+ X(mp_sub) \
+ X(mp_mul) \
+ X(mp_rshift_safe) \
+ X(mp_divmod) \
+ X(mp_nthroot) \
+ X(mp_modadd) \
+ X(mp_modsub) \
+ X(mp_modmul) \
+ X(mp_modpow) \
+ X(mp_invert_mod_2to) \
+ X(mp_invert) \
+ X(mp_modsqrt) \
+ X(ecc_weierstrass_add) \
+ X(ecc_weierstrass_double) \
+ X(ecc_weierstrass_add_general) \
+ X(ecc_weierstrass_multiply) \
+ X(ecc_weierstrass_is_identity) \
+ X(ecc_weierstrass_get_affine) \
+ X(ecc_weierstrass_decompress) \
+ X(ecc_montgomery_diff_add) \
+ X(ecc_montgomery_double) \
+ X(ecc_montgomery_multiply) \
+ X(ecc_montgomery_get_affine) \
+ X(ecc_edwards_add) \
+ X(ecc_edwards_multiply) \
+ X(ecc_edwards_eq) \
+ X(ecc_edwards_get_affine) \
+ X(ecc_edwards_decompress) \
+ CIPHERS(CIPHER_TESTLIST, X) \
+ ALL_MACS(MAC_TESTLIST, X) \
+ HASHES(HASH_TESTLIST, X) \
+ X(argon2) \
+ X(primegen_probabilistic) \
+ X(ntru) \
+ /* end of list */
+
+static void test_mp_get_nbits(void)
+{
+ mp_int *z = mp_new(512);
+ static const size_t bitposns[] = {
+ 0, 1, 5, 16, 23, 32, 67, 123, 234, 511
+ };
+ mp_int *prev = mp_from_integer(0);
+ for (size_t i = 0; i < looplimit(lenof(bitposns)); i++) {
+ mp_int *x = mp_power_2(bitposns[i]);
+ mp_add_into(z, x, prev);
+ mp_free(prev);
+ prev = x;
+ log_start();
+ mp_get_nbits(z);
+ log_end();
+ }
+ mp_free(prev);
+ mp_free(z);
+}
+
+static void test_mp_from_decimal(void)
+{
+ char dec[64];
+ static const size_t starts[] = { 0, 1, 5, 16, 23, 32, 63, 64 };
+ for (size_t i = 0; i < looplimit(lenof(starts)); i++) {
+ memset(dec, '0', lenof(dec));
+ for (size_t j = starts[i]; j < lenof(dec); j++) {
+ uint8_t r[4];
+ random_read(r, 4);
+ dec[j] = '0' + GET_32BIT_MSB_FIRST(r) % 10;
+ }
+ log_start();
+ mp_int *x = mp_from_decimal_pl(make_ptrlen(dec, lenof(dec)));
+ log_end();
+ mp_free(x);
+ }
+}
+
+static void test_mp_from_hex(void)
+{
+ char hex[64];
+ static const size_t starts[] = { 0, 1, 5, 16, 23, 32, 63, 64 };
+ static const char digits[] = "0123456789abcdefABCDEF";
+ for (size_t i = 0; i < looplimit(lenof(starts)); i++) {
+ memset(hex, '0', lenof(hex));
+ for (size_t j = starts[i]; j < lenof(hex); j++) {
+ uint8_t r[4];
+ random_read(r, 4);
+ hex[j] = digits[GET_32BIT_MSB_FIRST(r) % lenof(digits)];
+ }
+ log_start();
+ mp_int *x = mp_from_hex_pl(make_ptrlen(hex, lenof(hex)));
+ log_end();
+ mp_free(x);
+ }
+}
+
+static void test_mp_string_format(char *(*mp_format)(mp_int *x))
+{
+ mp_int *z = mp_new(512);
+ static const size_t bitposns[] = {
+ 0, 1, 5, 16, 23, 32, 67, 123, 234, 511
+ };
+ for (size_t i = 0; i < looplimit(lenof(bitposns)); i++) {
+ mp_random_bits_into(z, bitposns[i]);
+ log_start();
+ char *formatted = mp_format(z);
+ log_end();
+ sfree(formatted);
+ }
+ mp_free(z);
+}
+
+static void test_mp_get_decimal(void)
+{
+ test_mp_string_format(mp_get_decimal);
+}
+
+static void test_mp_get_hex(void)
+{
+ test_mp_string_format(mp_get_hex);
+}
+
+static void test_mp_cmp(unsigned (*mp_cmp)(mp_int *a, mp_int *b))
+{
+ mp_int *a = mp_new(512), *b = mp_new(512);
+ static const size_t bitposns[] = {
+ 0, 1, 5, 16, 23, 32, 67, 123, 234, 511
+ };
+ for (size_t i = 0; i < looplimit(lenof(bitposns)); i++) {
+ mp_random_fill(b);
+ mp_int *x = mp_random_bits(bitposns[i]);
+ mp_xor_into(a, b, x);
+ mp_free(x);
+ log_start();
+ mp_cmp(a, b);
+ log_end();
+ }
+ mp_free(a);
+ mp_free(b);
+}
+
+static void test_mp_cmp_hs(void)
+{
+ test_mp_cmp(mp_cmp_hs);
+}
+
+static void test_mp_cmp_eq(void)
+{
+ test_mp_cmp(mp_cmp_eq);
+}
+
+static void test_mp_minmax(
+ void (*mp_minmax_into)(mp_int *r, mp_int *x, mp_int *y))
+{
+ mp_int *a = mp_new(256), *b = mp_new(256);
+ for (size_t i = 0; i < looplimit(10); i++) {
+ uint8_t lens[2];
+ random_read(lens, 2);
+ mp_int *x = mp_random_bits(lens[0]);
+ mp_copy_into(a, x);
+ mp_free(x);
+ mp_int *y = mp_random_bits(lens[1]);
+ mp_copy_into(a, y);
+ mp_free(y);
+ log_start();
+ mp_minmax_into(a, a, b);
+ log_end();
+ }
+ mp_free(a);
+ mp_free(b);
+}
+
+static void test_mp_max(void)
+{
+ test_mp_minmax(mp_max_into);
+}
+
+static void test_mp_min(void)
+{
+ test_mp_minmax(mp_min_into);
+}
+
+static void test_mp_select_into(void)
+{
+ mp_int *a = mp_random_bits(256);
+ mp_int *b = mp_random_bits(512);
+ mp_int *r = mp_new(384);
+ for (size_t i = 0; i < looplimit(16); i++) {
+ log_start();
+ mp_select_into(r, a, b, i & 1);
+ log_end();
+ }
+ mp_free(a);
+ mp_free(b);
+ mp_free(r);
+}
+
+static void test_mp_cond_swap(void)
+{
+ mp_int *a = mp_random_bits(512);
+ mp_int *b = mp_random_bits(512);
+ for (size_t i = 0; i < looplimit(16); i++) {
+ log_start();
+ mp_cond_swap(a, b, i & 1);
+ log_end();
+ }
+ mp_free(a);
+ mp_free(b);
+}
+
+static void test_mp_cond_clear(void)
+{
+ mp_int *a = mp_random_bits(512);
+ mp_int *x = mp_copy(a);
+ for (size_t i = 0; i < looplimit(16); i++) {
+ mp_copy_into(x, a);
+ log_start();
+ mp_cond_clear(a, i & 1);
+ log_end();
+ }
+ mp_free(a);
+ mp_free(x);
+}
+
+static void test_mp_arithmetic(mp_int *(*mp_arith)(mp_int *x, mp_int *y))
+{
+ mp_int *a = mp_new(256), *b = mp_new(512);
+ for (size_t i = 0; i < looplimit(16); i++) {
+ mp_random_fill(a);
+ mp_random_fill(b);
+ log_start();
+ mp_int *r = mp_arith(a, b);
+ log_end();
+ mp_free(r);
+ }
+ mp_free(a);
+ mp_free(b);
+}
+
+static void test_mp_add(void)
+{
+ test_mp_arithmetic(mp_add);
+}
+
+static void test_mp_sub(void)
+{
+ test_mp_arithmetic(mp_sub);
+}
+
+static void test_mp_mul(void)
+{
+ test_mp_arithmetic(mp_mul);
+}
+
+static void test_mp_invert(void)
+{
+ test_mp_arithmetic(mp_invert);
+}
+
+static void test_mp_rshift_safe(void)
+{
+ mp_int *x = mp_random_bits(256);
+
+ for (size_t i = 0; i < looplimit(mp_max_bits(x)+1); i++) {
+ log_start();
+ mp_int *r = mp_rshift_safe(x, i);
+ log_end();
+ mp_free(r);
+ }
+
+ mp_free(x);
+}
+
+static void test_mp_divmod(void)
+{
+ mp_int *n = mp_new(256), *d = mp_new(256);
+ mp_int *q = mp_new(256), *r = mp_new(256);
+
+ for (size_t i = 0; i < looplimit(32); i++) {
+ uint8_t sizes[2];
+ random_read(sizes, 2);
+ mp_random_bits_into(n, sizes[0]);
+ mp_random_bits_into(d, sizes[1]);
+ log_start();
+ mp_divmod_into(n, d, q, r);
+ log_end();
+ }
+
+ mp_free(n);
+ mp_free(d);
+ mp_free(q);
+ mp_free(r);
+}
+
+static void test_mp_nthroot(void)
+{
+ mp_int *x = mp_new(256), *remainder = mp_new(256);
+
+ for (size_t i = 0; i < looplimit(32); i++) {
+ uint8_t sizes[1];
+ random_read(sizes, 1);
+ mp_random_bits_into(x, sizes[0]);
+ log_start();
+ mp_free(mp_nthroot(x, 3, remainder));
+ log_end();
+ }
+
+ mp_free(x);
+ mp_free(remainder);
+}
+
+static void test_mp_modarith(
+ mp_int *(*mp_modarith)(mp_int *x, mp_int *y, mp_int *modulus))
+{
+ mp_int *base = mp_new(256);
+ mp_int *exponent = mp_new(256);
+ mp_int *modulus = mp_new(256);
+
+ for (size_t i = 0; i < looplimit(8); i++) {
+ mp_random_fill(base);
+ mp_random_fill(exponent);
+ mp_random_fill(modulus);
+ mp_set_bit(modulus, 0, 1); /* we only support odd moduli */
+
+ log_start();
+ mp_int *out = mp_modarith(base, exponent, modulus);
+ log_end();
+
+ mp_free(out);
+ }
+
+ mp_free(base);
+ mp_free(exponent);
+ mp_free(modulus);
+}
+
+static void test_mp_modadd(void)
+{
+ test_mp_modarith(mp_modadd);
+}
+
+static void test_mp_modsub(void)
+{
+ test_mp_modarith(mp_modsub);
+}
+
+static void test_mp_modmul(void)
+{
+ test_mp_modarith(mp_modmul);
+}
+
+static void test_mp_modpow(void)
+{
+ test_mp_modarith(mp_modpow);
+}
+
+static void test_mp_invert_mod_2to(void)
+{
+ mp_int *x = mp_new(512);
+
+ for (size_t i = 0; i < looplimit(32); i++) {
+ mp_random_fill(x);
+ mp_set_bit(x, 0, 1); /* input should be odd */
+
+ log_start();
+ mp_int *out = mp_invert_mod_2to(x, 511);
+ log_end();
+
+ mp_free(out);
+ }
+
+ mp_free(x);
+}
+
+static void test_mp_modsqrt(void)
+{
+ /* The prime isn't secret in this function (and in any case
+ * finding a non-square on the fly would be prohibitively
+ * annoying), so I hardcode a fixed one, selected to have a lot of
+ * factors of two in p-1 so as to exercise lots of choices in the
+ * algorithm. */
+ mp_int *p =
+ MP_LITERAL(0xb56a517b206a88c73cfa9ec6f704c7030d18212cace82401);
+ mp_int *nonsquare = MP_LITERAL(0x5);
+ size_t bits = mp_max_bits(p);
+ ModsqrtContext *sc = modsqrt_new(p, nonsquare);
+ mp_free(p);
+ mp_free(nonsquare);
+
+ mp_int *x = mp_new(bits);
+ unsigned success;
+
+ /* Do one initial call to cause the lazily initialised sub-context
+ * to be set up. This will take a while, but it can't be helped. */
+ mp_int *unwanted = mp_modsqrt(sc, x, &success);
+ mp_free(unwanted);
+
+ for (size_t i = 0; i < looplimit(8); i++) {
+ mp_random_bits_into(x, bits - 1);
+ log_start();
+ mp_int *out = mp_modsqrt(sc, x, &success);
+ log_end();
+ mp_free(out);
+ }
+
+ mp_free(x);
+ modsqrt_free(sc);
+}
+
+static WeierstrassCurve *wcurve(void)
+{
+ mp_int *p = MP_LITERAL(0xc19337603dc856acf31e01375a696fdf5451);
+ mp_int *a = MP_LITERAL(0x864946f50eecca4cde7abad4865e34be8f67);
+ mp_int *b = MP_LITERAL(0x6a5bf56db3a03ba91cfbf3241916c90feeca);
+ mp_int *nonsquare = mp_from_integer(3);
+ WeierstrassCurve *wc = ecc_weierstrass_curve(p, a, b, nonsquare);
+ mp_free(p);
+ mp_free(a);
+ mp_free(b);
+ mp_free(nonsquare);
+ return wc;
+}
+
+static WeierstrassPoint *wpoint(WeierstrassCurve *wc, size_t index)
+{
+ mp_int *x = NULL, *y = NULL;
+ WeierstrassPoint *wp;
+ switch (index) {
+ case 0:
+ break;
+ case 1:
+ x = MP_LITERAL(0x12345);
+ y = MP_LITERAL(0x3c2c799a365b53d003ef37dab65860bf80ae);
+ break;
+ case 2:
+ x = MP_LITERAL(0x4e1c77e3c00f7c3b15869e6a4e5f86b3ee53);
+ y = MP_LITERAL(0x5bde01693130591400b5c9d257d8325a44a5);
+ break;
+ case 3:
+ x = MP_LITERAL(0xb5f0e722b2f0f7e729f55ba9f15511e3b399);
+ y = MP_LITERAL(0x033d636b855c931cfe679f0b18db164a0d64);
+ break;
+ case 4:
+ x = MP_LITERAL(0xb5f0e722b2f0f7e729f55ba9f15511e3b399);
+ y = MP_LITERAL(0xbe55d3f4b86bc38ff4b6622c418e599546ed);
+ break;
+ default:
+ unreachable("only 5 example Weierstrass points defined");
+ }
+ if (x && y) {
+ wp = ecc_weierstrass_point_new(wc, x, y);
+ } else {
+ wp = ecc_weierstrass_point_new_identity(wc);
+ }
+ if (x)
+ mp_free(x);
+ if (y)
+ mp_free(y);
+ return wp;
+}
+
+static void test_ecc_weierstrass_add(void)
+{
+ WeierstrassCurve *wc = wcurve();
+ WeierstrassPoint *a = ecc_weierstrass_point_new_identity(wc);
+ WeierstrassPoint *b = ecc_weierstrass_point_new_identity(wc);
+ for (size_t i = 0; i < looplimit(5); i++) {
+ for (size_t j = 0; j < looplimit(5); j++) {
+ if (i == 0 || j == 0 || i == j ||
+ (i==3 && j==4) || (i==4 && j==3))
+ continue; /* difficult cases */
+
+ WeierstrassPoint *A = wpoint(wc, i), *B = wpoint(wc, j);
+ ecc_weierstrass_point_copy_into(a, A);
+ ecc_weierstrass_point_copy_into(b, B);
+ ecc_weierstrass_point_free(A);
+ ecc_weierstrass_point_free(B);
+
+ log_start();
+ WeierstrassPoint *r = ecc_weierstrass_add(a, b);
+ log_end();
+ ecc_weierstrass_point_free(r);
+ }
+ }
+ ecc_weierstrass_point_free(a);
+ ecc_weierstrass_point_free(b);
+ ecc_weierstrass_curve_free(wc);
+}
+
+static void test_ecc_weierstrass_double(void)
+{
+ WeierstrassCurve *wc = wcurve();
+ WeierstrassPoint *a = ecc_weierstrass_point_new_identity(wc);
+ for (size_t i = 0; i < looplimit(5); i++) {
+ WeierstrassPoint *A = wpoint(wc, i);
+ ecc_weierstrass_point_copy_into(a, A);
+ ecc_weierstrass_point_free(A);
+
+ log_start();
+ WeierstrassPoint *r = ecc_weierstrass_double(a);
+ log_end();
+ ecc_weierstrass_point_free(r);
+ }
+ ecc_weierstrass_point_free(a);
+ ecc_weierstrass_curve_free(wc);
+}
+
+static void test_ecc_weierstrass_add_general(void)
+{
+ WeierstrassCurve *wc = wcurve();
+ WeierstrassPoint *a = ecc_weierstrass_point_new_identity(wc);
+ WeierstrassPoint *b = ecc_weierstrass_point_new_identity(wc);
+ for (size_t i = 0; i < looplimit(5); i++) {
+ for (size_t j = 0; j < looplimit(5); j++) {
+ WeierstrassPoint *A = wpoint(wc, i), *B = wpoint(wc, j);
+ ecc_weierstrass_point_copy_into(a, A);
+ ecc_weierstrass_point_copy_into(b, B);
+ ecc_weierstrass_point_free(A);
+ ecc_weierstrass_point_free(B);
+
+ log_start();
+ WeierstrassPoint *r = ecc_weierstrass_add_general(a, b);
+ log_end();
+ ecc_weierstrass_point_free(r);
+ }
+ }
+ ecc_weierstrass_point_free(a);
+ ecc_weierstrass_point_free(b);
+ ecc_weierstrass_curve_free(wc);
+}
+
+static void test_ecc_weierstrass_multiply(void)
+{
+ WeierstrassCurve *wc = wcurve();
+ WeierstrassPoint *a = ecc_weierstrass_point_new_identity(wc);
+ mp_int *exponent = mp_new(56);
+ for (size_t i = 1; i < looplimit(5); i++) {
+ WeierstrassPoint *A = wpoint(wc, i);
+ ecc_weierstrass_point_copy_into(a, A);
+ ecc_weierstrass_point_free(A);
+ mp_random_fill(exponent);
+
+ log_start();
+ WeierstrassPoint *r = ecc_weierstrass_multiply(a, exponent);
+ log_end();
+
+ ecc_weierstrass_point_free(r);
+ }
+ ecc_weierstrass_point_free(a);
+ ecc_weierstrass_curve_free(wc);
+ mp_free(exponent);
+}
+
+static void test_ecc_weierstrass_is_identity(void)
+{
+ WeierstrassCurve *wc = wcurve();
+ WeierstrassPoint *a = ecc_weierstrass_point_new_identity(wc);
+ for (size_t i = 1; i < looplimit(5); i++) {
+ WeierstrassPoint *A = wpoint(wc, i);
+ ecc_weierstrass_point_copy_into(a, A);
+ ecc_weierstrass_point_free(A);
+
+ log_start();
+ ecc_weierstrass_is_identity(a);
+ log_end();
+ }
+ ecc_weierstrass_point_free(a);
+ ecc_weierstrass_curve_free(wc);
+}
+
+static void test_ecc_weierstrass_get_affine(void)
+{
+ WeierstrassCurve *wc = wcurve();
+ WeierstrassPoint *r = ecc_weierstrass_point_new_identity(wc);
+ for (size_t i = 0; i < looplimit(4); i++) {
+ WeierstrassPoint *A = wpoint(wc, i), *B = wpoint(wc, i+1);
+ WeierstrassPoint *R = ecc_weierstrass_add_general(A, B);
+ ecc_weierstrass_point_copy_into(r, R);
+ ecc_weierstrass_point_free(A);
+ ecc_weierstrass_point_free(B);
+ ecc_weierstrass_point_free(R);
+
+ log_start();
+ mp_int *x, *y;
+ ecc_weierstrass_get_affine(r, &x, &y);
+ log_end();
+ mp_free(x);
+ mp_free(y);
+ }
+ ecc_weierstrass_point_free(r);
+ ecc_weierstrass_curve_free(wc);
+}
+
+static void test_ecc_weierstrass_decompress(void)
+{
+ WeierstrassCurve *wc = wcurve();
+
+ /* As in the mp_modsqrt test, prime the lazy initialisation of the
+ * ModsqrtContext */
+ mp_int *x = mp_new(144);
+ WeierstrassPoint *a = ecc_weierstrass_point_new_from_x(wc, x, 0);
+ if (a) /* don't care whether this one succeeded */
+ ecc_weierstrass_point_free(a);
+
+ for (size_t p = 0; p < looplimit(2); p++) {
+ for (size_t i = 1; i < looplimit(5); i++) {
+ WeierstrassPoint *A = wpoint(wc, i);
+ mp_int *X;
+ ecc_weierstrass_get_affine(A, &X, NULL);
+ mp_copy_into(x, X);
+ mp_free(X);
+ ecc_weierstrass_point_free(A);
+
+ log_start();
+ WeierstrassPoint *a = ecc_weierstrass_point_new_from_x(wc, x, p);
+ log_end();
+
+ ecc_weierstrass_point_free(a);
+ }
+ }
+ mp_free(x);
+ ecc_weierstrass_curve_free(wc);
+}
+
+static MontgomeryCurve *mcurve(void)
+{
+ mp_int *p = MP_LITERAL(0xde978eb1db35236a5792e9f0c04d86000659);
+ mp_int *a = MP_LITERAL(0x799b62a612b1b30e1c23cea6d67b2e33c51a);
+ mp_int *b = MP_LITERAL(0x944bf9042b56821a8c9e0b49b636c2502b2b);
+ MontgomeryCurve *mc = ecc_montgomery_curve(p, a, b);
+ mp_free(p);
+ mp_free(a);
+ mp_free(b);
+ return mc;
+}
+
+static MontgomeryPoint *mpoint(MontgomeryCurve *wc, size_t index)
+{
+ mp_int *x = NULL;
+ MontgomeryPoint *mp;
+ switch (index) {
+ case 0:
+ x = MP_LITERAL(31415);
+ break;
+ case 1:
+ x = MP_LITERAL(0x4d352c654c06eecfe19104118857b38398e8);
+ break;
+ case 2:
+ x = MP_LITERAL(0x03fca2a73983bc3434caae3134599cd69cce);
+ break;
+ case 3:
+ x = MP_LITERAL(0xa0fd735ce9b3406498b5f035ee655bda4e15);
+ break;
+ case 4:
+ x = MP_LITERAL(0x7c7f46a00cc286dbe47db39b6d8f5efd920e);
+ break;
+ case 5:
+ x = MP_LITERAL(0x07a6dc30d3b320448e6f8999be417e6b7c6b);
+ break;
+ case 6:
+ x = MP_LITERAL(0x7832da5fc16dfbd358170b2b96896cd3cd06);
+ break;
+ default:
+ unreachable("only 7 example Weierstrass points defined");
+ }
+ mp = ecc_montgomery_point_new(wc, x);
+ mp_free(x);
+ return mp;
+}
+
+static void test_ecc_montgomery_diff_add(void)
+{
+ MontgomeryCurve *wc = mcurve();
+ MontgomeryPoint *a = NULL, *b = NULL, *c = NULL;
+ for (size_t i = 0; i < looplimit(5); i++) {
+ MontgomeryPoint *A = mpoint(wc, i);
+ MontgomeryPoint *B = mpoint(wc, i);
+ MontgomeryPoint *C = mpoint(wc, i);
+ if (!a) {
+ a = A;
+ b = B;
+ c = C;
+ } else {
+ ecc_montgomery_point_copy_into(a, A);
+ ecc_montgomery_point_copy_into(b, B);
+ ecc_montgomery_point_copy_into(c, C);
+ ecc_montgomery_point_free(A);
+ ecc_montgomery_point_free(B);
+ ecc_montgomery_point_free(C);
+ }
+
+ log_start();
+ MontgomeryPoint *r = ecc_montgomery_diff_add(b, c, a);
+ log_end();
+
+ ecc_montgomery_point_free(r);
+ }
+ ecc_montgomery_point_free(a);
+ ecc_montgomery_point_free(b);
+ ecc_montgomery_point_free(c);
+ ecc_montgomery_curve_free(wc);
+}
+
+static void test_ecc_montgomery_double(void)
+{
+ MontgomeryCurve *wc = mcurve();
+ MontgomeryPoint *a = NULL;
+ for (size_t i = 0; i < looplimit(7); i++) {
+ MontgomeryPoint *A = mpoint(wc, i);
+ if (!a) {
+ a = A;
+ } else {
+ ecc_montgomery_point_copy_into(a, A);
+ ecc_montgomery_point_free(A);
+ }
+
+ log_start();
+ MontgomeryPoint *r = ecc_montgomery_double(a);
+ log_end();
+
+ ecc_montgomery_point_free(r);
+ }
+ ecc_montgomery_point_free(a);
+ ecc_montgomery_curve_free(wc);
+}
+
+static void test_ecc_montgomery_multiply(void)
+{
+ MontgomeryCurve *wc = mcurve();
+ MontgomeryPoint *a = NULL;
+ mp_int *exponent = mp_new(56);
+ for (size_t i = 0; i < looplimit(7); i++) {
+ MontgomeryPoint *A = mpoint(wc, i);
+ if (!a) {
+ a = A;
+ } else {
+ ecc_montgomery_point_copy_into(a, A);
+ ecc_montgomery_point_free(A);
+ }
+ mp_random_fill(exponent);
+
+ log_start();
+ MontgomeryPoint *r = ecc_montgomery_multiply(a, exponent);
+ log_end();
+
+ ecc_montgomery_point_free(r);
+ }
+ ecc_montgomery_point_free(a);
+ ecc_montgomery_curve_free(wc);
+ mp_free(exponent);
+}
+
+static void test_ecc_montgomery_get_affine(void)
+{
+ MontgomeryCurve *wc = mcurve();
+ MontgomeryPoint *r = NULL;
+ for (size_t i = 0; i < looplimit(5); i++) {
+ MontgomeryPoint *A = mpoint(wc, i);
+ MontgomeryPoint *B = mpoint(wc, i);
+ MontgomeryPoint *C = mpoint(wc, i);
+ MontgomeryPoint *R = ecc_montgomery_diff_add(B, C, A);
+ ecc_montgomery_point_free(A);
+ ecc_montgomery_point_free(B);
+ ecc_montgomery_point_free(C);
+ if (!r) {
+ r = R;
+ } else {
+ ecc_montgomery_point_copy_into(r, R);
+ ecc_montgomery_point_free(R);
+ }
+
+ log_start();
+ mp_int *x;
+ ecc_montgomery_get_affine(r, &x);
+ log_end();
+
+ mp_free(x);
+ }
+ ecc_montgomery_point_free(r);
+ ecc_montgomery_curve_free(wc);
+}
+
+static EdwardsCurve *ecurve(void)
+{
+ mp_int *p = MP_LITERAL(0xfce2dac1704095de0b5c48876c45063cd475);
+ mp_int *d = MP_LITERAL(0xbd4f77401c3b14ae1742a7d1d367adac8f3e);
+ mp_int *a = MP_LITERAL(0x51d0845da3fa871aaac4341adea53b861919);
+ mp_int *nonsquare = mp_from_integer(2);
+ EdwardsCurve *ec = ecc_edwards_curve(p, d, a, nonsquare);
+ mp_free(p);
+ mp_free(d);
+ mp_free(a);
+ mp_free(nonsquare);
+ return ec;
+}
+
+static EdwardsPoint *epoint(EdwardsCurve *wc, size_t index)
+{
+ mp_int *x, *y;
+ EdwardsPoint *ep;
+ switch (index) {
+ case 0:
+ x = MP_LITERAL(0x0);
+ y = MP_LITERAL(0x1);
+ break;
+ case 1:
+ x = MP_LITERAL(0x3d8aef0294a67c1c7e8e185d987716250d7c);
+ y = MP_LITERAL(0x27184);
+ break;
+ case 2:
+ x = MP_LITERAL(0xf44ed5b8a6debfd3ab24b7874cd2589fd672);
+ y = MP_LITERAL(0xd635d8d15d367881c8a3af472c8fe487bf40);
+ break;
+ case 3:
+ x = MP_LITERAL(0xde114ecc8b944684415ef81126a07269cd30);
+ y = MP_LITERAL(0xbe0fd45ff67ebba047ed0ec5a85d22e688a1);
+ break;
+ case 4:
+ x = MP_LITERAL(0x76bd2f90898d271b492c9c20dd7bbfe39fe5);
+ y = MP_LITERAL(0xbf1c82698b4a5a12c1057631c1ebdc216ae2);
+ break;
+ default:
+ unreachable("only 5 example Edwards points defined");
+ }
+ ep = ecc_edwards_point_new(wc, x, y);
+ mp_free(x);
+ mp_free(y);
+ return ep;
+}
+
+static void test_ecc_edwards_add(void)
+{
+ EdwardsCurve *ec = ecurve();
+ EdwardsPoint *a = NULL, *b = NULL;
+ for (size_t i = 0; i < looplimit(5); i++) {
+ for (size_t j = 0; j < looplimit(5); j++) {
+ EdwardsPoint *A = epoint(ec, i), *B = epoint(ec, j);
+ if (!a) {
+ a = A;
+ b = B;
+ } else {
+ ecc_edwards_point_copy_into(a, A);
+ ecc_edwards_point_copy_into(b, B);
+ ecc_edwards_point_free(A);
+ ecc_edwards_point_free(B);
+ }
+
+ log_start();
+ EdwardsPoint *r = ecc_edwards_add(a, b);
+ log_end();
+
+ ecc_edwards_point_free(r);
+ }
+ }
+ ecc_edwards_point_free(a);
+ ecc_edwards_point_free(b);
+ ecc_edwards_curve_free(ec);
+}
+
+static void test_ecc_edwards_multiply(void)
+{
+ EdwardsCurve *ec = ecurve();
+ EdwardsPoint *a = NULL;
+ mp_int *exponent = mp_new(56);
+ for (size_t i = 1; i < looplimit(5); i++) {
+ EdwardsPoint *A = epoint(ec, i);
+ if (!a) {
+ a = A;
+ } else {
+ ecc_edwards_point_copy_into(a, A);
+ ecc_edwards_point_free(A);
+ }
+ mp_random_fill(exponent);
+
+ log_start();
+ EdwardsPoint *r = ecc_edwards_multiply(a, exponent);
+ log_end();
+
+ ecc_edwards_point_free(r);
+ }
+ ecc_edwards_point_free(a);
+ ecc_edwards_curve_free(ec);
+ mp_free(exponent);
+}
+
+static void test_ecc_edwards_eq(void)
+{
+ EdwardsCurve *ec = ecurve();
+ EdwardsPoint *a = NULL, *b = NULL;
+ for (size_t i = 0; i < looplimit(5); i++) {
+ for (size_t j = 0; j < looplimit(5); j++) {
+ EdwardsPoint *A = epoint(ec, i), *B = epoint(ec, j);
+ if (!a) {
+ a = A;
+ b = B;
+ } else {
+ ecc_edwards_point_copy_into(a, A);
+ ecc_edwards_point_copy_into(b, B);
+ ecc_edwards_point_free(A);
+ ecc_edwards_point_free(B);
+ }
+
+ log_start();
+ ecc_edwards_eq(a, b);
+ log_end();
+ }
+ }
+ ecc_edwards_point_free(a);
+ ecc_edwards_point_free(b);
+ ecc_edwards_curve_free(ec);
+}
+
+static void test_ecc_edwards_get_affine(void)
+{
+ EdwardsCurve *ec = ecurve();
+ EdwardsPoint *r = NULL;
+ for (size_t i = 0; i < looplimit(4); i++) {
+ EdwardsPoint *A = epoint(ec, i), *B = epoint(ec, i+1);
+ EdwardsPoint *R = ecc_edwards_add(A, B);
+ ecc_edwards_point_free(A);
+ ecc_edwards_point_free(B);
+ if (!r) {
+ r = R;
+ } else {
+ ecc_edwards_point_copy_into(r, R);
+ ecc_edwards_point_free(R);
+ }
+
+ log_start();
+ mp_int *x, *y;
+ ecc_edwards_get_affine(r, &x, &y);
+ log_end();
+
+ mp_free(x);
+ mp_free(y);
+ }
+ ecc_edwards_point_free(r);
+ ecc_edwards_curve_free(ec);
+}
+
+static void test_ecc_edwards_decompress(void)
+{
+ EdwardsCurve *ec = ecurve();
+
+ /* As in the mp_modsqrt test, prime the lazy initialisation of the
+ * ModsqrtContext */
+ mp_int *y = mp_new(144);
+ EdwardsPoint *a = ecc_edwards_point_new_from_y(ec, y, 0);
+ if (a) /* don't care whether this one succeeded */
+ ecc_edwards_point_free(a);
+
+ for (size_t p = 0; p < looplimit(2); p++) {
+ for (size_t i = 0; i < looplimit(5); i++) {
+ EdwardsPoint *A = epoint(ec, i);
+ mp_int *Y;
+ ecc_edwards_get_affine(A, NULL, &Y);
+ mp_copy_into(y, Y);
+ mp_free(Y);
+ ecc_edwards_point_free(A);
+
+ log_start();
+ EdwardsPoint *a = ecc_edwards_point_new_from_y(ec, y, p);
+ log_end();
+
+ ecc_edwards_point_free(a);
+ }
+ }
+ mp_free(y);
+ ecc_edwards_curve_free(ec);
+}
+
+static void test_cipher(const ssh_cipheralg *calg)
+{
+ ssh_cipher *c = ssh_cipher_new(calg);
+ if (!c) {
+ test_skipped = true;
+ return;
+ }
+ const ssh2_macalg *malg = calg->required_mac;
+ ssh2_mac *m = NULL;
+ if (malg) {
+ m = ssh2_mac_new(malg, c);
+ if (!m) {
+ ssh_cipher_free(c);
+ test_skipped = true;
+ return;
+ }
+ }
+
+ uint8_t *ckey = snewn(calg->padded_keybytes, uint8_t);
+ uint8_t *civ = snewn(calg->blksize, uint8_t);
+ uint8_t *mkey = malg ? snewn(malg->keylen, uint8_t) : NULL;
+ size_t datalen = calg->blksize * 8;
+ size_t maclen = malg ? malg->len : 0;
+ uint8_t *data = snewn(datalen + maclen, uint8_t);
+ size_t lenlen = 4;
+ uint8_t *lendata = snewn(lenlen, uint8_t);
+
+ for (size_t i = 0; i < looplimit(16); i++) {
+ random_read(ckey, calg->padded_keybytes);
+ if (malg)
+ random_read(mkey, malg->keylen);
+ random_read(data, datalen);
+ random_read(lendata, lenlen);
+ if (i == 0) {
+ /* Ensure one of our test IVs will cause SDCTR wraparound */
+ memset(civ, 0xFF, calg->blksize);
+ } else {
+ random_read(civ, calg->blksize);
+ }
+ uint8_t seqbuf[4];
+ random_read(seqbuf, 4);
+ uint32_t seq = GET_32BIT_MSB_FIRST(seqbuf);
+
+ log_start();
+ ssh_cipher_setkey(c, ckey);
+ ssh_cipher_setiv(c, civ);
+ if (m)
+ ssh2_mac_setkey(m, make_ptrlen(mkey, malg->keylen));
+ if (calg->flags & SSH_CIPHER_SEPARATE_LENGTH)
+ ssh_cipher_encrypt_length(c, data, datalen, seq);
+ ssh_cipher_encrypt(c, data, datalen);
+ if (m) {
+ ssh2_mac_generate(m, data, datalen, seq);
+ ssh2_mac_verify(m, data, datalen, seq);
+ }
+ if (calg->flags & SSH_CIPHER_SEPARATE_LENGTH)
+ ssh_cipher_decrypt_length(c, data, datalen, seq);
+ ssh_cipher_decrypt(c, data, datalen);
+ log_end();
+ }
+
+ sfree(ckey);
+ sfree(civ);
+ sfree(mkey);
+ sfree(data);
+ sfree(lendata);
+ if (m)
+ ssh2_mac_free(m);
+ ssh_cipher_free(c);
+}
+
+#define CIPHER_TESTFN(Y_unused, cipher) \
+ static void test_cipher_##cipher(void) { test_cipher(&cipher); }
+CIPHERS(CIPHER_TESTFN, Y_unused)
+
+static void test_mac(const ssh2_macalg *malg, const ssh_cipheralg *calg)
+{
+ ssh_cipher *c = NULL;
+ if (calg) {
+ c = ssh_cipher_new(calg);
+ if (!c) {
+ test_skipped = true;
+ return;
+ }
+ }
+
+ ssh2_mac *m = ssh2_mac_new(malg, c);
+ if (!m) {
+ test_skipped = true;
+ if (c)
+ ssh_cipher_free(c);
+ return;
+ }
+
+ size_t ckeylen = calg ? calg->padded_keybytes : 0;
+ size_t civlen = calg ? calg->blksize : 0;
+ uint8_t *ckey = snewn(ckeylen, uint8_t);
+ uint8_t *civ = snewn(civlen, uint8_t);
+ uint8_t *mkey = snewn(malg->keylen, uint8_t);
+ size_t datalen = 256;
+ size_t maclen = malg->len;
+ uint8_t *data = snewn(datalen + maclen, uint8_t);
+
+ for (size_t i = 0; i < looplimit(16); i++) {
+ random_read(ckey, ckeylen);
+ random_read(civ, civlen);
+ random_read(mkey, malg->keylen);
+ random_read(data, datalen);
+ uint8_t seqbuf[4];
+ random_read(seqbuf, 4);
+ uint32_t seq = GET_32BIT_MSB_FIRST(seqbuf);
+
+ log_start();
+ if (c) {
+ ssh_cipher_setkey(c, ckey);
+ ssh_cipher_setiv(c, civ);
+ }
+ ssh2_mac_setkey(m, make_ptrlen(mkey, malg->keylen));
+ ssh2_mac_generate(m, data, datalen, seq);
+ ssh2_mac_verify(m, data, datalen, seq);
+ log_end();
+ }
+
+ sfree(ckey);
+ sfree(civ);
+ sfree(mkey);
+ sfree(data);
+ ssh2_mac_free(m);
+ if (c)
+ ssh_cipher_free(c);
+}
+
+#define MAC_TESTFN(Y_unused, mac) \
+ static void test_mac_##mac(void) { test_mac(&mac, NULL); }
+SIMPLE_MACS(MAC_TESTFN, Y_unused)
+
+static void test_mac_poly1305(void)
+{
+ test_mac(&ssh2_poly1305, &ssh2_chacha20_poly1305);
+}
+
+static void test_mac_aesgcm_sw_sw(void)
+{
+ test_mac(&ssh2_aesgcm_mac_sw, &ssh_aes128_gcm_sw);
+}
+
+static void test_mac_aesgcm_sw_refpoly(void)
+{
+ test_mac(&ssh2_aesgcm_mac_ref_poly, &ssh_aes128_gcm_sw);
+}
+
+#if HAVE_AES_NI
+static void test_mac_aesgcm_ni_sw(void)
+{
+ test_mac(&ssh2_aesgcm_mac_sw, &ssh_aes128_gcm_ni);
+}
+#endif
+
+#if HAVE_NEON_CRYPTO
+static void test_mac_aesgcm_neon_sw(void)
+{
+ test_mac(&ssh2_aesgcm_mac_sw, &ssh_aes128_gcm_neon);
+}
+#endif
+
+#if HAVE_CLMUL
+static void test_mac_aesgcm_sw_clmul(void)
+{
+ test_mac(&ssh2_aesgcm_mac_clmul, &ssh_aes128_gcm_sw);
+}
+#endif
+
+#if HAVE_NEON_PMULL
+static void test_mac_aesgcm_sw_neon(void)
+{
+ test_mac(&ssh2_aesgcm_mac_neon, &ssh_aes128_gcm_sw);
+}
+#endif
+
+#if HAVE_AES_NI && HAVE_CLMUL
+static void test_mac_aesgcm_ni_clmul(void)
+{
+ test_mac(&ssh2_aesgcm_mac_clmul, &ssh_aes128_gcm_ni);
+}
+#endif
+
+#if HAVE_NEON_CRYPTO && HAVE_NEON_PMULL
+static void test_mac_aesgcm_neon_neon(void)
+{
+ test_mac(&ssh2_aesgcm_mac_neon, &ssh_aes128_gcm_neon);
+}
+#endif
+
+static void test_hash(const ssh_hashalg *halg)
+{
+ ssh_hash *h = ssh_hash_new(halg);
+ if (!h) {
+ test_skipped = true;
+ return;
+ }
+
+ size_t datalen = 256;
+ uint8_t *data = snewn(datalen, uint8_t);
+ uint8_t *hash = snewn(halg->hlen, uint8_t);
+
+ for (size_t i = 0; i < looplimit(16); i++) {
+ random_read(data, datalen);
+
+ log_start();
+ put_data(h, data, datalen);
+ ssh_hash_final(h, hash);
+ log_end();
+
+ h = ssh_hash_new(halg);
+ }
+
+ sfree(data);
+ sfree(hash);
+ ssh_hash_free(h);
+}
+
+#define HASH_TESTFN(Y_unused, hash) \
+ static void test_hash_##hash(void) { test_hash(&hash); }
+HASHES(HASH_TESTFN, Y_unused)
+
+struct test {
+ const char *testname;
+ void (*testfn)(void);
+};
+
+static void test_argon2(void)
+{
+ /*
+ * We can only expect the Argon2i variant to pass this stringent
+ * test for no data-dependency, because the other two variants of
+ * Argon2 have _deliberate_ data-dependency.
+ */
+ size_t inlen = 48+16+24+8;
+ uint8_t *indata = snewn(inlen, uint8_t);
+ ptrlen password = make_ptrlen(indata, 48);
+ ptrlen salt = make_ptrlen(indata+48, 16);
+ ptrlen secret = make_ptrlen(indata+48+16, 24);
+ ptrlen assoc = make_ptrlen(indata+48+16+24, 8);
+
+ strbuf *outdata = strbuf_new();
+ strbuf_append(outdata, 256);
+
+ for (size_t i = 0; i < looplimit(16); i++) {
+ strbuf_clear(outdata);
+ random_read(indata, inlen);
+
+ log_start();
+ argon2(Argon2i, 32, 2, 2, 144, password, salt, secret, assoc, outdata);
+ log_end();
+ }
+
+ sfree(indata);
+ strbuf_free(outdata);
+}
+
+static void test_primegen(const PrimeGenerationPolicy *policy)
+{
+ static ProgressReceiver null_progress = { .vt = &null_progress_vt };
+
+ PrimeGenerationContext *pgc = primegen_new_context(policy);
+
+ init_smallprimes();
+ mp_int *pcopy = mp_new(128);
+
+ for (size_t i = 0; i < looplimit(2); i++) {
+ while (true) {
+ random_advance_counter();
+ struct random_state st = random_get_state();
+
+ PrimeCandidateSource *pcs = pcs_new(128);
+ pcs_set_oneshot(pcs);
+ pcs_ready(pcs);
+ mp_int *p = primegen_generate(pgc, pcs, &null_progress);
+
+ if (p) {
+ mp_copy_into(pcopy, p);
+ sfree(p);
+
+ random_set_state(st);
+
+ log_start();
+ PrimeCandidateSource *pcs = pcs_new(128);
+ pcs_set_oneshot(pcs);
+ pcs_ready(pcs);
+ mp_int *q = primegen_generate(pgc, pcs, &null_progress);
+ log_end();
+
+ assert(q);
+ assert(mp_cmp_eq(pcopy, q));
+ mp_free(q);
+ break;
+ }
+ }
+ }
+
+ mp_free(pcopy);
+ primegen_free_context(pgc);
+}
+
+static void test_primegen_probabilistic(void)
+{
+ test_primegen(&primegen_probabilistic);
+}
+
+static void test_ntru(void)
+{
+ unsigned p = 11, q = 59, w = 3;
+ uint16_t *pubkey_orig = snewn(p, uint16_t);
+ uint16_t *pubkey_check = snewn(p, uint16_t);
+ uint16_t *pubkey = snewn(p, uint16_t);
+ uint16_t *plaintext = snewn(p, uint16_t);
+ uint16_t *ciphertext = snewn(p, uint16_t);
+
+ strbuf *buffer = strbuf_new();
+ strbuf_append(buffer, 16384);
+ BinarySource src[1];
+
+ for (size_t i = 0; i < looplimit(32); i++) {
+ while (true) {
+ random_advance_counter();
+ struct random_state st = random_get_state();
+
+ NTRUKeyPair *keypair = ntru_keygen_attempt(p, q, w);
+
+ if (keypair) {
+ memcpy(pubkey_orig, ntru_pubkey(keypair),
+ p*sizeof(*pubkey_orig));
+ ntru_keypair_free(keypair);
+
+ random_set_state(st);
+
+ log_start();
+ NTRUKeyPair *keypair = ntru_keygen_attempt(p, q, w);
+ memcpy(pubkey_check, ntru_pubkey(keypair),
+ p*sizeof(*pubkey_check));
+
+ ntru_gen_short(plaintext, p, w);
+ ntru_encrypt(ciphertext, plaintext, pubkey, p, w);
+ ntru_decrypt(plaintext, ciphertext, keypair);
+
+ strbuf_clear(buffer);
+ ntru_encode_pubkey(ntru_pubkey(keypair), p, q,
+ BinarySink_UPCAST(buffer));
+ BinarySource_BARE_INIT_PL(src, ptrlen_from_strbuf(buffer));
+ ntru_decode_pubkey(pubkey, p, q, src);
+
+ strbuf_clear(buffer);
+ ntru_encode_ciphertext(ciphertext, p, q,
+ BinarySink_UPCAST(buffer));
+ BinarySource_BARE_INIT_PL(src, ptrlen_from_strbuf(buffer));
+ ntru_decode_ciphertext(ciphertext, keypair, src);
+
+ strbuf_clear(buffer);
+ ntru_encode_plaintext(plaintext, p, BinarySink_UPCAST(buffer));
+ log_end();
+
+ ntru_keypair_free(keypair);
+
+ break;
+ }
+
+ assert(!memcmp(pubkey_orig, pubkey_check,
+ p*sizeof(*pubkey_check)));
+ }
+ }
+
+ sfree(pubkey_orig);
+ sfree(pubkey_check);
+ sfree(pubkey);
+ sfree(plaintext);
+ sfree(ciphertext);
+ strbuf_free(buffer);
+}
+
+static const struct test tests[] = {
+#define STRUCT_TEST(X) { #X, test_##X },
+TESTLIST(STRUCT_TEST)
+#undef STRUCT_TEST
+};
+
+void dputs(const char *buf)
+{
+ fputs(buf, stderr);
+}
+
+int main(int argc, char **argv)
+{
+ bool doing_opts = true;
+ const char *pname = argv[0];
+ uint8_t tests_to_run[lenof(tests)];
+ bool keep_outfiles = false;
+ bool test_names_given = false;
+
+ memset(tests_to_run, 1, sizeof(tests_to_run));
+ random_hash = ssh_hash_new(&ssh_sha256);
+
+ while (--argc > 0) {
+ char *p = *++argv;
+
+ if (p[0] == '-' && doing_opts) {
+ if (!strcmp(p, "-O")) {
+ if (--argc <= 0) {
+ fprintf(stderr, "'-O' expects a directory name\n");
+ return 1;
+ }
+ outdir = *++argv;
+ } else if (!strcmp(p, "-k") || !strcmp(p, "--keep")) {
+ keep_outfiles = true;
+ } else if (!strcmp(p, "--")) {
+ doing_opts = false;
+ } else if (!strcmp(p, "--help")) {
+ printf(" usage: drrun -c test/sclog/libsclog.so -- "
+ "%s -O <outdir>\n", pname);
+ printf("options: -O <outdir> "
+ "put log files in the specified directory\n");
+ printf(" -k, --keep "
+ "do not delete log files for tests that passed\n");
+ printf(" also: --help "
+ "display this text\n");
+ return 0;
+ } else {
+ fprintf(stderr, "unknown command line option '%s'\n", p);
+ return 1;
+ }
+ } else {
+ if (!test_names_given) {
+ test_names_given = true;
+ memset(tests_to_run, 0, sizeof(tests_to_run));
+ }
+ bool found_one = false;
+ for (size_t i = 0; i < lenof(tests); i++) {
+ if (wc_match(p, tests[i].testname)) {
+ tests_to_run[i] = 1;
+ found_one = true;
+ }
+ }
+ if (!found_one) {
+ fprintf(stderr, "no test name matched '%s'\n", p);
+ return 1;
+ }
+ }
+ }
+
+ bool is_dry_run = dry_run();
+
+ if (is_dry_run) {
+ printf("Dry run (DynamoRIO instrumentation not detected)\n");
+ } else {
+ /* Print the address of main() in this run. The idea is that
+ * if this image is compiled to be position-independent, then
+ * PC values in the logs won't match the ones you get if you
+ * disassemble the binary, so it'll be harder to match up the
+ * log messages to the code. But if you know the address of a
+ * fixed (and not inlined) function in both worlds, you can
+ * find out the offset between them. */
+ printf("Live run, main = %p\n", (void *)main);
+
+ if (!outdir) {
+ fprintf(stderr, "expected -O <outdir> option\n");
+ return 1;
+ }
+ printf("Will write log files to %s\n", outdir);
+ }
+
+ size_t nrun = 0, npass = 0;
+
+ for (size_t i = 0; i < lenof(tests); i++) {
+ bool keep_these_outfiles = true;
+
+ if (!tests_to_run[i])
+ continue;
+ const struct test *test = &tests[i];
+ printf("Running test %s ... ", test->testname);
+ fflush(stdout);
+
+ test_skipped = false;
+ random_seed(test->testname);
+ test_basename = test->testname;
+ test_index = 0;
+
+ test->testfn();
+
+ if (test_skipped) {
+ /* Used for e.g. tests of hardware-accelerated crypto when
+ * the hardware acceleration isn't available */
+ printf("skipped\n");
+ continue;
+ }
+
+ nrun++;
+
+ if (is_dry_run) {
+ printf("dry run done\n");
+ continue; /* test files won't exist anyway */
+ }
+
+ if (test_index < 2) {
+ printf("FAIL: test did not generate multiple output files\n");
+ goto test_done;
+ }
+
+ char *firstfile = log_filename(test_basename, 0);
+ FILE *firstfp = fopen(firstfile, "rb");
+ if (!firstfp) {
+ printf("ERR: %s: open: %s\n", firstfile, strerror(errno));
+ goto test_done;
+ }
+ for (size_t i = 1; i < test_index; i++) {
+ char *nextfile = log_filename(test_basename, i);
+ FILE *nextfp = fopen(nextfile, "rb");
+ if (!nextfp) {
+ printf("ERR: %s: open: %s\n", nextfile, strerror(errno));
+ goto test_done;
+ }
+
+ rewind(firstfp);
+ char buf1[4096], bufn[4096];
+ bool compare_ok = false;
+ while (true) {
+ size_t r1 = fread(buf1, 1, sizeof(buf1), firstfp);
+ size_t rn = fread(bufn, 1, sizeof(bufn), nextfp);
+ if (r1 != rn) {
+ printf("FAIL: %s %s: different lengths\n",
+ firstfile, nextfile);
+ break;
+ }
+ if (r1 == 0) {
+ if (feof(firstfp) && feof(nextfp)) {
+ compare_ok = true;
+ } else {
+ printf("FAIL: %s %s: error at end of file\n",
+ firstfile, nextfile);
+ }
+ break;
+ }
+ if (memcmp(buf1, bufn, r1) != 0) {
+ printf("FAIL: %s %s: different content\n",
+ firstfile, nextfile);
+ break;
+ }
+ }
+ fclose(nextfp);
+ sfree(nextfile);
+ if (!compare_ok) {
+ goto test_done;
+ }
+ }
+ fclose(firstfp);
+ sfree(firstfile);
+
+ printf("pass\n");
+ npass++;
+ keep_these_outfiles = keep_outfiles;
+
+ test_done:
+ if (!keep_these_outfiles) {
+ for (size_t i = 0; i < test_index; i++) {
+ char *file = log_filename(test_basename, i);
+ remove(file);
+ sfree(file);
+ }
+ }
+ }
+
+ ssh_hash_free(random_hash);
+
+ if (npass == nrun) {
+ printf("All tests passed\n");
+ return 0;
+ } else {
+ printf("%"SIZEu" tests failed\n", nrun - npass);
+ return 1;
+ }
+}